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Abstract. A uniqueness theorem is proved for an inverse problem to a quasilinear hyperbolic inte-
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1.INTRODUCTION

We shall discuss the problem of determining the functions R(t), u(zx,t)
from
: P10

(9(z) + q(ug(z, 1)uzs (@, t) — putt(z,t) — [R * ugs(z, )](1) =0,
QucmeseX y Dple) vl (1515
u(0,8) = ¢(t), us(0,1) = P(t), Uz |y = O-
Here X < oo, T' < o0, the subscripts z, ¢ denote the partial derivatives

and
MBS =0 <X, 0(0) ='0. (12)
g(x)

Equation (1.1) describes one-dimensional waves in the viscoelastic media
(e.g. string oscillations ['], propagation of waves in the half space [?]).
The functions u, u,, R stand for the displacement, the deformation and the
relaxation function, respectively. The curve t = ®((z) represents the front
of the wave. It is assumed that the medium is not predeformed and the


https://doi.org/10.3176/phys.math.1996.1.01

deformation is continuous on the front, i.e. the shock waves are excluded
(condition u, = 0, t = ®g(x)). As usual, the convolutionin (1.1) is defined
via an integral over ¢ € R, where the function u is extended by zero ahead
the front: w(z,t) =0, t < ®g(x), and R(t) =0, t < 0: Thus,

t

R 1% s = / R(t — s)ugy(z,s)ds, Po(zx) < t < T.
Do(z)

The posed, as well as related inverse problems, arise in determining
hereditary properties of viscoelastic materials (cf. [>-]). Physically, the
problem (1.1) means the reconstruction of the memory function R by
the use of the given boundary perturbation ¢ and measured values of the
deformation ) .

An inverse problem of determining a kernel function in a hyperbolic
integrodifferential equation with a linear main part, but with a nonlinear
integral term, was discussed in [®]. The local existence, global uniqueness,
and the stability of the solution were proved.

For linear hyperbolic integrodifferential equations the inverse problems
are well studied. There are results for nonpredeformed (see [>7-%]) as well
as for predeformed (see ['%-12]) models. The most general result concerning
inverse problems for linear hyperbolic integrodifferential equations has
been obtained in [*]. In this note local existence and global uniqueness
theorems for a certain abstract problem were proved, and some important
applications were indicated.

An inverse problem, which requires the determination of the
nonlinearity function q in case R = 0, was discussed in ['3].

The objective of our paper is to establish conditions of uniqueness
for the inverse problem (1.1). Unfortunately, the method of a priori
estimates successfully used for related problems [* ¢ 1% !1] breaks down in
case (1.1) and we must apply a technically more complicated method of
characteristics for proofs.

2. UNIQUENESS THEOREM

Let us impose the following assumptions on the functions involved:

g €C%0,X], g€ C°(—00,00), ¢(0)=0, |qw)|<Q, (2.1)

¢ € C°[0,T], ¥ € C°[0,T], ¢(0)=¢'(0)=0, ¢"(0)#0. (22)
We assume also Eq. (1.1) to be hyperbolic, i.e.
OSrglsnxg(:v)-Q=oz>O, p>0. (2.3)

Let there exist a solution (R;, u') to the inverse problem (1.1) in the domain
O lm<hXim@g () iQd =< Bnliet



ul € C¥ (@, 0 : 0< 2 < X, By(x)<H<T}; Ry € CNO,TT. (24)
Setting

oz, 1) = 9(z) + q(ug (2, 1) (2.5)
we can determine two families of characteristics depending on u'. These
are.l = (1)(117, Zy, t()), = \I/(SU, ZL'(),t())Z

ut p s

0P =,/ e ®(z0, To, to) = to, (2.6)
SR Y =

83;\1’ = C(:B, \I’) 5 \I/(iv(),l‘(),to) t(). (27)

Evidently, the imposed assumptions guarantee ¢ € C? and thus the curves
t = ®, t = U are uniquely determined in each point P = (zg, t). Since
u! € C? and (1.1) holds, we have q(ul) = ¢(0) = 0 if t = ®¢(z). Thus, the
front ®((x) coincides with the characteristic ®(z, 0, 0).

Now we are able to formulate our main result.

Theorem. Let
T >9(0,X,P0(X)) =T (2.8)

and (2.1)—(2.4) hold. Then the solution of the inverse problem (1.1) is
unique in the space

U={(R,u): ReC’0,T1], uecC®)}, (2.9)

where

Q={@t):0<z <X, Bo(@)<t< Uz X, X))} (210

The proof is given in Section 4.

The formulated theorem does not clear up whether the solution is unique
in large or in small. The size of the domain of uniqueness depends on the
area of smoothness of the presumably existing solution (R, u'). Indeed,
we can increase the parameters X and 7" only as long as condition (2.4)
remains valid.

3. AUXILIARY RESULTS

In this section we shall introduce some new quantities and prove lemmas
that are needed in Section 4.

