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Abstract. Several numerical methods have been developed for solving nonlinear evolution

eguations. In the present paper the application of the pseudospectral method for the numerical

integration of the Korteweg-de Vries equation is considered. Advantages of the pseudospectral
method, compared with other numerical methods are analysed. Main attention is paid to the

accuracy and stability of the method. The behaviour of conserved densities for the first three

conservation laws and the influence of the duplication of the number of the grid points on the

numerical results are discussed. The corresponding numerical results are presented.
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1. INTRODUCTION

In the historical perspective the first well-known investigation, where

the numerical technique was applied for studying the Korteweg—de Vries

(KdV) equation is that by Zabusky and Kruskal [l]. These authors

considered the KdV equation
2 -

ut+uux+õ u, =0 (1)

with the periodic boundary conditions

u(x,t) = u(x+Ln), n = +1,+2,... (2)

and initial conditions

u(x,o) = cosmx = (3)
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(6 = 0.022 and L = 2). After this pioneering work two main directions

have been developed to study the KdV equation: .

(i) Gardner et al. [2] found that the KdV equation could be related to the

eigenvalue problem of the Schriddinger equation through the inverse

scattering method (ISM) developed for quantum mechanics. However, the

ISM is mainly used for a special case of an initial excitation which

corresponds, in terms of the ISM, to reflectionless potentials and leads to

n-soliton solutions. This case is thoroughly investigated by many authors

(see for example Drazin and Johnson [3], and Infeld and Rolands [4]).
(ii) For the case of arbitrary initial conditions and particularly for the

periodic ones, usually numerical methods are used. Zabusky and Kruskal

['] applied the following finite difference scheme to approximate space
and time derivatives

'/z:H=“ž—l"šž—;('én*“ž“[ž—l)(“ž+l"“£—l)"
ЗАГО . . .

_Хх_з(‚(:_„_;‚‚:‚„„ьви{._]_‚:{._д, i=0,1,...,2N-1. (4)

To raise the accuracy of the finite difference method (FDM), one has to

increase the order of the difference scheme, but the computational work,

however, grows proportionally with the order of the scheme. That is the

reason, why beside the finite difference method (see, for example [s’ 6])
several other numerical methods are developed for solving the KdV,
modified KdV (MKdV) and KdV-like equations: the Galerkin method [7],
the Hopscotch method [B], the Fourier expansion method [9' lO], the split-
step Fourier method ё”]‚ the spectral methods S pseudospectral
methods (PsM) [l2’l ], etc. See also Dodd et al. [l7] for a review of the

numerical methods.

TheBpresent paper can be considered as the third one in the series. The

first [!®] was a short report, where a method for detecting the number of

emerging solitons from the soliton amplitude curves was presented. In the

second paper ['°] main attention was paid to the soliton formation process
from the spectral viewpoint. The number of emerging solitons was

estimated from both the numerical experiment and the ISM. The present
work concentrates on the accuracy and stability of the PsM. In Section 2
the problem is stated. Section 3 presents the essence of the PsM, and in

Section 4 the accuracy and stability of the method are discussed. Section 5

gives a conclusion.

2. STATEMENT OF THE PROBLEM

Let us consider the KdV equation in the following form

ut+uux+duxxx =0 (5)
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with the periodic boundary conditions

u(x,l) = u(x+2nn, o,n ="441,42,... (6)

The initial excitation is given by

u(x,o) = —sinx, o<x<2rm. (7)

The notation

d, = -logd, - (8)

whqre d is the dispefsion parameter in (5), is introduced. The problem (5)-

(7) is solved numerically (the PsM was applied) for the following values

of the parameter d, :

d, = 0,0.1,0.2,
...,

1.8, 1.85,
...,

2.25, 2.3209. (9)

The value d, = 2.3209 corresponds to the value 8 = 0.022 used by

Zabusky and Kruskal [] (d = 1:282).

