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Abstract. In dispersive media, the interaction between long and short waves can be strong
when the resonance condition is satisfiedbetween the group velocity of the short wave and the

phase velocity of the long wave. In this article, we deal with such a resonant system, which is

described by the coupled system ofthe Korteweg-de Vries equation and nonlinear Schrödinger
equation. One-soliton solutions are found systematically by means of the modified Hirota

method. It is shown that there exist a variety ofnumerical solutions including the oscillatory
solitary waves. In connection with these solutions, the integrability of the equation in the

sense of the Lyapunov exponent and the Painlevé property is discussed.

Key words: wave interaction, soliton, oscillatory solitary wave, integrability, LyapunO\;
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1. INTRODUCTION

At two or more different wave modes coexisting in dispersive media,
nonlinear wave interactions are known to play an important role in energy

exchange between (or among) these wave modes. In this article, we deal

with the interaction of the long and short waves that can be strong if the

resonance condition is satisfied with respect to the wave velocities.

This interaction is treated as a special case of the three-wave interac-

tion, when we consider three waves: a single long wave (Ak, w(Ak)) and

two short waves, (k+Ak/2, w(k+Ak/2))and (k—Ak/2, w(k—Ak/2)),
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where the wave frequency w is assumed tobe a function of the wave num-

ber k = |k| and Ak < k [!]. Since the resonance condition for the above
three waves is given as

w(Ak) = w(k+ -AZ—'“) — w(k — -Az—"), (1)

the following resonance condition is obtained for the long and short waves:

Ow
Ak —| ~

К L ~ w(Ak), (2)

where w is assumed tobe small for Ak in the dispersion relation w = w(k).
Since the phase velocity of the long wave is given by v, = w(Ak)Ak/Ak?
and the group velocity of the short wave v, = (ow/Bk)|,, the resonance

condition (2) is rewritten as

Yp Vg Z U.
;

(3)

Therefore, as is seen from the equivalent representation vg cos ) — 0р Ю

(3), the interaction is possible between the long and short waves propagating
in different directions under an angle 1. In particular, this condition is

simplified to the one that the group velocity of the short wave is nearly
equal to the phase velocity of the long wave (v, ~ v,) when both waves

propagate in the same direction.

This resonance condition can be satisfied in water waves, plasma
waves, and others in dispersive media, and several nonlinear interaction

equations which describe the wave behaviour in a long time run have been

proposed [* ~°]. In the following, we will focus on the interaction equation
that is given by the coupled Korteweg—de Vries and nonlinear Schrodinger
equations, when both long and short waves propagate in the same direction.

- 2. INTERACTION EQUATION

Using the singular perturbation method under the assumption ofweak

nonlinearity, the following interaction equation can be obtained in the

normalized form with two control parameters « andВГI:

.0S 05 OL 0L ,ÕL OISP
‘5;Ерр “56 WE V

where S and L denote, respectively, the complex amplitude of the envelope
of the short wave and the real long wave, while x andt are spatial and tem-

poral coordinates in a frame ofreference, moving with the phase velocity of
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the long wave or with the group velocity of the short wave. The parameters
a and 8 and the alternative of the + signs in front of o°s/ox2 depend

upon the individual properties of the waves and the media concerned: the

gravity and capillary waves in a single-layer fluid (x, 8 < 0 and + sign)
[B-9], the gravity waves in a two-layer fluid (3 < 0 and — sign) [l°~l2], the

ion acoustic and electron plasma waves (a > 0, # < 0 and + sign) [*l3],
and so on [*4~l%]. However, since the case of — sign can be obtained if #,

