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Abstract. In this paper the necessity to regularize infinite dimensional extremum problems
is discussed. It is shown that the convergence of optimal values of "approximate" problems
and the weak convergence of a subsequence of optimal solutions can be guaranteed without

any stabilizer, assuming the epi- and pointwise convergence ofcost functionals and the Mosco

convergence of constraint sets.
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1. INTRODUCTION

Let X be a reflexive Banach space, f a functional, f : X — R!, and

K asetin X, K C X. Consider the simplest constrained minimization

problem:

min {fle) | e} = [, (1)

In stability analysis of extremum problems two types of well-posedness
are well known. First, problem (1) is said to be well-posed in the sense

of Hadamard, if it has a unique solution which depends continuously
on the initial data. Second, the problem is well-posed in the sense of

Tykhonov, if it has a unique solution toward which every minimizing
sequence converges.

At the first sight these two notions seem to be independent. But, at least

for problems with convex data, a close relation between these two concepts
was found (see, e.g., ['73]). For example, in [*], Theorem 3.1, the authors

have shown that for convex uniformly continuous cost functionals from the

Tykhonov well-posedness on closed affine half-spaces the Hadamardwell-

posedness follows with respect to the Mosco convergence of closed convex
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constraint sets. On the otherhand, ifthe problem is well-posed in the sense

of Hadamard with respect to the Hausdorff convergence of convex bounded

sets, then it is well-posed in the sense of Tykhonov.
Let together with problem (1) a sequence of "approximate" problems

be given:

min {fo(z) |z € Kn} = f7, (2)

where f, : X -R, K,, C X, n e N ={1,2,3,...}. Let the sequences of

functionals {f,} and sets {K,,} converge in some way to the functional f
and to the set K, respectively. Then the natural questions arise: when does

the convergence of optimal values take place, and what can we say about

convergences of optimal solutions z;,n € N, of problems (2)?
The problem is not new. In [*], the convergence of optimal values and

upper semicontinuity of the sequence of solution sets is guaranteed under

uniform convergence of convex functionals and the Mosco convergence
of convex sets, assuming that the initial problem is well-posed. In [°],
a constrained minimization problem in abstract Frechet’ L-spaces was

considered. The problem was regularized by using the classical Tykhonov
method, and the convergence of optimal values of regularized approximate
problems together with the weak convergence of a subsequence of optimal
solutions was attained in the case when the problem was formulated in
a reflexive Banach space. The main attention was paid to the choice of
the regularization parameter and its connection with the approximation
parameter.

In this paper we will show that under the conditions, similar to those
in [* %], it is possible to guarantee the convergence of optimal values

of "approximate" problems, and weak convergence of a subsequence
of optimal solutions without using any stabilizer [°] and without uniform

convergence of cost functionals (assuming the epi- and pointwise
convergences of functionals and the Mosco convergence of sets). The

results obtained will be applied to stability analysis of optimization
problems in Banach spaces with operator constraints of inequality type.

2. CONVERGENCE OF OPTIMAL SOLUTIONS AND VALUES

Requirements for the convergence of optimal values and solutions

bring along the necessity to present conditions for the existence of optimal
solutions to problems (1) and (2). In general, there are two ways to

give these conditions in function spaces: first, to apply the Weierstrass

theorem, which says that a (weakly) lower semicontinuous functional

attains its global minimum on a (weakly) closed and (weakly) compact

set; second, to guarantee (weak) compactness of a minimizing sequence
without boundedness of the constraint set. In reflexive spaces we can attain

the latter, assuming coercivity of the cost functional, i.e., f(z,) — o 0 as
| zn || = 00.
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In reflexive spaces a lower semicontinuous convex functional is weakly
lower semicontinuous, and a closed convex set is weakly closed (in some

cases, e.g., if X = I, 1 < p < 00, and f being an integral functional, the

conditions are also necessary).
Assume throughout the paper that

1) the sets K, K,,,n € N, are bounded or functionals f, f,,n € N, are

coercive;

2) the sets K, K,,,n € N, are closed and convex, functionals f, f,,n €

N, are continuous and convex.

Proposition 1. Let assumptions 1) and 2) be satisfied. If the sets K and

K,,n € N, are nonempty, then problems (1) and (2) have optimal
solutions.