3. THE IDEA AND THE ESSENCE OF THE PSEUDOSPECTRAL

METHOD

The pseudospectral method was first proposed by Kreissand Oliger
[l3]. Let the initial condition u(x,o) be given on the interval 27. The grid is

formed by N points with Ax=27n/N. The discrete Fourier transform (DFT)
is defined by

N-1

U(w,t) = Fu= ), Ou(ij, t) exp (-2rij@/N) (10)
]=

and the inverse discrete Fourier transform (IDFT) by

и(х, ) = FU= YU(o 1)exp (2nijo/N), (11)

®

where i is the imaginary unit and

Ö© = 0,t1,+2,.... t+(N/2-1), -N/2. (12)

.
—1

. .

Here F denotes the Fourier transform and F = е inverse Fourier

transform. Space derivatives are then given by -
du -1

.

Эх
— F (ioFu), (13a)

82u 1, 2

— = -Е" (o Fu), (13b)
дх

д’и 1,.3

— = -ЕО (1@ Еи), — (13с)
дх
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Qf_f_l
_ F—l й

э
= [(i®) Ви].

. (13d)

In time, the finite difference leap-frog scheme is used. The KdV equation
(5) leads to the following straightforward pseudospectral approximation

и (х, Е+ Ар) = и(х, г— Аг) DA| (ioFu) + 2dAF" (io Fu),
(14)

with the linear stability condition

—_ (15)
Ax o ~ L

Fornberg and Whitham ['6) proposed to replace At® by sinAt® 1n the

last term of the expression (14), so the numerical scheme takes the form

u(x,t+Af) = u(x t—Af) —2AmF" (ioFu) +2dF" [isin (Ate’) Fu]
(16)

The linear stability condition for scheme (16) is

M (17)
21

So, the time step which can be used for scheme (16), proposed by
Fornberg and Whitham [l6]3is 4.71 timeš greater than that of the classical

scheme (14). Since sinAt®™ = sinAtw +0 (At3)
,

the two methods are

identical in the limit At decreasing to zero. Scheme (14) is accurate for

low enough wave numbers, but if to consider high wave numbers of «, in

(14) the dispersive term u,,, dominates over the nonlinear term ии, and the

schegne loses its accuracy ['6]. In F3ig.l curve (1) represents the guantity
Аг@® and (2) represents sinAt®

,
the time step At corresponds to

stability condition (17). These two curves diverge essentially for

|o| >0.25N and therefore the influence of hiFher wave numbers is

suppressed for the last term of scheme (16) (sge [ 6] f(šr details). In Fig. 2

there is represented a guantity (sinAt®w )/At®
,

which can be

considered as a filter for suppressing the influence of higher harmonics in

the last term of expression (14), i.e., applying this filter to scheme (14),
one gets in fact scheme (16).

Fig.l. Quantities a= Аг° (1) ап@а Ь = sinAro} (2) against wave numbers ©.
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Compared with other numerical methods, the Fourier transform base
methods give also additional information in the form of discrete spectra.
This information is related to the existence of local minima and maxima in
time dependence of spectral curves, the relative values of spectral
amplitudes, the concavity and convexity of spectral curves, etc., which
present new information about the internal structure of waves [!°].
Furthermore, if one needs to filter the data, then the problem is more easily
handled by the Fourier method than by the FDM. Besides the PsM,
another Fourier method, the spectral method (SM), is widely known. If

using the SM to solve a nonlinear equation, one has to apply a convolution

operation at each time step. The latter operation, however, takes much

more computer time than three fast Fourier transforms (FFT), required at

each time step in the case of the PsM. For these reasons the PsM is often

used for solving the KdV and related equations (see, for example, [2o‘2s]).