Lemma 1. Let (2.1), (2.3), (2.4) be satisfied for g, q, u! andletc, ®, ¥, )
be defined as above. Then

BLata Jot 5 2 oo iln el G.1)
e(@, )




0<o;! <F(z,20,t0) Sy <00,2>0, (o, 80) €Q,  (32)

where
F = (bt()a —@:I:()a lI}a:()a \Ilto'

Proof. Estimate (3.1) immediately follows from (2.1), (2.3). Let us prove
(3.2) for F' = ¥,,. Differentiating (2.7) we obtain

. ikl indd
0¥z, = 2\ P ) cy(z, U)¥,,. (3.3)

Differentiating the initial condition ¥(zg, zo,t9) = to with respect to x,
we have (¥, +¥,,) =0, z =z, and

= p
\Ilzolzm:o: _\le|m=zo o (o, to) (34

Equation (3.3) together with initial condition (3.4) yield

\If:l:o(xs Zo, tO) =

e vt p
R 7 Y AL 2T ) = sl

Since (3.1) holds, p > 0, and c is smooth, we get (3.2) with F' = ¥, .
The estimate (3.2) for F' = —®,, 4, ¥y, can be proved in a similar
manner. []

Define the following functions:

wz,t) = 20,z,%), (z,t) € Q, (3.5)
v(s,z,t) = ¥(s, 0, u(z, 1)), s 2 0, (z,t) € Q, (3.6)
and p, p in the implicit form:

\IJ(p("Ea t), z, t) = @0(}7(.’1}, t))) ’Y(ﬁ(xa t), z, t) = @0(}3($, t)) (37)

Under the assumptions of Lemma 1 the functions ¥(-, z,?) , v(-, z, t) are
strictly decreasing while ® is strictly increasing. Thus, p, p in (3.7) are
uniquely determined. Since x > 0,t > u(z,t), t > Po(x)if (z,t) € €2, in
view of the properties of monotonicity of characteristics (Lemma 1, (2.6),
(2.7)) we have

Do(s) = B(s, z, Pp(x)) < P(s,2,t),5>0;
Qo(s) < ¥(s,z,1), s < p(z,1);
¥(8, z,t) = W(s, 0, u(z, D))y= U(s, BNy, $>0;
(8, Z,1) < 0,z 1) =0 T8 X Do, . D)9z 0.
Here (z,t) € Q. Thus, we can define the following plane set:



A(Cﬂ,t) = {(S)T) . S S S p(mat)’ max{v(s,x,t),@o(s)} S

< 7 < min{@(s, 2,1, Us, 7, D}}, @) € Q. e

Lemma 2. Let the assumptions of Lemma 1 be satisfied. Let f € C(2),
v € C*(Q), v(0,t) =0, v(z,Po(x)) =0, and

1
CUzy — PVt + 2 <c,c — \/gct) fe = 1 in 0N 3.9)

Then
vi@lty= K (@, t, 5, 0) (s, v)ydrds; (3.10)
A(z,t)
K(iL',t,S,T)=— 1 (.S‘,T) exp{—/ +(T7TI)X
2\/ pc l(z,t,s,T) 2CV C(C + p)

X Cpt ('f‘, TI) dl—’r,r’ } y (3 1 1)

where [ is the arc of the characteristic U between the point (s, T) and the
curve ®(-, x,t) :

Iz, t,s,7) = {(r,r") : ¥ =U(r,s,7),7r < 5,7 < &7, z, D}

Proof. Equation (3.9) can be integrated in the standard manner. We define
functions a(z, t), b(z, t), (z,t) € 2 as the solutions of the problems

at—az\/§=0,bt+bz\/§=0,a(O,t):b(O,t):t. (3.12)

Let us exchange the variables (¢, ) = A(z, t) = (a(z, t), b(x, t)). Owing to
the hyperbolity and smoothness (2.1)—(2.5), the operator A and its inverse
are bounded, a, b € C? . The curves ®, ¥ are the characteristics of Egs.
(3.12) as well. The domains A(z, t) and {2 now become

Aty {4 G 7)o 0s 77 Mot bla ) < g <ale. D)},
Q={A71¢,n) : 0< €< a(X,Po(X)),0<n< &)
It follows from (3.12) that

cazby — paiby = 2cazby,

Gt —1<cz ; \ﬁct) e (3.13)
2 (&
1

cbze — pby = ““2‘<Cz = \/é@)bm'



Recomputing the derivatives of v with respect to £, 7, Eq. (3.9) takes the
following form:

2(cazb; — patbt)vgn + (cags — patt)'UE +(Chey — pbtt)vn'*'

1
+§ (cz = \/gct> (amUE +bz'vn) =f,¢ne A()).

Substituting here by (3.13), we obtain

0 1 p 5

T L B e Ty o T A(Q). 2

877v 4Cbz \/:Ct'l}& 4caxbw I (é’ T’) € ( ) (3 14)
The boundary conditions v(0, t) = v(z, ®o(z)) = O written in terms £, 7 are

b= iy WU (3.15)

Solving Eq. (3.14), thereupon integrating with respect to £, and using
conditions (3.15), we obtain

3 ey
sks = / o /O AL e P
n

. 1 diel p
Praslitg 5 B2y / "
K(fﬂh S 1T) = 4casbs (S,T) exp{ L’ 4Cb,« \/;Cr (T,T )dT }’

