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Abstract. A simple method of determining the number of solitons arising from a periodic
initial excitation is presented. This is a generalization of the well-known algorithm of finding
the number of solitons in the case of a localized initial excitation. The method is based

upon the basic ideas of the inverse scattering transform and general properties of the linear

ordinary differential equations of the second order. The solitons are related to the periodic
eigenfunctions of the associated Schriodinger equation.
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The Korteweg—de Vries (KdV) equation has been studied thoroughly
(see, for example, [l7*]). Its main quality is integrability, therefore it

seems quite hopeless to find anything new in this topic. Nevertheless,
in this note we discuss, how many solitons will emerge from a periodic
initial condition. In the case of localized initial excitations, this problem is

almost trivial [°]. However, for periodical initial excitations, there seems

to be no unique understanding of the question. The analytical method of

solving the KdV equation, the inverse scattering transform (IST) [*] is rather

sophisticated. The analyses of the periodic initial conditions (e.g. [> *])
are mostly numerical or semi-numerical. Here we suggest a very simple
approach to this problem, based on the basic ideas of the IST method. It

will be shown that the number of solitons cannot be defined uniquely. Also,
we use the notion of virtual solitons [*].

https://doi.org/10.3176/phys.math.1995.1.07

https://doi.org/10.3176/phys.math.1995.1.07


89

Let us present the KdV equation in the form

n + 77х + ANzzz = 0 (1)

and let the initial condition of the function n(zx,£) be given by

n(z,o) = cos(z). (2)

According to the inverse scattering method [!], the eigenvalues )\ of the
associated Schrödinger equation

—6a,, — 77(—"5)'»5 ==y (3)

are constant in time. Besides, each isolated eigenvalue is associated with
a soliton of amplitude 2A. So the number of solitons can be found as

the number m of isolated eigenvalues A, Ay,
..., \;,—; of the associated

Schrodinger equation. In the case of localized initial profiles ofthe function

n(x,t), this procedure is rather straightforward (see, e.g., [*]). Unfortu-

nately, in the case of periodic initial conditions we do not have any isolated

eigenvalue. Our suggestion is to consider a large but finite number of

periods. Thus let the initial condition be

n(x,o) = cos(z)O(A — z)O(A + z), (4)

where A > 27 and O(z) is the Heaviside function.

The eigenfunctions are defined as the bounded solutions of Eq. (3),

Yp(x),z € R. Due to the symmetry with respect to the transformation

r — —uz, the eigenfunctions are either even or odd and can be found as the

bounded solutions of the Cauchy problem

6awY+rx + [cos(z)O(A — xz)O(A +z) — A =O, (5)

¥(0) =l, ¢,(0) =O, (sa)

or

¥(0) =O, Yr(0) =l. (sa’)

Let us look for them in the following way. It is easy to see that

the largest eigenvalue is less than one. Indeed, in the case of A = 1 the

solution ¢(z) of the problem (5), (sa) is exponentially diverging and has no

zeros, since the ratio v,/1 is always positive. According to the general
properties of the linear differential equations of the second order (see e.g.

[%], Sec. 25-5), if we have two functions ), (z) and 4(z) such that within

a certain interval of z, Varr/Ya < Ybzz/¥s, then the function ¢4(z) has

at least as manyzeros as the function ¥(z). . '
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So, the decreasing of the parameter A leads to the appearance of the

first, second, etc. zeros of the function w(x). Let the transition point
between the cases of one zero and without zeros be at A = Ao. The

respective solution of the system (5), (sа) does not have zero points and

vanishes at infinity, i.e. it is the eigenfunction of the largest eigenvalue \q.
A qualitative plot of it is depicted in Fig. 1. The other eigenvalues can be

found in a similar manner. It is convenient to enumerate the eigenvalues
in the decreasing order of the values, starting to count from zero. Then

Fig. 1. A qualitative plot of the zeroth (a) and first (b) eigenfunctions of Egs. (3), (4). The

number ofperiods of the initial excitation is N = 20.



91

the order number of an eigenvalue is equal to the number of zeros of the

respective eigenfunction.

|

By small values of , z <A, the function isalmost 27-periodic,
with a slowly decreasing amplitude of the periods (see Fig. 1). So we can

conclude that

(%o)zle=x = (Yo)z|s=-nr = —(%o)z|z=m,

i.e. the value (%9)z|z=x is very close to zero (though negative). Now

let us consider the eigenfunction of two zeros ¢;(z). At small values of
z it is very similar to the function 1¢(z). Somewhere at 0 < x < A

its sign is changed and further the amplitudes of the oscillations start to

increase. Later, by r ~ A the amplitudes decrease again. So we have

(ф2):|s=lг ^ (¢'o):r|l:=lr x 0 and hence Äz —Ао «< Äo. At the limit

A — oo we have A 2 — Ao.
Now letus skip 2N — 2 eigenvalues, N = A/2r being the number of

periods. The eigenvalue A2w is associated with the 2Nth soliton, thus we

have skipped two solitons per period. The respective eigenfunction w2y
has 2N zeros: it changes the sign twice during each period and isalmost

periodic by small values of . Analogously to the case of Iy, we have again
(¥2N)z|z== = 0. The order number of the respective soliton is also 2N

dividing it by the number of periods we infer that thereare two solitons per
period, larger than the 2М soliton. So, it is the third largest soliton of a

period.
Naturally, there are many eigenfunctions n, Which do not satisfy

the condition | (¥n)z|z=x] < 1. These eigenfunctions correspond to

the solitons which have origin close to the boundary of the initial signal
(r x +A) and are due to the boundary effects. At the limit A — 00 we

can neglect the boundary effects and thus the eigenfunctions of our interest

are the Oth, 2Nth, etc. At the limit A — oo they satisfy the following
condition

ф(О) = 1, 1/),(0) = 0, 1/)_.,(7() = 0. (6)