L and B in Eq. (4) are replaced by —¢, —L and —/3, in the following we

will consider only the case of + sign. -

When both parameters o and 3 are equal to zero, Eq. (4) represents
the case when the magnitude of the long wave is much less than that of

the short wave (|L| < |S|) [*l6). For this case, the equation is proved
to be integrable or to have the n-soliton solution by means of the inverse

scattering transform (IST) method [l7'lß]. On the other hand, when both

a and ß have finite values, Eq. (4) represents the case for which the

magnitudes of the long and short waves are of the same order (|L| ~ |S|)
[2:l6]. It is expected for this case that in the long time run the asymptotic
behaviour of waves may become chaotic since Eq. (4) for 8 = 1 is shown

to be non-integrable by means of the IST [l?], though a few solitary wave

solutions have been analytically obtained [B-11:13:20], However, the chaotic

wave behaviour is not observed for the nearly integrable case, that is, in the

vicinity of & = f = 0, as far as continuous wave trains are considered ["].
In this article, we deal mainly with the solitary waves and their con-

nections with the integrability of Eq. (4) in the (a, 3) parameter space.
Therefore, the soliton solutions are first examined and compared with the

numerical solutions. Then they are discussed from the viewpoint of the

integrability in the sense of the Lyapunov exponent and the Painlevé prop-

erty.

3. HIROTA METHOD

3.1. Hirota binary form

It is convenient to use the modified Hirota method [?!] to obtain

systematically the soliton solutions of Eq. (4). For this end, S and L are

assumed in the following forms in terms ofF', G апа @:

-G
-

®
б= E (5)

G(z,t) is assumed to be complex, while F(z,t) and Q(z,t) are real.

Substituting the expressions (5) into the first equation in Eq. (4), we obtain

1
.. 2

_

G DI ,F-F 0
ра+l

[(1 Da,t + Da,x)G } F] =

F [a(a + I)——3F2_ + F] .
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On the other hand, the second equation in Eq. (4) is rewritten as

OW о( FW
. 2

r aler) HB5 Slsr

where L = OW/ozr and C is an integral constant which satisfies the

boundary condition L — 0 and |S| — C as |z| — oco. Substituting (5)
into the above equation, gives

—a(a +

"

-<а

D

.

а: 1)

-

|

1% +

+3

‚

в)

|

-

„)Е

l,xF

. F

_GG

o

.

o

„Е°р

C 2 l,xD
|

14F

where the parameter v is introduced tobe determined later. Decoupling
these resulting equations for F' and G, the following two significant cases

of the Hirotabinary equations are found tobepossible for a = 1 anda = 2:

()а= 1: (а + 63 =0)

(i Da,t + DZ,X)G ° F = 0,

2
4 P —

2 2
_

m2-—2O *(DıxDi. +ADi.)F-F= m (C*F* — F*3GG*), (6)

(ü)a=2: (@a+286#0)

(l Da.,t + Dš,x)G -F = 0,

[1 + z)DlxDi. + SDi„JF-F=o,

[9_(“_:2o +36](DI,2F - F)*+ (7)

2
2

. —
2

_

—За *).+vF?D; (D 1 F-F R)1)(C F FG

In the above expressions, the binary operator D is defined as

D:_DaF.G + (-ä%—aä%)n(—gt——b%)_mF(a:,‘t)G(x'‚t')|z=zl‚t=t‚.
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Once (6) or (7) is solved for F and G, then L is givenby L = Q/F =

—a(a+1)0? log F/özx? interms of F,sinceD}„F-F = 2F?ö* log F/özx?
and Q is given as —a(a + I)D},F - F/(2F).

3.2. Soliton solutions

When we choose F and G as exponential functions of x and t, de-

pending upon (DC' = .0 or (IDC # 0, the following one-soliton solutions

are found in both cases (i) and (ii):

(1-А) С` = 0апа а =1: (а + 68 =0) ;

$ = p/0 — 4ßp?) sech(p(z — M))exp (i s(z — Vi));
L = —2p? sech?(p(z — №)), (8)

where F = I+exp[2p(x — At)], G =pV/2()— 4ßp?)exp(p(x— Xt)) exp

(i(A/2)(z — Vt))in(6),and V = XA/2 — 2p*/2 (p, A and £: arbitrary).