(s,7) = A7I(s, ), () = ATI(, ).
Let us change the variables of integration

', ™) - (s,1)= AN, T, ™" = (r,7") € l(z,t,5,T).
Owing to (3.12), bs(s, 7) < 0,as(s,7) > 0, and

ds'dt’ =| (asb; —bsar)(s,7) | dsdr = =2 (asbs\/E> (s,7)dsdr,
c

dT” = 2b1‘(7', 'r/)d’l' =] 2 (br \/I) (Ta Ir/) dl—r,r/ :
Ciip

In conclusion, we obtain (3.10), (3.11). [

Lemma 3. Let (2.1), (2.3) be satisfied for g, p. If v(z,1) is continuously
differentiable for t > ®y(x) and v(z, Po(z)) = 0, then

p

9(z)

Proof. Differentiating the formula v(z, ®¢(z)) = 0 and using (1.2), we
obtain (3.16). O

S5 (3.16)

Uz |t=¢’()($) o



Lemma 4. Let the assumptions of Theorem be satisfied and let (u, R) be a
solution to (1.1) in . Then

=g, =09 " = Bo(x). (3.17)

Proof. Making use of the decomposition

1
iR \/§<am i \/gat)waz — VA0 — 50'@Ps,

the condition u, = 0, t = ®y(z), and taking t — Py(z) in Eq. (1.1), we
obtain

; d
0 = /pg(@) ((% + @&:) Ut 1=y(2) = \/m%(utltﬂ’“(z))'

On the other hand,

d

Eﬂ—gu(w,q’o(ﬂv)) = Umlh@o(x)'*'\/ g(:v) Ut |ty =
i 3 21
™ g(:v) tlt =P(z)"

d
oA (,/——g(m)—d (@ @o(x»)
a p

We can provide this differential equation with homogeneous initial data.
Indeed, due to (2.2) we have

Thus,

u(0, ©0(0)) = u(0,0) = ¢(0)=0,

u 3edir A B
Eu(m, cI)O(QU))IFO = m“”z:t:O_ g(0)¢ 0) =0

Consequently, u(z, Po(x)) = 0. The equality u; = 0O with t = ®y(x) follows
from Lemma 3. [

Lemma 5. Let the assumptions of Theorem be satisfied. Assume that there
exist two solutions (Ry,u'), (Ry,u®) € U to the inverse problem (1.1).
Then for: =0,...,3

0y (u? ~u') = 9,0, (u —u') = B0}’ —u') = 0 if t = Bo(2) (3.18)

and _ _
(R — B)@).= 0. (3.19)

Proof. Let v be an arbitrary function in C?(Q2). Due to (2.5) we have



: d :
(az e ﬁat) Vot = g0 0@, i=1,2. (320

Making use of (3.20) and the decomposition

S
9(x)0; — pd; = g(z) (83: +,/$6t) — 24/ pg(z)x

p =P
X <8m o @@) 3t = g(E)a_q; @ ata

% p
9@)0 = POV iegya) = 9@ 7 (Ult:q’"‘“"’ BRrCh

d P 2
xa(vth:%(m)) — g(z)4/ jq—(a:—)vdt:‘l’“(’”)’ v € C“(Q). (3.21)

We shall prove (3.18), (3.19) by means of mathematical induction.
Define

J={-1}u{j:7 >0, (3.18), (3.19) hold forisuch that0 < i < j}.

It suffices to prove the implication: if j € J, 7 < 3,thenj+1 € J.

Letj € J, j < 3. Denote u = u> — u!, R = R, — R;. Subtracting
Egs. (1.1) with (R, u) replaced by (R;, u?) and (R, u'), respectively, and
differentiating 7 + 2 times, we obtain

we obtain

(9(x)82 — pd2)dPu(z, t) = 8P [q(ulyul, — qud)ul, I(z, )+

g+l
+ > Rt — Bo(2))020ulpogpy(oy+
1=0
t—®(x) v (ag
+ / Ry(m)020]Pu(zt — 1) dr + Y RIM™D(t — Do(x))x
0 1=0

t—®o(x) !
X a§a§u1|t=%($)+/ R(T)aiaf”ul(m,t — 71)dT, (z,t) € Q.
: (3.22)

We replace the term q(ul)ul, — g(u?)u, with
1
q(ul)uzy — uZ, / ¢'((A = s)ul +sul)ds ug
0

in (3.22) and apply the binomial formula in computing its derivatives.
Thereupon we set t = ®((z) in (3.22) and eliminate the vanishing terms:



ul,u2, q(0) (cf. (1.1), (1.2)) and the derivatives of u and R according to
(3.18), (3.19) (if j > 0). As a result we obtain

(9(@)3; — pODIOT *ul gy = — U@ D' (0)0:0] *ul g+
+ (Ra(0) +¢' O)ugy(2, 000307 tl o0y PRI (Ot oy
R (3.23)
Applying Lemma 3 for v = 8{ 2u yields

j+2 ol 3
azag+ ult:Q()(ZL‘) Nt (.'E) 6J+ |t=q>()($) 5 (324)

Applying Lemma 3 for v = 8,87*'u together with (3.24) yields

1 4
aiag+ u|t=<1’0(-’11) (.’II) 3]+ |t=<I>n(a:) X (3.25)

Let us rewrite the left-hand side of (3.23) using the general formula (3.21)
and substitute derivatives by (3.24), (3.25). We have

p
— +
9(z)

x g <0>,/ + (B0 + ¢ O)uge(@, 1) )] 0 ul g
= R<J+1>(0)um|t_%(m), 0<z<X. (3.26)
Since u!(0,t) = u?(0,t) = ¢(t), we can add the initial condition