4. ACCURACY AND STABILITY OF THE NUMERICAL SCHEME

Kreiss and Oliger 3 compared the PsM and the FDM, Orszag ['2]
compared the PsM and the SM. All these authors have found that the PsM

is as accurate as other methods, but more effective because it takes less

computer time. Fornberg and Whitham [l6] also compared the accuracy of

the PsM and the FDM. They found that the PsM scheme (16) for 128

points, with stability condition (17), was as accurate as the Bth-order finite

difference scheme for 256 points, or the 6th-order finite difference scheme

for 512 points, or the 4th-order finite difference scheme for 1024 points.
Taha and Ablowitz [26], and Nouri and Sloan [27] compared different

numerical methods. Test problems were one soliton solution and two

soliton collisions with different values of the amplitude. All these authors
have established that the modified PsM (16) is sufficiently accurate, stable

and fast.
The numerical instability in the usage of the finite difference leap-frog

scheme for integrating the KdV equation is studied for example by Chan

and Kerkhoven [%B), He-Ping and Ben-Yu [29], and Aoyagi and Abe
[3%31], who have proposed several methods to extend the stability limits.

By Aoyagi and Abe 39, Zabusky, in private communication, recognized

sinAm)3

At
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that the leap-frog scheme (4) was subject to numerical instability. To

suppress the instability, the temporal smoothing algorithm was introduced.

By this algorithm ufand и:.—
!

were replaced by

1. j
s

;2(l!:.+l+2l!:.+И{.+l) j
(18)and

3024il
respectively, at some time steps. Aoyagi and Abe have shown that the

leap-frog scheme generates computational modes, as well as physical
modes in the numerical solution. The physical modes converge to the

solution of the original partial differential equation. They demonstrated

that the instability comes from computational modes and proposed the

Runge-Kutta smoother for the finite difference scheme (4), which was

found to give better results than those of (18).
In the present study the PsM (16) proposed by Fornberg and Whitham

[l6l is used. In order to accelerate the whole procedure, the FFT is applied
[*2 33]). For 0<d,<2.25 the number of grid points N = 128 for the FFT. It

was possible to use the time step At corresponding to condition (17) up to

the value 1.95 of the parameter d,, but for d, = 2.00 the scheme became

unstable. To get a stable solution, the Runge-Kutta smoother was applied
at some time steps, but for scheme (16) the result was not as good as

described by Aoyagi and Abe [3o’ 31] for scheme (4). Neither solution was

stable for a longer time period, finally it became unstable. To get a stable

solution, the time step At, corresponding to the linear stability condition

(15) was used for 2.00< d,< 2.25. Of course, this takes more computer
time. Ford, = 2.32 it was required to consider the value N = 256 for the

FFT in order to get a stable solution. Up to ¢ = 0.5¢; it was possible to use

At by condition (17), but for ¢t > 0.5¢;
,

the time step corresponding to

condition (15) was used (5 is the recurrence time [l]).
To estimate the accuracy of computations, the first three conservation

laws were studied. In the discrete case the quantities
N

OO =X2 UD (19)

N
2

G=2 _Гк Т,
(20)

N 1 3 2

Cy(t) = Zizl{g[u(xi,t)] ~d[u (x, o]} (21)

are conserved densities for Eq. (5). In (21) d is the dispersion parameter.
Therefore the quantities C;, C,, and C; must remain constant for this

problem. Figures 3 and 4 present the time dependence of relative errors
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C, (t) - C, (0)
”К, (0 =TGO (22)

and C 3 (t) - С3 (0)
(23)R3(I) =

——-———————lC3(o)|

respectively (for d, = 1.1, 1.9, 2.32). For smaller values of the parameter
d, the relative error R, oscillates around a certain zero level (Fig. 3a) and

has quite small values ( for example order of 10710 for d, = 1.1). If the

parameter d; increases, one can find that the form of oscillation has

changed essentially (Fig. 3b) and the maximal values of the quantity R,
have also increased by several orders. In Fig. 4a, b such significant
changes in the shape of curves cannot be noted as in Fig. 3a, b, only the

quantity R, has values three orders higher for d; = 1.9 than for d, = 1.1. As

was mentioned above, for d; = 2.32 the value N = 256 was used for the

FFT. For ¢ < 0.5 t the time step A ¢ corresponds to condition (17), and for

t >o.s¢; condition (15) was used. The influence of the diminution of the

time step at ¢ = 0.5¢; on the relative errors R, and R; is clearly visible in

Figs. 3c and 4c.