(I-B) C = 0, a = 2and v = —Зр*(а + 28): (а + 28 # 0)

S = 3p*\/—2(a + 28) sech(p(z — At)) tanh(p(z — №))

exp(i sz~ V 1)), (9)

L = —6p* sechz(p(:c — At)),

where F = 1 + exp(2p(z — At)), G = 6p*/-2(a + 2ß)exp(p(x —

№))[1 —exp(p(z — At))] exp(i(A/2)(z—Vt)) in(7),and A = (3a +2ß)p?®
апа У = XM/2 + 2/(3a + 28) (a, B and p: arbitrary).

(I-C)C=o,a=2andv=0: (a +2B£0)

S = 3p* /2la + 2B) sech*(p(z — №)) ехр(i %(a: — Vt))
L = —6p® sech?(p(z — At)), (10)

where F = 1 + ехр(2р(т — Xt)), G = 12p*/2(a + 28) exp(2p(z —

At)) exp(i(A/2)(z — Vt)) in (7) and A = 48p?* and V = A/2 — 2/B (a, B
and p: arbitrary).

(11-A)C #oand a = 1: (a + 68=0)

S = C tanh(p(z — M))exp(is(z — 34)),
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L = —2p* sech‘(p(x — №)), (11)

where F' = I+exp(2p(z — At)), G = C[l — exp(2p(z — At))) exp(i(A/2)
(z — At/2)) in (6), and C* = 2p?(4Bp? — ) (B, X and p: arbitrary).

(П-В) С # 0, а = 2 and v = —4p%(a + 28): (a + 28 # 0)

S = C[l — šsechz(p(a: — At))] exp(i %(—'B — %t)),

L = —6p* sech‘(p(x — At)), (12)

where F = 1 + exp(2p(z — At)), G = C[l — 4exp(2p(z — At)) +

exp(4p(z — At))] exp(i(A/2)(z — At/2)) in (7), and C? = Bp*(a + 28)
and A = —4p*(a + B) (a, B and p: arbitrary).

The above one-soliton solutions are equivalent to those obtained in

the reduced ordinary differential equation (ODE) from Eq. (4) through the

following travelling-wave transformation: |

5= fexp(i 3l -VO), L=9(o), (13)

where € = x — At [??]. Then, Fig. 1 shows the parameter regions of a

and 8 where the above solutions (8)-(12) can exist. For the case (DC' = 0,

Fig. 1a shows that (8), (9) and (10) can exist in the region (I-A), (I-B) and

(I-C), respectively. On the other hand, for the case (II)C' # 0, Fig. 1b

shows that (11), (12) can exist in the region (11-A) and (111-B), respectively.

It should be noted that the solutions (9), (10) and (12) become mean-

ingless when « and [ Iепа 10 zero, since the short wave S vanishes in

this limit and does not reduce to the solutions (8) or (11) fora = 8 = 0.

Therefore, only the solutions (8) and (11) for o + 63 = 0 are uniformly
valid in the parameter space (o, #). However, multi-soliton solutions оГ

the n-soliton solution cannot be found in the binary form (6) except for

а = В = 0.



102

4. DISCUSSION

Although the exact solutions are shown in the preceding section by
means of the modified Hirota method, it is found that there exist a variety of

numerical solitary wave solutions [*?]. These numerical solitary waves are

obtained in the reduced ODE through (13) by means of the shooting method

[23]. Typical examples of these solutions are shown in the following figures.
In Fig. 2 fora = —0.5,0 and 0.5, when 8 = 0, A = 1 and V = —0.5, the

solitary waves with similar profiles are shown in the short wave envelope f

Fig. 1. Parameter regions of x and ‚ß in which exact solutions can exist: a — (I-A), (I-B)
and (I-C) are the regions where the solutions (8), (9) and (10) are, respectively, possible
for C = 0; b - (I-A) and (11-B) are the regions where the solutions (11) and (12) are,

respectively, possible for C 0 [?2).