(6] vl gyy] = 89:200) — ¢99(0) = 0
and solve Eq. (3.26). We obtain

d o+ d
pg(z) [3’ : lt:@o(z)] =5 [9(17)% uiz(m,t)x

0y oy = —RYB)m(z), 0<z < X, (3.27)

z 1
m(x) =/0 21\1/_(3 t)lt_%(s)exp( /s kl(T)d'r) ds,

where k; is a bounded function. Differentiating (3.27) and taking it at
z = 0, we reach the following expression

0:0]u(0,0) = —RU*D(0)—Z—— Uss(0,0)

3.28
Vpg©0) (348

Lemma 3, Lemma 4, (2.2), (2.3) imply

1 B Ly iy "
U500 = —\ [l 0,0) = Fuli0,0) = 4" (©) 40



The coefficient of RU*1(0) in (3.28) differs from zero. But the left-hand
side of (3.28) equals to ¥U*D(0) — 4U*D(0) = 0. Thus, RI*D(0) = 0,
i.e. (3.19) holds for 2 = j + 1. On the other hand, this result together with
(3.24), (3.25), and (3.27) implies (3.18) for ¢ = j + 1. Thus, the step of the
induction is executed. The smoothness of u!,! = 1,2, enables us to carry
out the induction for j = —1,0, 1, 2. The proof is complete. [J

Lemma 6. Let k(z,t) be a bounded and measurable function in the domain

D° = {(z,¥) : (z,t) € R, K(z,t) < ko),

where —co < Ko < 0o, mes D° < co. Denote
D(z,t) = {(5,7) : K(s,7) < K(x, 1)}, (z,1) € DO,

Dc(z,t) = {(s,7) : K(z,t) — € < k(s,T) < K(z,1)}, (z,t) € £r

Let l(z,t) be rectifiable curves, (z,t) € D°Il(z,t) C D(z,t). Besides,
let f € C(D0)7F1(33’ L ) e LOO(D(xy t)), FZ(:E’ L ) e Loo(l(xa t))a
(z,t) € D°
Assume that

(@) Ve > 0 3ri(e) > 0 : mes D, o(z,t) < ¢, (z,t) € D,

(b) dl i< L&, HieD
l(z,t)

(c) Ve > 03ry(e) > 0 / dl <e, (z,t)€ D°,
I(z,t) ) Drye)(@,t)

@ || Fi(z,t,°) ||zoop@,ep < M, || Fa(z,t, ) || Loty < M,
(z,t) € D,

(e) Fi(z,t,s, T)w(s, 7)dr ds, / Fy(z,t, s, nw(s, 7)dl €
D(z,t) I(z,t)

e O, @b € D, wie CLDY.

Then the equation
v(z,t) + / Fi(z,t,s, Tv(s, T)dTds +
D(z,t)

I8 Fy(z,t,s,T)v(s,T)dl = f(z,t), (z,t) € D°, (3.29)
l(z,t)

has a unique solution v € C(D°) and

” v ”C’(D") S const (M,L,rl,rz) ” f |IC(D")7 (3.30)
where
w = max |w(z,t)|.
lw llewo 3 | w(z, 1) |

)

10



Proof. We can rewrite (3.29) in the form v = Bv + f, where the integral
operator B transforms C(D°) into itself. Let us set

= o ) ) ) > 07
| wllz,e (Mgg%xw)[exP( vk(s, 7)) | wis, 7) |1, ¥

and estimate:

exP(—’Y’f(ma t)) [ Bw(x, t) l S H w Hz,t,’y M [L eXP[—’)’(K,(.'E, t)_
(z,t)

—k(s,7))]drds + /

U(z,t)
Decomposing the integral over D(z,t) into the sum of integrals over
D(z,t)\Dy,(z,t) and D, ¢ (z,t), as well as the integral over I(z, t) into
the sum of integrals over I(z,t)\ Dy, (z,t) and I(z,t) NDy,(z,t), and
taking into account (a) — (c), we can estimate as follows:

exp[—y(k(z,t) — K(s, 7))] dl} :

exp(—v£(z, 1)) | Bw(z,t) | < || w ||z,¢,y M [mesD° exp(—yri(e)+

+e + Lexp(—yra(€)) + €], Ve > 0, (z,t) € D°.
Taking € < 2M ~! and vy large enough: v > o(M, L, 1, 72), we have

” Bw ”’YS A “ w ”’ya A= A(")’,M,L,’r],’fj) e la il > Yo- (331)

Here

vl ma fexplraptile, ) | g ).

is a norm in C(D°). Thus, the operator B is a contraction in the norm
| - |l . All statements of Lemma 6 follow from this fact as well as from
the inequality
const;(7) || - [ly < || - lloe) < consta(y) [| - |l -
O

4. PROOF OF THEOREM

Suppose that the inverse problem (1.1) has two solutions (R, ul),
(Ry,u?) € U. Letussetu =u? —u', R=R,— R;. Atfirst we derive an
integral equation which connects the derivative u,; and the function R. To
this end we subtract Egs. (1.1) with (R, u?), (R;,«!)and differentiate the
result two times by ¢. Making use of Lemma 5 for %;;, gz, We obtain

1

(B2 — pOFyus = — ) (2> 07 q(ug )0} s —
=0

—02[(q(u2) — qub)uZ, ] + Ry % ugets + fr, (7,1) €Q,  (4.1)