Remark 1. Both criteria work well also in nonreflexive spaces if we use

instead of the weak topology the weak* one.

Definition 1. A sequence ofsets, {K,},K, C X,n € N, converges to the

set K C X in the sense ofMosco, if
1)for any subsequence {x,}, z, € K,,n € N' C N, such thatfrom

Yn — = weakly, n € N',itfollowsx € K;
2)forany x € K there exists a sequence {y,}, yn € K,,n € N, which

convergestox, || yn —z || = 0, n € N.

The definition is also applicable to functionals f and f,,n € N.

Definition 2. A sequence of functionals {f,} epiconverges to the

functional f, if
1)for any subsequence {z,}, z, € X,n € N' C N, such thatfrom

T, — = weakly, itfollows liminf f,(z,) > f(z),n € N" c N;
2)for any x € X there existsa sequence {y,},n € N, || yo—z || = 0,

such that limsup f,(y,) < f(z), n € N.

Remark 2. The epiconvergence of functionals means that their epigraphs
converge in the sense of Mosco.

If in the "there exists" part 2) of Definition 2 it is assumed only that:

for any z € X there exists a sequence {yn}, y» € X, such that
limsup fn(yn) < f(z), then the convergence is called variational (see,

e.g., []

Definition 3. A sequence of functionals {f,(x)} converges continuously
to the functional f(x) if both sequences {f,(z)} and {—fn(z)}
epiconverge to f(x).

In general, epiconvergence and pointwise convergence are independent.

Definition 4. A sequence offunctionals { f,(x)} is uniformly coercive, if
from

limsup fn(tn) < M < o, n EN,

itfollows
limsup | & || < m < 00, n EN.
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Theorem 1. Let

1) sets K, K,,n € N, be uniformly bounded or functionals f, f,,n €

N, uniformly coercive;

2) sets K, K,,,n € N, be nonempty, closed and convex, ©* € K,, n >
ny, functionals f, f,,n € N, continuous and convex.

If { fn} epiconvergesand converges pointwise to f, {K,} converges to

Kin the sense ofMosco and limsup f,(z}) < M; < 00, then

h — F, neEN,

and all weak limitpoints ofsubsequences of solutions z;,n € N' C N, of
problems (2) are solutions toproblem (1).

Proof. Let {z}} be a sequence of solutions of "approximate" problems (2).
Due to conditions 1) it is bounded: if K,s are uniformly bounded, then

lzž || £ m < 00, n € N;if f;s are uniformly coercive, then by
assumption limsup f,(z}) < M; < oo and hence, || 2ž || < my <

00, n € N. Consequently, the sequence {z;} is weakly compact. Let z* —

z weakly, n € N' C N. Condition 1) of the Mosco convergence of sets

K,, n € N, guarantees that z € K, and condition 1) of epiconvergence of
functionals f,, n € N, gives us an upper estimation to f* :

f* < f(z) < liminf fr(zxž)=liminf o e N

Letus show now that limsup fž < f*. By assumptionz* € K,, n 2 nl,
and the pointwise convergence of functionals {f,,(z)} we have

limsup fo(z;) < limsup fu(z*) = f(z") = f*

(z* 1s admissible but not optimal for problems (2), if n > n;). Hence, for

n 2 ni we have

f* < f(z) < liminf fp(zž) = liminf fŠ <limsup f < fneN,

and the convergence lim f; = f*, n € N, of the entire sequence follows
now from the observation that from the sequence {z%}, n € N”" = N/N’,
we can again separate a weakly converging (to some admissible point z)
subsequence

U 2 P liminfv<

< limsup f < f*';ne N" c N/N'.