Fig. 2. Profiles of the solitary waves for x = 0.5,0 and —0.5 when C' = 0,3 = 0,

A = land V = —0.5, where the exact solutions (8) are shown for x = 0 [22].
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and the long wave g, where the solutions for o # 0 are found numerically
tobe reduced to the one for a=o in the limit of @ — +O. On the other
hand, in Fig. 3fora =O, 8 = —1 and A = 1, different types of wave

profiles in f are successively shown depending upon the values of V, while
the wave profiles similar to each other are observed in ¢, where the exact

solution (9) is given forV = —(.5.

We can obtain the oscillatory solitary wave solutions for some region
of the parameter a when 8 < —)?/(8C?) and A > 0. Typical examples
are shown in Fig. 4afora = —1.5,8 = —-0.5, A =I,V =o.sandC = 1,
where the oscillatory phase jump profiles for f are found, while for g both

concave and convex oscillatory profiles are observed, depending upon the

Fig. 3. Profiles of the solitary waves for different values of V whena = 0, 8 = —1

and A = 1: a — exact solution (9) for V = —0.5; b — numerical solutions for V =

—1.4420974 - - +;c-V = —3.486315 - - ; d-V = —5.693620- - - [22].
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boundary conditions for infinitely large |(|. Another type of oscillatory
solitary wave solutions is shown in Fig. 4b for a = 0, -2, 8 = —0.5,
A =I,V =o.sand C = 1, where oscillatory dark solitary wave profiles
are found for f, while only oscillatory convex solitary waves are observed

In these exact and numerical solutions, except fora = 8 = 0, it

is interesting to know whether these solitary waves are stable or not to

the interactions. Figure 5 might help to understand this. In this figure,
numerical solitary waves with a wave profile closely similar to that of

the exact solution (8) are found in the hatched region including a = 0

ora + 68 = 0 (8 < 0). In additionto this, the circles mean that the

numerically calculated Lyapunov exponents [22:24] converge to zero after

a "sufficiently" long time (at most ¢ = 120), while triangles denote the

Fig. 4. Profiles of the oscillatory solitary waves for C = I,A = 1 and V = 0.5, when

а-а = —1.5 апаВ = —0.5; 5- а = 0, —2 апаВ = —o.s[??).

Fig. 5. Parameter region of &x and 8 in which solitary wave solutions similar to the exact

solution (8) can exist numerically. The circles mean the cases for which the Lyapunov
exponentsconverge to zero after sufficiently long time, while the triangles mean the cases for

which the Lyapunov exponents remain finite positive values [22 ].
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case when they remain finite positive values. Resulting from this, though
the calculations have been made for a limited number of initial conditions,
our system (4) is expected tobe integrable in the sense of the Lyapunov
exponent in the region marked by the circles, which is closely related to

the hatched region, while it is non-integrable in the region marked by the

triangles or for negative values of 8 with larger magnitude. Therefore,
the solitary waves with a wave profile similar to (8) may be stable to the

interaction among them in the region with small magnitude of « and 3, that

is, in the near-integrable region.
As for the integrability of our system, the Painlevé property is also

examined for both the reduced ODE through (13) [??] and the original
partial differential equation (PDE) (4) [2°]. Since the reduced ODE for

positive 3 has the Hénon-Heiles Hamiltonian with adjustable coefficients,
whose singular structure is examined [2¢] by means of the Painlevé ODE

test [27~29], it is expected to have a singular structure similar to that of the

Hénon—Heiles system. In fact, it is found that the ODE has the Painlevé

property without any restriction when a = 8 = 0 and a + 63 = 0, while

it has the Painlevé property for particular conditions of 5, A and V when

а + В = 0.