11



fr(z,t)=R'(t — <I>0(x))u;m|t=q,0(m) + R(t — <I>o(w))Uth|t=q>o(m) 2 2

+[R * ulgp(z, )IE) - (4.2)
The function c is defined by (2.5). Making the following substitutions

v = Uy, qud) — q(ul) = ¢'(€)ug, € € [min(ul, u2), max(ul,u2)],
t g
A3 0tu(z,t) = —/ ko

Byl l 3}
in Eq. (4.1) (here (4.3) holds due to Lemma 5), we get

[cvm — pug + % (cm 4 \/%)Ct) vm] (z,t) = fi(z, vz (x,t)+

Alv(x,T)dr,3=0,1,5j=1,2, (4.3)

t £
T fo(z, T, T)v(z, T)dT + 3, T, T (T, 7) dT+
Do(z) Dy(z)
+ fr(z,t), (z,t) € Q. 4.4

Here f;, j =1, 2, 3, are some functions. Owing to (2.1) and the inclusions
ul, u? € C®, we have

hie g’ hel’ el (4.5)
and v € C*, v(z,®o(x)) = 0 (Lemma 5), v(0,t) = ¢"(0) — ¢"(0) = 0.
Applying Lemma 2 to (4.4), we obtain

U(fE,t)=Iv(.’B,t)+IR($,t), ($,t) = Qa (46)
where

i =/ K(z,t,s, 7)[fivs](s, 7)dTds +/ vs(8, T)X
A(z,t) A

1(z,)

min{ ®(s,x,t), ¥(s,z,t)}
X / K(l’,t,S,T/)fz(S,T,,T) dTldeS+
max{7,y(s,z,t)}

; min{®(s,z,t),¥(s,z,t)}
+/ %@ﬂ/ K(x,t,5,7)x
Aj(z,t) max{7,y(s,z,t)}
x f3(s, ', 7)dr’ dT ds, (z,t) € Q, 4.7
Ipi= / K(z,t,3, t)fr(s, 7)drds, (z,1) € {Q, (4.8)
A(z,t)

12



Al(xat) = {(S,T) 0 <s< p(xat))q)()(s) =T =
< min{®(s, z, 1), U(s, z, 1)}} . (4.9)
Due to (2.1), ul, € C°, we have

c, ® T, v, K € C°. (4.10)

Consider the last addend of (4.7). Note that on the boundary of A (z,t)
either its kernel equals to zero or v = 0 (Lemma 5). Integrating by parts
in the last addend of (4.7) yields

il =/ fa(z,t, s, T)vs(s, T)dT ds, (x,t) € 1, 4.11)
R2

fa = O(T — ®(s)) O(U(s,z,t) — 7) O(D(5, 2, t) — T) [O(5 — T)X
xfi + O(z — 8)f7 + O(T — (s, z, 1) f3 + O(y(s,,t) — T)f41. (4.12)

Here f/ = fJ (z,t, s, T) are some functions satisfyin
4 =173 215

7, IRt alie 0% (4.13)

due to (4.5), (4.10), and O is the Heaviside function.
It is easy to verify that the following equality holds

0:0(1 — w(z, 8)) = —wy(z, s)(1 +wi(z,s)) " 6(1 — w(z, 8))

for distributions over the space of continuous functions of (s,7) € R2
having bounded supports. Here z is a parameter and w is smooth. Now
we can differentiate integral (4.11). From (4.3), (4.11), (4.12) we obtain

U, t) = / fs(z,t, s, T)vs(s, 7)dTds +
A](w,t)

+ / fe(x, t, s, T)vs(s, T)dly + OzIr(x,t), (z,t) € 2. (4.14)
1i(z,t)
Here

0 0 0
fs = O(s — x)%fi + O(z — s)a—mf‘t2 + O(T — v(s,x,t»%m

+O(y(s, z,t) — ’r)(%fé‘ ; (4.15)

4
e Ulf,l} VNS T=\I/(s,x,t)}ﬂA1,
1=1

B Yeim), s = o} [ A1, Bosoftspr): (4.16)
T=9(s,2, O} A1, I} = {(s,7) : 7= (s, 5, )} A1
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The function fg is defined for (s, 7) € l;(x,t) and
fé(m,t,s,T)|(S’T)€l}~(m’t) € C*,i=1,2,3,4, 4.17)

due to the inclusions (4.10), (4.13).

Thus, we have derived integral equation (4.14) which connects the
functions v, = u¢: and R.

Let us take z = O in (4.14). Note that the subdomains s < =z and
7 > 7(s,,t) degenerate in A if z — 0. Besides, 1](0,t) = [3(0,t), the
curve [1(0, t) degenerates, and v,(0, 7) = ¥"/(1) — ¥""(7) = 0 on the curve
13(0,t). Hence,

0= f50(t, s, T)vs(s, T)dT ds + fg(t, s)vs(s, T)dlp +
Ao(?) lo(®)
PO Ly, 0 80 <Y (4.18)
where
Aot) = A1(0,t) = {(s,7) : 0< 5 < p(0,1), Po(s) < 7 <
< ¥(s,0,0)}, (4.19)

@) = 10,t) = {(s,7) : 0< s <p0,1t), T =T(s,0, )} (4.20)
It follows from (4.13), (4.15), (4.17) that

fSecC!, ffecC 4.21)

Computing the derivative of the quantity Ir(z,t) on the basis of the
formulas (3.11), (4.2), (4.8), we see that it contains the function R(t)
outside integrals. Thus, Eqs. (4.14) and (4.18) represent a system of
integral equations of the second kind with respet to the functions v, and
R. Unfortunately, we cannot estimate this system in the usual way because
the term 0, Ir(z,t), x > 0, contains the derivative R/, too. It is necessary
to transform further Eq. (4.14).