The weak convergence of a subseguence of solutions of problems (2) to an

optimal solution of the initial problem (1) follows now directly.
Letus compare the theorem obtained with earlier results. In [*], it

was supposed that convex continuous functionals f,, n € IV, converge
uniformly to the convex continuous functional f, lim inf f,(z,) > f(z)
as T, — x weakly, sets of admissible solutions K,,,n € N, converge
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to K in the sense of Mosco, and the initial problem is well-posed in the

generalized sense (i.e., only a minimizing subsequence converges to the

optimal solution).
In [°], the cost functional was supposed to be weakly lower

semicontinuous and the convergence of approximate functionals was

supposed to be uniform. Since on bounded sets the uniform convergence is

equivalent to the continuous convergence, there is no need foran additional

assumption in [°], Lemma 1, about variational convergence of functionals.
From the Mosco convergence of sets only the "for any" part 1) was

taken. Instead of the "there exists" part 2) a collection of hardly verifiable

conditions, in which the (unknown) optimal value of the initialproblem was

through the stabilizer connected with the sequence of admissible solutions

of "approximate" problems, was presented.
In [®], whereconstraint sets were determined by functional inequalities,

the convergence of optimal values was attained in the case when the
cost functionals epiconverge and the constraint functionals converge

continuously. |
Compared with [*°], we do not need uniform convergence of cost

functionals and any stabilizer, in order to guarantee the convergence of

optimal values and the weak convergence of a subsequence of optimal
solutions.

Generally speaking, stability conditions presented in [*~®] and in this

paper, are all sufficient. Really it is enough to approximate the optimal
solution in its neighbourhood, starting from the second-order optimality
conditions. These questions, however, are out of the sphere of interests of

the present paper.

Finally, we should remark that in the regularization of optimization
problems it is more natural to use the prox-regularization instead of the

Tykhonov regularization [].

3. WELL-POSEDNESS OF EXTREMUM PROBLEMS WITH

OPERATOR CONSTRAINTS

As a rule, it is not easy to verify the conditions of the Mosco

convergence of the sequence of sets of admissible solutions

{K,}, especially its "there exists" part 2). As an example, consider

the minimization problem with operator constraints, where ordering is

determined by a cone:

mzin{f(w) | —F(z) € K}, (3)

where F' is a (nonlinear) operator from X to another Banach space Y, K

is a closed convex cone with the apex at the origin, KX C Y such that

Im{—-F}NK # 0.

The following applications motivate the stability analysis of

problem (3):
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1. stochastic programs with recourse [%];
2. continuous programming problems [°];
3. (nonlinear) optimal control problems [l°].
Let together with problem (3) the sequence of "approximate" problems

be given:
min{f,(z) | —Fu(z) € Ku}, (4)

where F is a (nonlinear) operator, I, : X — Y, K,, is a closed convex

cone with the apex at the origin,K, C Y,n € N,and Im{—F,} N K, # 0,
n€ N.

Let operators F), F;, and cones K, K,,, n € N, satisfy the following
conditions:

F1) operators F, F,,, n € N, are Frechet’ differentiable at every = and

convex relative to cones K, K,,, n € N, respectively;
F2) operators F,,, n € N, converge continuously to operator F/,

Fo(z,) = F(z) asxz, = =, n € N;

F3) linear operators F(u) € L(X,Y), n € N, and their adjoint
operators (F)(v))*, (Fl.(v))* € L(Y* X*) converge continuously to

operators F”'(u) and (F'(v))*,

F!(u)z, = F'(u)rasz, -z, n € N, Yu € X,

F, (v)*w, = F'(v)*w as w, —w, n € N, Yv € X;

F4) linear operators F'(u), F!.(u), n € N, are Fredholm operators with

index zero, Ker F'(u) = 0, Yu € X;

F5) for any € > 0 there exists §. > 0 such that

| F'z)-F(y) < e if |[z-yl<é, Va,yeX.

K1) cones K, K,,, n € N, are closed convex and nonempty, with their

apexes at the origin.

Definition 5. (see, e.g., ['']). A sequence {A,}, A, € L(X,Y) of linear

operators converges regularly to the linearoperator A € L(X,Y) ifA, —

A pointwise and the following regularity condition holds: if || =, | <
const and the sequence {A,x,} is compact in'Y, then the sequence {x,}
is compact in X.

Denote by G and G, the following sets of admissible solutions,

G={z| —F(z) e K}, Gpn={z| —Fu(z) € Ku},

and by z*, z;, optimal solutions of problems (3), (4).