The procedure described above can be repeated in a similar manner

for solitons of an odd order number (for the function 1, see Fig. 1). The

respective conditions can be written as `

¥(0) =O, 9,(0) =l, ¥ (7) =O. (7)

Thus, if we enumerate the solitons originating from a single period of

the initial excitement in the decreasing order of their amplitudes, the order

number n of a soliton will be given by the number of zeros of the solutions

of the systems (3), (6) or (3), (7):in the interval [-, 7]. The amplitude оЁ
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the soliton can be calculated as h,, = 2(\, — no). Here no designates the

reference level and will be defined later. In Fig. 2 we have depicted the first

twelve eigenfunctions in the case of @ = 1072-320%, That value has been

used in the pioneering paper [?]. These curves were obtained via numerical

integration of Egs. (3), (6) and (3), (7) by the Runge—Kutta method. The

respective eigenvalues (the results of the same computation) are presented
in the Table.

And now the question: how many solitons per period do we have? In

the case of the large but finite signal length A the negative values of A are

not allowed since they belong to the continuous spectrum of the associated

Fig. 2. The eigenfunctions of the associated Schrödinger equation.

n o 2An no An n An n An
0 0.882115 1 0.650104 2 0425819 3 0.209716

4 0.002353 5 -0.195561 6 -0.383082 7 -0.558783

8 -0.719759 9 -0.858305 10 -0.964385 11 -1.055964

The eigenvalues of the associated Schrödinger equation by
а = 10-2:3209
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Schrödinger equation. Thus, there would be no solitons corresponding
to the negative eigenvalues at a long time limit, such kind of solitons
would decay at the time scale 7 = A. However, by strictly periodic initial
conditions these solitons can be observable. They only disappear when the

ambient level of the signal becomes higher than their eigenvalue, but later

they will be visible again. In a certain sense these are virtual solitons. This
conclusion can be confirmed by numerous computations, see e.g. [?].

It would be nice to have a well-defined reference level 70: we could
declare that the nth soliton of eigenvalue A, is not observable if An <

no. There is also another reason why one could wish to have such a

level. Namely, the height of a soliton is given by its eigenvalue \,:
hn = 2An. The introducing of the reference level corresponds to the
transformation 7 — 17 — nr.s. Thus the value of the reference level ..¢
affects the analytical values of the heights of the solitons (both the absolute

values and the values calculated with respect to the reference level 7,$-
However, different definitions of the reference level can be more or less

egually founded and the particular choice depends on the character of the

phenomenon tobe studied. For example, one can take

Nref =

Max min n(z, €).
z

In the case of small dispersion (@ £0.01), the numerical data would give
rise to ey ~ —0.67. The latter value has been used for instance in [*]. It

corresponds rather well to the first visual impression we get when we look

at the plot of the function n(z,t). Indeed, in the case of a = 1072-3209,
there are seven solitons with the eigenvalue larger than —0.67 (Table). It

is easy to identify all the seven solitons on the plot of the function 7(z, t)
at any moment of time ¢ (see e.g. the plots of the paper [*]).

A possible alternative could be to take the reference level equal to the

lowest value of the function 7(z, t):

Mref = minn(z,t) = —l.

The value —1 is based on the numerical data [*]; the author is not aware

of rigorous proof of that equality. In the above-mentioned case of a =

10723209 gych a reference level would correspond to eleven solitons (Ta-

ble). The numerical results (c.f. [*]) indicate that the solitons of eigenvalues
between —1 and —0.67 are also visible, however some of them can be no-

ticed only during shortperiods of time.

From the physical point of view, taking the reference level below

the value =—l could seem senseless, since the function n(z,t) never

descends down to such a value. However, according to the paper [4], the
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usage of spectral methods makes it possible to register even the solitons of

eigenvalues slightly less than —l. A closer study of the behaviour of these

“imaginary” solitons would be an intriguing problem.
Thus we have generalized the simple and well-known way to deter-

mine the number of solitons arising from an initial excitation to the case of

a non-localized, periodic initial condition. The method is based upon the

basic ideas of the inverse scattering transform and the general properties
of the linear ordinary differential equations of the second order. We have

shown that the solitons and the periodic eigenfunctions of the associated

Schrodinger equation are related to each other. There is a certain degree of

arbitrariness in determining the number of solitons. This is in connection

with the question, which solitons are discernible and which are not. Our

conclusions are in qualitative agreement with the numerical data.
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PERIOODILISED KORTEWEGI-de VRIESI

VÕRRANDI LAHENDID JA OMAVÄÄRTUSTE ARV

Jaan KALDA

On esitatud lihtne meetod perioodilisest alghäiritusest lähtuvate

solitonide arvu leidmiseks. See kujutab endast üldtuntud, lokaliseeritud

alghäirituse puhul kasutatava meetodi üldistust. Solitonide arv leitakse kui

lineaarselt söltumatute perioodiliste omafunktsioonide arv assotsieeritud

Schrödingeri vörrandi diskreetses spektris.
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ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ УРАВНЕНИЯ КОРТЕВЕГА-де
ВРИЗА И ЧИСЛО СОБСТВЕННЫХ ЗНАЧЕНИЙ

Яан КАЛДА

Представлен - простой метод нахождения числа — солитонов,

возникающих M3 периодического начального возбуждения. Это

является обобщением известного способа, применяемого в случае

локализованного начального возбуждения. Метод базируется на

основных положениях обратного преобразования рассеяния. Число

солитонов — вычисляется как число — линейно — независимых

периодических собственных функций в дискретном спектре

сопряженного уравнения Шредингера.
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