From Eq. (4.14) we shall derive an explicit expression for the sum
of integrals with respect to the function v, included in formula (4.18).
This expression is also a sum of two integrals, but contains the quantity
0.Ir and certain smooth kernels G; and G,. After such transformations
we can reduce the derivative of R integrating by parts. Let at first
Gi(to, z,t), (x,t) € Ao(tp), 0 < to < Ti, and Ga(to, ), 0 < = <
p(0,%p), 0 < to < T, be arbitrary continuous functions. We perform
some transformations, after that we specify the functions G} and G in a
suitable way. From (4.14) we obtain



/ Gi(ty, z,t)vg(z,t)dt dx + Gy(to, o)vg(z,t) dly =
Ao(to) lo(to)

- [ Gitat[[  fats s ndrdss
Ag(to) Ay(z,t)

+ / fel®,t, 8,7 vs(s,7) dll] dtdz + G (to, )%
li(z,t) lo(to)

X [/ fs(z,t, s, T)vs(s, T)dT ds +
Aj(z,t)

+ / fo(@, t, 5, T)0s(, T)dll] dlo+
Li(z,t)

+ / Gl(th Zz, t)amIR(xa t)dt dz + GZ(th l')azIR(SL', t)dlo’
Ap(ty) lo(to)
Vg < Ty (4.22)
Let us exchange the orders of double integrals in (4.22) moving the
argument (s, 7) of vs into the first place. Following the definitions of

lo, Ao, 1, A and the geometry of characteristics, it is not difficult to get
convinced that

{(xvtasaT) : (iE,t) = Ao(to),(S,T) & A1($7t)} =
= {(CL‘,t, S)T) . (SaT) = AO(tO)v (.’L‘,t) = AZ(t()) S)T)}a

{(z,t,5,7) : (x,1) € Ao(to), (s, 7) € li(z, 1)} =
= {(:L'ata S,T) . (S’T) = AO(tO)) ($,t) € li(th S, T)}a 1= 11 2) 3a4a

{(II]’,t, SaT) . (.’If,t) e lO(tO)a (S,T) € Al(x,t)} =
= {(SL’,t,S,T) : (SaT) = AO(tO),O S x S S4(t0,3,7’),t= \I’(:I")Oa tO)}a

{(il?,t,S,T) . (fL’,t) & lO(tO)a (S,'T') € li(.’L',t)} =
= {(SL‘,t, S,T) : (377-) = AO(tO)a (:Eat) = (Si7Ti)(t07saT)}’ i = 2’3a4,

{(z,t,8,7) : (z,t) € lp(to), (5,7) € li(z, )} =
= {(.’L‘,t,S,T) : (3)7-) & lO(tO),O S x S S)t = \I](IL',O, tO)}

Here (si, 7i)(t0, z, 1), © = 2, 3,4 are the points of intersection of lo(to) with
the curves l{(z,t), ¢ = 2,3,4 , respectively, i.e.

S =T, ‘I’(33a O’ t()) = @(33, Oa ‘I’(O’ z, t)) ) (1)(847 Z, t) =
= W(s4,0,t0), 75 = ¥(s5;,0,%0),2 <1< 4, (4.23)
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and the "adjoint" domains A,, [ of Ay, [; presented in terms ®, ¥ are

AZ(t07$7t) = {(S’ T) . max{q)(s,a:,t), \IJ(S,.'L’,t)} S e S \II(SaO, tO)}>

' = 16,1 \I/(s,x,t)}ﬂAz,
=9, s=z}ﬂA2,
P ={(s,7) : 7=(s5,0,80,z, )} A, (4.24)

4 = {(s,%) 17 = @(s,x,t)}ﬂAz.
Now (4.22) becomes

/ vs(S, T) drds{Gl(to,s,T)—
Ao(to)

B~ / fS(x,t)S7T)G1(t0a$at)d$dt_
As(to,s,T)

v
i Z / Vi(t()a z,t, s, T)f6(.’l7, t,s, T)Gl(th z, t)dlz(t()a S, T)|(:1: DO
=1 li(to,s,T) z
= Ftos )+ [ ot ndo{Gattos) -

lo(to)

Ry / f6($a ‘I/(.’E, Oa tO), S, \I’(S, 0> tO)) I;(t()s (U) GZ(t07 'IL') dIE} =
0

2 / Gio ey AT DA S [ 5@, 20t} db,
Ag(to) lo(to)
0<t <T, (4.25)

where

2 84(to,x,t)
f(tO, z, t) = / fS(Sa \II(S, Oa tO)) z, t)GZ(th 3)19(750, 3) ds+
0

4
+ Z FOORR SIOFAD s, i, oo iy Jil0s T, 8), (4.26)
and the j;i)bians Ji, U, v; are defined by
D(to, ,t) = [dlo(to)](x,‘t) dz)™", (z,1) € Ao(to),
Ji(to, z, 1) = ﬁ(to,m,t)ili—%|(s,T)=(si,Ti)(to1$’t)x
o dt;(to, x,t)

dt ) (S, T) = ll’i("r,t)’ (IL',t) & lO(tO), 1= 273a4>



dii(@, )|, pdzdt  dli(z, D), F

V‘i(t()a z, ta S, T) =

dli(to,S,T)I(x’t)dsdT I dr
] TsTrTt
dl*(to, s, ]
g (0 C(S’lt’l")|(:z,t):| det 001 ;

010

(z,t) € I(to, 5,7), (8,T) € Ao(to), i = 1,2,3,4.