Fig. 3. Time dependence of the relative error R, ford, = 1.1 (a), d,= 1.9 (b), and

а, = 2.32 (с).
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Fig. 4. Time dependence of the relative error R 3 for d, = 1.1 (a), d, = 1.9 (b), and

а, = 2.32 (с).

Fig. 5. Maximal deviation M, for the conserved density C, (a) and maximal relative errors

M, and M, for the quantities C, (b) and C, (c) depending on the dispersion parameter d,.
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Figure 5a presents the maximal deviation f
; ;

parameter d,
n for the guantity C, against the

Ml (dl) = mžthCl (1, dl) ; (24)
in Fig. 5b the maximal relative error for C, depends on d,

|M2 (dl) = mtaXßz (2 dl) , (25)
апа 'ig. Sc gives those for C,

M,(d) = m?.xR3 (£, d,) (26)

(the time interval 0 < f s fg is under consideration).
On the conserved densities C;, C,, and C; one can make the following

conclusions:

(i) The first conservation law is satisfied perfectly, the maximal deviation

for quantity C, being less than 3.5.10°12 (Fig. sa).
(ii) For C, the relative error R, has the maximum value (0.0155%) at

d, = 2.25 (Fig. sb).

(iii) The third conserved density C; deviates maximally (1.35%) at

d, = 1.95 (Fig. sc), i.e., just before the scheme was found tobe unstable for

the condition (17).
In order to understand how the duplication of the number of grid points

N influences the numerical results, the problem (5)«7) for d,= 1.9 was

solved as well for the value N = 256 for the FFI. In Fig. 6 е

corresponding relative errors R, and R; are presented. If to compare
Fig. 6a with Fig. 3b, and Fig. 6b with Fig. 4b, one may conclude that the

duplication of the value N for d, = 1.9 reduces the relative errors R, and R,
by three and two orders, respectively. The next question is how the

Fig. 6. Relative errors R, (a) and R; (b) for d, = 1.9 in the case of the value N = 256 for the

FFT. :
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Fig. 7. Spectral amplitudes SA; (a), SA¢ (c), and SAI7 (e) for d; = 1.9. Solid curves

correspond to the value N = 256 and dotted curves to N = 128. Curves (b), (d), and (f)
present the corresponding differences A SA;, A SAg, and A 5А ).
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duplication of the value N influences the spectral characteristics and wave

profiles. If the DFT is defined by (10), then the spectral amplitudes can be
introduced in the following form:

=

20(001
ов= 1,2, ~№/2-1. (27)SA () =

2Е.,

Figure 7a, c, e present the spectral amplitudes SA(?)| N =256 (solid

curve) and SA(?) | N =l2B (dots) for @ =l, 6 and 12. These solid and

dotted curves are practically not distinguishable. In Fig. 7b, d, f the

corresponding differences

ASA„(1) =SA () |N= 128—-SAw(t) IN: 256 (28)

are represented. Maximum differences are of order 10*. To study the

differences in the waveforms, the following notation is introduced: space
grid

.
21

.

‚

X; = iAx, Ax =556 г = 1,2,3,..., 256; (29)

difference between the two waveforms, corresponding to N = 128 and N =

256,

Au(x,t) = u(x, t)l —u(x, t)l , i=1,3,5,...,255;
r ®

IN= 128
* IN = 256

(30)
and the maximum difference between the two waveforms

Au (1) = mil?(lAu (x; t)l : (31)

Figure 8 presents the curve Au, against time f. In Fig. 9 there are

represented the waveforms u and differences Au which correspond to the

time moments indicated in Fig. 8. One can find again, as well as for the

spectral amplitudes, that solid curves (N = 256) and dotted curves (N =

128) are practically not distinguishable. Differences Au are of order 103,
The maximum value for Au,, corresponds to the time moment when the

amplitude of the highest soliton reaches the maximum value [34]. Figure
10 presents a timeslice plot of waveforms for d, = 1.9.