According to the conjecture of Ablowitz et al. [2°], however, the

above three cases of the parameters in the reduced ODE are only necessary
conditions for the complete integrability of the original PDE. Therefore, the

three cases that pass the Painlevé ODE test are examined by means of the

Painlevé PDE test [27:28:30]. In this test, the following singular manifold

expansions are assumed:

SSE EFE N
j=o j=o j=o

where the function ¢(z, t) is arbitrary and analytic, the coefficients S;, S}
and L; are analytic functions of z and ¢ in the neighbourhood of the singular
manifold ¢(z,t) = 0, and * denotes the complex conjugate. Substituting
the above expressions into Eq. (4) and equating like power of ¢, we obtain

the equations with respect to the coefficients Sj, ST and L;. According to

the test, we claim that S, S* and L are single-valued about the (movable)

singular manifold ¢(z,t) = 0 and all the compatibility conditions with

respect to S;, S} and L; are satisfied. As a result of this, significantly for

v =1 and 2, it is found thatEq. (4) passes the test forthecase a = 3 = 0

without any restrictions, whereas it does not pass the test for the other two

cases a + 63 = 0 and o + 3 = 0 without the imposition of the restrictions

with respect to ¢. Thus, only the case for a = § = 0 is completely
integrable, which is consistent with the result by the IST.
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It is noted that the test is not successful in the near-integrable region,
since the singular manifold expansions of (14) generally become non-

uniformly valid when £ tends to zero. This 15 due to the existence of a

small parameter ß in the highest-order derivative term in Eq. (4). On the

other hand, we should remark for « + 68 = 0 (B £ 0), that the crucial

condition which permits the Painleve property is considerably relaxed for

the finite time. That is, since the condition is shown tobe 8; — 00, = 0

for 6 = ¢,/¢., an arbitrary analytic solution of 8 can exist for the finite

time. This means the possibility of the finite time "integrability" of the

evolution equation. Thus, at least, for &x + 63 = 0, the soliton interaction

1s expected tobe elastic for the finite time, while only the one-soliton state

can survive for the infinitely long time. This is also seen from the fact that

the multi-soliton solution cannot be found in the Hirota binary form (6).
Therefore, the Lyapunov exponent might not converge numerically to zero

for a + 68 = 0 in the near-integrable region after the infinitely long time

(much longer than the "sufficiently" long time ¢ = 120 in the numerical

calculation).

In addition to this, since the numerical calculations of the Lyapunov
exponents are not made for all initial conditions, stochastic regions which

may be thin in the phase space might exist for the parameters of « and ß in

the nearly integrable region (Fig. 5).
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ÜKSIKLAINED NING PIKKADE JA LÜHIKESTE
LAINETE RESONANTSSÜSTEEMI INTEGREERITAVUS

Takao YOSHINAGA

Dispergeeruvas keskkonnas vöivad pikad ja lühikesed lained olla

tugevas vastastikmöjus, kui lühikeste lainete grupikiiruse ja pikkade
lainete faasikiiruse resonantsitingimus on täidetud. Käesolevas artiklis on

seesugust resonantssüsteemi kirjeldatud Kortewegi-de Vriesi ja
mittelineaarse Schrödingeri vörrandiga. Ühesolitonised lahendid on leitud

süstemaatiliselt, kasutades modifitseeritud Hirota meetodit. On töestatud

paljude numbriliste lahendite, sh. ka ostsilleeruvate solitonide olemasolu.

Integreeritavust on analüüsitud Ljapunovi eksponendi möttes, samuti on

kisitletud Pailevé omadust.

УЕДИНЕННЫЕ ВОЛНЫ И ИНТЕГРИРУЕМОСТЬ ДЛИННЫХ И

КОРОТКИХ ВОЛН В РЕЗОНАНСНОЙ СИСТЕМЕ

Такао ЙОШИНАГА |

Взаимодействие диспергирующих длинных и коротких волн

является сильным, если удовлетворено условие резонанса групповой
скорости коротких и фазовой скорости длинных волн. В данной
статье рассмотрена резонансная система из связанных уравнений
Кортевега-де Вриза и нелинейного уравнения —Шредингера.
Односолитонное решение найдено модифицированным методом

Хироты и доказано существование многих других решений, включая

осциллирующие уединенные волны. В связи с этими решениями

проанализирована интегрируемость в смысле экситона Ляпунова, а

также свойство Пайнлевэ.
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