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Abstract. Some discrete analogues of the Sobolev imbedding theorems for the certain

interpolation space are derived.
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In this paper we present a discrete Sobolev imbedding theorem which

embraces grid functions y: 2, — R prolonged to the boundary with the

value from the nearest inner grid point. Thereby

—
, 1

G =ff=(kih,...,kmh), ki=0,1,...,7n; i=l,...,m>),h= i

Qh-:ghflfl, ÕthähnÕD,

where

OA=f(o<x;<l, i=]1,...,m)

is the m-dimensional unit cube with the boundary 0 and the closure O.

1. EOUIVALENCE OF NORMS

In the m-dimensional unit cube we consider the second boundary value

problem for the Laplace operator, i.e. the operator which is defined by the

differential operator

where
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—A——šõ—flž (1)

and the boundary condition

DT%‘39 =O. (2)
Here —g—fj denotes the outer normal derivative of the boundary 09.

To define a discrete analogue of this operator, we prolong grid functions

y: 0 — R to the boundary 0f;, in the following way:

'y(klh, ey
kl_lh, 0, kl+lh,

eoa kmh) =

— y(klha ttt kl—-lh) h’7 kl+lh7 tta kmh') )

’y(klh, €3 kl_lh, nh, kl+lh, roa k‘mh) =

=y(kih,..-,kialh, (n — D)h, kiylh, .. -,kmh),

k;=1,...,n-1; 2=1,...,m.

Into the remaining grid points we prolong the grid function y also with the

value in the nearest point of the set ~ For the grid functions prolonged
in this way we define the discrete analogue of operator (1), (2) with the
formula

—Apy(z) ==Y 80y(z), =€,
=1

where

1
=

1
Oy= —(y™ — Biy==(y—y"),Y520 vy oG Y

y*th = y(z + He); y =iz —he)s &#b, . - ,0m) -

Later we use the following notations:

m
1/p

e=8 X HP) , I<p<»
EEDA

(in the case p = 2 we also use the notation ||y]|o = ly]lzz(9x))

19llo@n) = llyllzete») = max y()],

(y,O) =h™ X 2 y(&)v(©), [y,v]=h" 3 v(E),
EEQh §E§h
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m a N V/2
lylle £ k" 5 lõ%ul) ,

|| <k EEDŽ

where % is such a subset of O, that the difference quotient 9%y =

o7 ...o%™ uses no grids outside 2,. Thereby when needed, we prolong
grid functions y, v: %% — R to the boundary 0% in the above-mentioned

Way.
Now we shall show the eguivalence of Sobolev norms ||y||l, ||y||2 with

certain norms which are defined by operator A;. More precisely, we show

that there exist positive constants c;, co, c3, ¢4 such that

cill(=An +1) yllo < Iyl < eall(=An +1) Žyllo,

cs||(=An + In)yllo < llyll2 < call(=An + In)yllo,

where [, denotes the identity operator.
Here and further we use grid functions y: %% — R, which are

prolonged to the boundary 02, with values from the nearest inner grid
point.

Using the formulas of discrete integration by parts, we get

||Z/||š — [y,y] + Z(Õiy, Õiy) +AY z z (Õiy)2 =

=1 i=l geani

=[yy]->(ddiy,y) - > > 89y -y,
- i=l eeoo

where 0%, is such a subsetof 9, that the difference quotients under the

sum use no grids outside (2, (thereby we consider only these boundary
grid points in which the mentioned difference quotients are non-zero).
Similarly,

lyllž = Ilylli + >(didzy, 0:0iy)+
i=l

+ z (Õ,—äjy, õiäjy) +h” z z (Õ[ä„y)2 =

üj=l i=l eoo
i#]

m m m
—

= |lyll? +> (ddiy, didiy) + > (Hdiy, d) +" 57 D> (adiy)".
i=] ž,j=.l i=l š'EÕDšL

£

Therefore,

Ilylli=[yy]+(-Ary,y) -17> > ddiy-y
i=l £eo,
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and

lyllz = Ilylli + (—-Ary, -Ary) +/7 37 > (dadiy)*.
i=l eeoo

Considering the way of the prolongation of grid functions to the boundary
of the grid points, we can write

(—Any, y) + (4, 9) < Iyl < 27[(- 2wy, y) + (3,9)], (3)

%[(—Ahy, —-Axy) + 2(-Axy, y) + (y, y)] <

< |lyllš <

< 2"[(—Anxy, -Axry) +2(—-Axy, y) + (7,3)]. (3"

At the same time we have shown the equivalence of norms ||y||; and ||y||>
with the norms ||(—Ap + I1)Y2yl|o and ||(=Ap + I1)y||o, respectively.

2. IMBEDDING THEOREM

Let

E be a certain space of functions defined on the unity cube;

E}, be the space of grid functions defined on the set p;

$: D(9) — E (9(P) C E) be a linear differential operator of order 27;

PDnr: En — E, be the discrete analogue of the operator ®;

oe
DY =

M,
a = (a1,...,am), [al =Ool+...+om;

Dy be the discrete analogue of the operator D*.