Observe that z = z(¢) in J; and z = z(t, s, 7) in v; (equations of curves
lo(to) and li(to, s, T), respectively). Computing further the Jacobians we
follow the well-known formulae for curvilinear integrals as well as the
equations of o, 1%, 1!. As a result, we come to certain expressions for
Ji, vi, U including first-order derivatives of ®, W. These expressions in
view of Lemma 1 and (4.10) imply

oo d € 67, 4.27)

We shall specify the functions G'1, G so that formula (4.25) gives an
expression for the sum of integrals in (4.18). Thus, G, is determined as a
solution to the Volterra equation:

3t / Fols, (s, 0, t0),, Wz, 0, to)| (s, W5, 0, 1))
0

XGZ(tO) S) ds = fg(t(),w)a 0 S x S p(o’ tO)a 0 S tO S Tl . (428)

Since (z, ¥(z, 0, ty)) € li(s,¥(s,0,t0)),0 < s < z, and (4.10), (4.17),
(4.21) hold, the solution of (4.28) exists and

EA B (4.29)
Let us set

U(t0,$,t,8,T) o Vi(t0)$7ta SaT) if (S)T) (S li(t()’xat)a

4
| = Uli, (4.30)
1=1
fto,z,t) = f(to, z,t) + fo(to, x,1), (4.31)

F](.’E,t,S,T) = fS(S’T’mat)a

4.32
Fl(to,xat) S,T) = V(t(),l’,t,S,T)fﬁ(S,T,SE,t). ( )

Now we can determine (G; as a solution to the equation



Gi(tg, z, 1) =/ Fi(z,t,s,7)G(ty, s, 7)dT ds+
Az(t(lyzyt)

+ / Fz(to,.’L’,t,S,T)G](t(),S,T)dl +f(t(),.’l,’,t),
l(t(),z,t)

(z,t) € Do(to), 0 < to < T1. (4.33)
We shall study Eq. (4.33) by means of Lemma 6. Let us set

=tp—t, (:E’ t) & AO(tO)
> ty, elsewhere,

k(to, x, 1) {

Ko = to.
Then
D° = Aq(to), D(to, z,t) = {(s,7) : 7> t}[ D",

Dc(to, ,1) = {(s,7) : t+e>7 >t} D°.

Extending the function F; by zero for (s, 7) € A,, we see that Eq. (4.33)
is of the type (3.29) in Lemma 6. The conditions (a), (b) are evidently
satisfied. The estimates (d) immediately follow from (4.13), (4.15), (4.17),
(4.27), (4.32). We have (z,t) € l’i(si, 7;) (cf. (4.16), (4.23)). Thus, due
to (4.17), (4.27), (4.29), the sum in (4.26) belongs to C?. Let us consider
the integral in (4.26). Define s7 : t = (z, s3, ¥(s3,0,t0)). The points
z, 52 decompose the interval [0, s4(to, =, t)] into three parts. The integrand
is smooth in these subintervals (cf. (3.1), (4.10), (4.13), (4.15), (4.29)).

Moreover, s7 is a smooth function of ¢, z, . Thus, the integral in (4.26)

belongs to C'. Therefore, f € C''. Now it follows from (4.21), (4.31) that
the absolute term of (4.33)

i elier (4.34)
Let us verify (e). Observing (4.15), (4.24), (4.32), we see that A, can
be decomposed into four subdomains such that F} is smooth on each of
them, as well as the functions that form boundaries of these subdomains
are smooth. This fact yields

/ Fywdrds € C', 0, Fiwdrds|< const || w ||cmy,
A(z,t) A(z,t)
ret e (i) el Bl < s ' € 6(DY : (4.35)
Quite analogously from (4.17), (4.27), (4.30), (4.32) we obtain
/ Fuwdl € C',|0, Fwdl| < const || w|cmp),
l(t(),IE,t) l(t(),z,t)
r=die (e & B OIS et T, we C(DY). (4.36)

Evidently, the condition (c) holds for /2. Since the functions generating the
curves [!, 13, 1* are strictly monotonic (cf. (2.9), (2.10), (3.1)), the condition



(¢) holds for I',13,1%, too. All assumptions of Lemma 6 are satisfied.
Therefore, the solution of (4.33) exists, G;(to, -) € C(D°) , and

| Gito, ) lleoy < const || f [leoy, 0<to <Ti. @:37)
But from (4.33), (4.34), (4.35), (4.36), (4.37) it follows that even

Gl(th ) € Cl ) ’ arG](tO)xat) | < const, r =z,t,
e D, 0 th=T. (4.38)

We have proved the existence and smoothness of the functions G and G,
satisfying (4.28) and (4.33).