Fig. 8. Maximal differences between waveforms forN=256 and N=l2B A u,, against the time

t. Waveforms which correspond to three indicated time moments arepresented in Fig. 9.
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Fig. 9.Waveforms u for t = 2.8 (a), t = 8.1 (c), £ = 16.3 (e). 'Solid curves correspond to the
value N = 256 and dotted curves to N = 128; d; = 1.9. Curves (b), (d), and (f) present the

corresponding differences A u by expression (30).



85

5. CONCLUSION

The pseudospectral method (16) is adequately accurate and stable for

solving the KdV equation with the harmonic initial condition. Finally we

can make the following conclusions:

(i) If one uses the Fourier transform based methods for the numerical

integration of the KdV equation, one gets additional information about the

internal structure of waves in the form of discrete spectra, comparing with

other methods. In the case of the KdV equation the pseudospectral method

is much faster compared with the spectral method, because the PsM does

not include the time-consuming convolution operation.
(1) For solving the problem (5)—(7) it is sufficient to use N = 128 for the

FFT until the value d, = 2.25.

(iii) If the relative errors R, and/or R, reach a certain value, scheme (16)
becomes unstable. If the stability condition (17) is used, then the simplest

way to increase the stability limit is to use condition (15) instead of (17). If

condition (15) is already used, the number of grid points N has tobe

duplicated. |
(iv) The relative error R, depends more on the value of the space step Ax

than on the value of the time step Af, and R;, vice versa, is more

dependent on At than on Ax.

(v) Increasing the number of grid points N from the value 128 to the value

256 decreases the values of conserved densities by several orders, but the

corresponding waveforms and spectral densities are practically not

Fig. 10. Timeslice plot for d, = 1.9.
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distinguishable. As the computer time for N = 256 was 14.9 times larger
than for N = 128, it is reasonable to use as small values for N as possible,
i.e. the value of N for which scheme (16) is still stable. To increase the

stability limit, it is rational to decrease at first the time step instead of the

duplication of the value ofN, i.e., just to use condition (15) instead of (17).
The latter increases the computer time 4.7 times.
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PSEUDOSPEKTRAALMEETODIRAKENDAMISEST KORTEWEGI-de
VRIESI VÕRRANDI LAHENDAMISEKS

Andrus SALUPERE

Mittelineaarsete evolutsioonivörrandite lahendamiseks on välja tööta-

tud terve rida arvutusmeetodeid. Käesolevas artiklis on vaadeldud pseudo-
spektraalmeetodi rakendamist Kortewegi-de Vriesi vörrandi numbriliseks

integreerimiseks. On välja toodud pseudospektraalmeetodi eelised vör-

reldes teiste numbriliste meetoditega. Pöhitähelepanu on pööratud vaadel-

dava meetodi täpsusele ja stabiilsusele. Sel eesmärgil on uuritud, kui

täpselt on vaadeldava arvutusprotsessi käigus rahuldatud kolm esimest

jäävusseadust ja kuidas möjutab x-koordinaadi punktide arvu kahekordis-
tamine arvutustulemusi. On esitatud vastavad arvutustulemused.

ПРИЛОЖЕНИЕ ПСЕВДОСПЕКТРАЛЬНОГО МЕТОДА ДЛЯ
РЕШЕНИЯ УРАВНЕНИЯ КОРТЕВЕГА-де ВРИЗА

Андрус САЛУПЕРЕ

Для решения нелинейных эволюционных уравнений существует
целый ряд численных методов. В настоящей статье рассматривается

приложение — псевдоспектрального — метода — для — численного

интегрирования — уравнения — Кортевега-де — Вриза. — Названы

преимущества псевдоспектрального метода относительно других
численных методов. Основное внимание обращено на точность и

стабильность метода. Исследуется точность удовлетворения первых

трех законов сохранения и влияние удвоения числа точек MO

координате X Ha численные — результаты. — Представляются
соответствующие численные результаты. |
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