Definition. A family {A} of operators Ay, : L (%) — L(%%), n € N

is called boundedfrom the set {L,(Q2,)} to the set {L,(2)} if

lAn] |y@)Lq(en) < €5

where c is a positive constant independent of the step h.

Let us denote

1 3y 3 1 2rß- 1 1%l(fi)p):{<—;_):_>__—fl——p-7 OS“, _Sl} )

P g € »P m P 9

11 1 1 2rß- 2rß — 1932(@,0):{(—,—)1—:——&, ___fi___,2<_<l},Pd9P m m P
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We use the following Gurova’s ['] (see also [?]) result.

Theorem 1. Suppose thatfor o = 0, for some o (0 < |a| < 2r), for all

(š, ž) € B(1, |a|) and for all Xfrom a sector

Sy={Ad<argA<2r—9} (o<9<m)

thefollowing condition holds:

=
jl m(1 1

ID5(@ =27 gypaten) SI+A TTETEGD. — (4)

Then the family of operators {D2®;”} (n € N) Lš;l < B <

min {l, m—;lfi'} is uniformly boundedfrom {L,(Q4)} to {L,(2,)}, where

(šaš) & %1(/81|a|)U%2(/6) lal) ;
Now we introduce the operator

b, = —Ap+ 1,

with the help of which we define the interpolation space W?22(Q)
(š <fPß< 1) with the norm

1y1126 = llSžyllo.

Theorem 2. In the case of grid functions y: ), — R prolonged to

the boundary with value from the nearest inner grid point, thefollowing
inequalities hold:

m

HyHC(Qh) < CHszg, IB >
'21"7 m—27 37 (5)

IBzsSI- p>
LL,

m<
A

4q
)

qo 2 3 (6)

where O denotes either the operator O; or 0; or 51 = :,12-((9Z + Õ,-).

Proof. It is known (see [']) that in the case of all A € Sy (¢ > ¥y > 0) and

a (Ja| = 0,1) the operator ®;, = -A, +I, satisfies inequality (4) for all

(ž, ž) € B:(1, ja|) and forr =l.

We choose a = 0 and fix these values of the parameter 3 so that

the family (97°) is uniformly bounded from the set (L2(2,)) to the set
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{Lo(Q%)}. As in the case m = 2,3, the pair (3,0) € B;(1,0), inequality
(4) is fulfilled when m = 2, 3. Further, since B5(3,0) = (), then from the

condition (3, 0) € B1(8,0) with the help of Theorem 1 we can obtain the

inequality

1270l|ec@n) < cllvllzan)

provided that 8 > 7. Denoting y = <l>,:fiv we get inequality (5).

Let now « be such that |a| = 1 and let the role of the operator D¢ be

the operator 0;. Now fix the values of the parameter 3 so that the family
{B;®,"} is uniformly bounded from the set {Ls(2;)} to the set {L,(Q;)}.
In this case inequality (4) for m < q—zfš is also fulfilled, but then the pair

(3:¢) € B1(1,1). From the requirement that the pair (3, ;) € B1(5,1) U

%8,(/, 1) we can conclude with the help of Theorem 1 that

k g — 2)m + 2g
16:2%0l1z,00) < cllllzoy) when > LRIL.

From here inequality (6) follows.

Corollary. For any € > 0, the inequality

B ; 1— —lyllas < 2ž(e!—llylle +€ lluyllo) (7)

holds.

Proof. Using the inequality of the moments

ll(—Ax + 1)%yllo < (=2 + In)yllo [lyllo~”
and inequality (3'), we get

8 —

I(—Ax + In)Pyllo < 2213115 [lyllo~"-
The Jung’s inequality

pob 1 1
abga—+—, a,b>o, -+-=l, p;g>l

P q P 19

withp= %3—, g = Ü gives

llwll§ lwlls? = 24Õllylly"<

< BePlyllz + (1 = B)eP|lyllo, €>o.

As [ < 1, we have shown that inequality (7) is valid.

Remark. Notice that we can find different discrete analogues of the
Sobolev imbedding theorems e.g. in papers of Neginskii and Sobolevskii



[3], D’iakonov [*]. In [°] there are derived the discrete analogues of the

Sobolev imbedding theorems, which correspond to the case, when instead

of boundary condition (2) the Dirichlet’ boundary condition is considered.
In the same work these discrete analogues of the Sobolev imbedding
theorems are employed to prove the convergence of the finite difference

method.
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SOBOLEVI SISESTUSTEOREEMIDE TEATUD DISKREETNE

ANALOOG

Malle FISCHER

On tuletatud moningad Sobolevi sisestusteoreemide diskreetsed

analoogid teatud interpolatsiooniruumide jaoks.
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