Substituting (4.28), (4.33) into (4.25) and taking into account (4.18), we
obtain

—0;Ip(z, t0)| ;0= / Gi(ty, z,t)0,Igr(z,t)dt dz +
Ay(to)

% Ga(to, )0z IR(z,t) dly, 0 < tg < T1. (4.39)
lo(to)
We have reached an equation with respect to R (cf. (4.2), (4.8)). Let us
simplify this equation. It follows from (4.8) that

Oslplx. )= / K, (x,t,s,7)fr(s,T)dTds+
A(z,t)

+ / K(z,t,s,®)0,P(s,x,t)fr(s, P(s,z,t))ds+
0
p(z,t)
o / K("I;atvs’ \Il)amllj(samat)fR(sa \Il(s,a:,t))ds—

p(z,t)
" / K("Ea ta S, 7)a$’7(57 x, t)fR(S, ’Y(Sa Zz, t))ds) (ma t) &0 (440)
0

Let us substitute (4.2) into (4.40). Thereupon, we exchange the variables
of integration in the one-dimensional integrals containing ¥(s,z,t) —
D(s),v(s,z,t) — Po(s) as arguments of R, R’ and integrate by parts to
reduce the derivative of R. It is possible since the mentioned arguments
are strictly increasing with respect to s (cf. (2.9), (2.10), (3.1), (3.6)). We
obtain

OzIr(z,t) = —my(z, DR — Po(z)) — ma(z, )R(u(z, 1)) —

& / K(SD, t’ S, (I))azq)(s) z, t)ués(sa (I)O(S))R,((I)(Sa z, t) ey QO(S))dS"'
0

T x(z,t)
" / F1(@, t, $)R(®(s, 7, £) — Bo(s))ds + / i R},
0 0
(z,t) € Q, 4.41)
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where f7, fg are bounded due to (4.10) and
x@1) = | max (7= B(s) = max (2s,7,0) ~ Bofs)), (442)

mi(z,t) = —K(z,t, T, tug,(z, Po(2)) [0, ¥(s, z,1)(0s¥(s, 7, ) —

d L
—==0($)) A pCRl
(4.43)
ma(z,t) = K(z,t,0, u(@, £))uy,(0,0) x [0:7(s, 2, t) (OsY(s, T, t)—

d
—d—s%(s)rl] I

Let us compute

p(0,)
Gy(to, )0z IRr(z, t)dly = / G (to, x)azIR|t=\1/(z,o,t0)x
lo(to) 0

20, Wto, 1) da (444
using (4.41). Note that the functions ¥(z, 0, ty) — ®o(z), u(z, ¥(z, 0, 1)),
®(s, z, ¥(z,0,%9)) — Po(s) that represent the arguments of R and R’ in
(4.44) are strictly decreasing with respect to x (cf. Lemma 1, (2.6), (2.7)).
After changing the variables and integrating by parts, we obtain
to

G2(t0, .'L')azIR(ZE, t) le = f9(t07 IE)R(LE) d.’.U, 0 it tp < Tl 3
0
(4.45)

X

lo(to)

where foy is bounded owing to (4.10), (4.29). Since

/ G](to,x,t)azIR(.’E,t) dtdz=
Ao(to)

to p(Oyt)
- / dt / Gi(to, o, U@, 0, £)Be IR,y 0.4,y 9% »
0 0

and the inner integral here can be estimated similarly to (4.45), we obtain

to
/ Gilty, BT, el = / ot )
Ay(to) 0

"< <17, (4.46)
where fi( is bounded owing to (4.10), (4.38). It follows from (4.39), (4.41),
(4.45), (4.46) that
to

(m1(0, ) + m2(0, 1)) R(to) + fu(to, ©)R(z)dx = 0,
0

0 <ty <Ty, fii —bounded . 4.47)
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Consider the quantities m;(0,%p), ¢ = 1,2 (see (4.43)). Due to Lemmas
3, 4 and assumptions (2.1), (2.2), we have

1 Sy L i g o
u,,(0,0) = g(O)umt(O’O) = g(O)utt(O’ )=

= ﬁoﬁ"(m £0. (4.48)

Taking into account (3.11), (4.48) and Lemma 1, we obtain
0 < o5 <| mi(0, to) + ma(0, to) |< a3 < 00, 1=1,2,0 < tg < T1.

Consequently, (4.47) is a Volterra equation of the second kind with a
bounded kernel. Its solution is trivial:

Rtg) =0, 0 i < Ty . (4.49)
At the same time, Ig(z,t) = O0,(z,t) € €. Thus, Eq. (4.14) is
homogeneous. Setting
=t’ (mﬂ t) e Q’
<T;, elsewhere,

A )= {

and making use of argumentation similar to that we used for (4.33), we can
verify the conditions of Lemma 6 for Eq. (4.14). The estimate (3.30) yields
o' ='00 (2, 1)c N 'RecalVthat v, = uzg. Bince u, =ty =0, 't'= Og(d)
(Lemma 5), we obtain

t
Uy =/ & — vz, 7)dr =0, (1) € Q.
Py(z)
This result together with u(0, t) = ¢(t) — #(t) = 0 yields
u=/ ug(s,t)ds = 0, (z,t) € Q.
0

Thus the solutions(Rj,u'), (Rj,u?) coincide in U. The proof is
complete. [
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