Proposition 2. Let operators F,F,, n € N, satisfy conditions Fl)—

F5) and cones K,K,, n € N, conditions K1). Let linear operators

F!(z*), n € N, converge regularly to the linear operator F'(z*) and

cones K,, n € N, converge to the cone K in the sense ofMosco. Then

G, — G, n € N, in the sense ofMosco.
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Proof. Let (z,z,) — (z,z), n € N' C N, Vz € X* and let —F,(z,) €

K,. By convexity and differentiability conditions we have

Fo(z,) + E.(z)(z —z,) — Fu(z) € Kn.

Adding to this inclusion the inclusion —F,(z,,) € K,,, we get

F(z)(z —z,) — Fu(z) € K, n € N.

Let us show that F!(z)(z —z,) — 0 weakly, n € N'. Consider the

sequence {F.(z)z,}. Since (z, z,) — (z,z),n € N, thenforanyw € Y*

we have

(w, F.(2)z,) = (Fi(z)w,z,)= (F'(z)*w,z) = (w, F'(z)z).

Hence, the sequence {F.(z)z,} converges weakly to the element F'(z)z.
Since || F.(z)z — F'(z)z ||— o,n € N, thenF,(z)(z —z,) — 0 weakly,
as t, — z weakly,n € N. Since || F,(z) — F(z) |—> 0, n € N,
then due to the Mosco convergence of cones {K,,} we can conclude that

—F(z) € K.

Prove the "there exists" part 2) of the Mosco convergence of the

sequence {G,}. Take an y € Im{—F} NK. By assumption there exists

a sequence {yn},—yn € Kpsuchthat| yn -y || 0, n € N.

Conditions F1)-F5) together with the regular convergence of linear

operators {F (z*)} to the linear operator F”(z*) guarantee now that for

all n > n, the equations F,,(z) = vy, have unique solutions z such that

| z¥ — z* ||— 0, n — oo (for details see, e.g., [**], § 4, Theorem 1). The

proposition is proved.
Relying on the proofs of Theorem 1 and Proposition 2, we can now

present an analogous to Theorem 1 theorem. Note that forconstraint sets of
the type {z | —F(z) € K} it is not clear, how to guarantee the condition

x* € K, forn sufficiently large (Theorem 1). We can avoid this assumption
assuming instead of the epiconvergence the continuous convergenceof cost

functionals, i.e., if z,, —z, then f,(z,) — f(x).

Theorem 2. Let functionals f, f,, n € N, be uniformly coercive, the

sequence {f,} converge to f continuously,

f(z) < liminf f,(z,) as z, — = weakly (5)

and limsup f,(z}) < M; < 00. Let cones K,,n € N, converge to

the cone K in the sense ofMosco. Let operators F, F,,,n € N, satisfy
conditions ¥1)-F5), cones K, K,,,n € N, conditions K1) and let linear

operators F) (x*),n € N, converge regularly to the linearoperatorF'(z*).
Then statements ofTheorem 1 are valid.

Proof. The "for any" part of the proof repeats the corresponding parts
of the proof of Theorem 1, where instead of the epiconvergence we use
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continuous convergence and (5). The "there exists" part follows from

Proposition 2 and from the continuous convergenceof cost functionals: let

z* and z; be solutions of (3) and (4), respectively. Then, by Proposition
2 there exists a sequence of admissible elements {z,}, —Fy,(z,) € K,,
n € N, such that || z, — z* ||= 0, n € N. Then clearly,

limsup fŽ = limsup £.OO) < Ilimsup fn(ztn) < f(2*) = .

The rest part of the proof repeats the proof of Theorem 1.

Lots of papers have been devoted to the regularization of ill-posed
extremum problems in function spaces, in which sets of admissible

solutions are described by the functional inequalities (see, e.g., [® 3] and

the references therein). But since a functional maps an element to a

real number, the optimal Lagrange multipliers are real numbers too, and
therefore the ill-posedness analysis of extremum problems with functional

constraints does not differprincipally from the ill-posedness analysis of the

finite dimensional problems.
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OPTIMEERIMISÜLESANNETE KORREKTSUSEST

Riho LEPP

On néidatud, et refleksiivses Banachi ruumis ekstreemumiilesannete

lahendamisel "lihtsamate" iilesannete jadaga on koondumine funktsionaali

ja nork koondumine optimaalse lahendi jargi saavutatav ilma iilesannet

regulariseerimata.
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