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Abstract. We present basic arguments of quasi-particles (endowed with mass, momentum, and

energy) to study the essential solitonic features of the Boussinesq-Korteweg-de Vries model and

some of its generalizations: regularized long-wave equation, generalized Boussinesq model, and

nonlinear Maxwell-Rayleigh model. Hamiltonian descriptions and associated global conservation

laws are given for all these systems. The so-called wave momentum (also called pseudo-
momentum, or canonical momentum in the absence of dissipation) plays a prominent role in this

formulation as it provides the equation ofmotion of solitons or soliton-like structures.
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1. INTRODUCTION

In describing the typical methodology of the nineteenth-century
English school of mathematical physics, Duhem ['] emphasizes William

Thomson’s (later Lord Kelvin) lack of understanding before he has

conceived of any mechanical model to represent the physical object under

study (the original quotation in Thomson [2], p. 270; the general attitude of

Thomson towards mechanical models see in [3]). The same applies to

James Clerk Maxwell, and this is perfectly illustrated in Whittaker's

History of the Theories of Aether and Electricity [*], when the latter
comments on various attempts at introducing dispersion in the vibration of
atomic systems (see pp. 260-265). The linear version of the model

developed below was initially prescribed by Maxwell for the mathematical

tripos at Cambridge [s] (nowadays we would say final examinations in

mathematical physics) with further elaboration by Lord Rayleigh [°], but
the illustration itself (see below) could only belong to Thomson (according
to Whittaker [*], p. 262). The mechanical modelling of atomic structures

thus outlined was to become the basis of lattice dynamics in the spirit of
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Born and Karman (see, e.g., [7’ 8]) as also, in some sense, that of finite-
difference methods (if we reverse the reasoning in passing from the

discrete to the continuum and vice versa). As we know from Fermi et al.

[°] and Zabusky and Kruskal ['°), this was to lead to the introduction of
solitons whenever dispersion and nonlinearity would exactly compensate
one another. In particular, the most celebrated equation giving rise to this
remarkable dynamic phenomenon is the Korteweg—de Vries (for short

KdV) equation which was introduced by Korteweg and de Vries [!] in

fluid dynamics. On the centennial celebration of this discovery we prefer
here to see the KdV equation as the one-directional, or evolution, equation
associated to the no less celebrated Boussinesq (for short B) equation via

the reductive perturbation method [l2]. Here below we shall introduce a

more general model based on Maxwell’s and Rayleigh’s proposal to

describe the phenomenon of anomalous dispersion. We shall also

comment on (i) several equations of the B-KdV type that occur in various

branches of applied physics and (ii) considerations of quasi-particles to

interpret some of the dynamical behaviours of these systems, as true

solitons may indeed be considered as quasi-particles verifying a set of

equations of motion characteristic of “particles”.

2. MAXWELL-RAYLEIGH MODEL ОЕ ANOMALOUS

DISPERSION

We use a modem jargon and notation and will later on give the

correspondence with the original Maxwell-Rayleigh model, a picture of

which, in Thomson’s view, is given in the Figure. We work in the material

description of continuum mechanics in order to accommodate easily
nonlinear phenomena. The material point X has for image x such that x =

7(X,1) where tis time. This defines the deformation of the elastic matrix,
of which the displacement is u(X,7) = x(X,#) — X. But there is a

continuous distribution of “atoms” at eachX with relative displacement

The Maxwell-Rayleigh model of anomalous dispersion (foreign inclusions linearly or

nonlinearly elastically connected to the elastic matrix).
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С(Х,!) with respect 10 the matrix. That is, the instantaneous physical
position of these atoms is given by x,(X,7) =X + u(X,?) + (X,?). We

may view this as a microstructure givingrise to a continuum of inclusions.

Let p and r be the mass densities of the matrix and the “inclusions”,
respectively. Then the density ofkinetic energy is given by

K = %p(%—'‚')2+%’(%';'+%%)2- (2.1)

We consider a one-dimensional model, so that we indeed have a composite
lattice in the form of a one-dimensional chain, but we do not allude further

to any discrete structure. Each inclusion being supposed tobe maintained

in its placement in the matrix by an attractive force rcošc, where 0, is a

characteristic frequency, with a linear elastic matrix of elasticity
coefficient E, we have a density of potential energy given by

1 ( ди\?2 1 22
V = 55(67() +570@06 . (2.2)

The associated Euler-Lagrange equations ofmotion are:

2 2 2 2
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r[õ—š+õ—l;] +rcošc; = 0.
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By applying the operator 1 + 052(02/012) to the first of these and

substituting for the second, we eliminate the internal degree of freedom

and deduce the following wave equation for the matrix displacement u:

_

72 —2
_

L-2
=(1 +v)u„ couxx+coo Uy kO Uy 0, (2.4)

wherein v =l/p is the ratio of densities, ¢, = (E/p )is the characteristic

elastic speed, k, = 0,/c, is a characteristic wave number, and we have

used the applied-mathematics notation for partial derivatives with respect

to £ and X. Equation (2.4) is the Maxwell-Rayleigh equation for

anomalous dispersion, but written in modern elasticity notation. It contains

two dispersion terms, but either of these would be sufficientto produce the

required dispersion. For further comparison, after appropriate scaling we

can rewrite it in fully nondimensional form as

U, —Uxx te (utm - uttxx) =O, (2.4')
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where the ordering parameter € emphasizes the eventual smallness оЁ

dispersion effects.

In the original works of Maxwell and Rayleigh the model considered in
fact is an elastic aether (nowadays spelled ether), the substratum of light
waves, and the above “inclusions” are “atoms”: each such “atom” is

composed of a single massive particle, which is supported symmetrically
by springs (remember Thomson’s mental mechanical images) from the
interior of a massless spherical shell, i.e., in other words, the “atoms”

occupy small spherical cavities in the aether, the outer shell of each atom

being in contact with the aether at all points and participating in its motion.
In Whittaker’s own words, “the medium as a whole is fine-grained”.
Forgetting about this nineteenth-century picture, the model obtained

appears as a special model of diatomic lattice (in the long wave

approximation), in which one degree of freedom has been eliminated in
favour of the other [!2]. The linear version of the Boussinesq equation for
elastic crystals (that one which gives rise to the KdV equation) reads [!?]

Utt — Uxx— 6Ик = 0, (2.5)

while the Love-Rayleigh equation for rods accounting for lateral inertia

reads (cf. Love [l4], p. 428)

It is clear that Eqs. (2.5) and (2.6) do not have the same dispersion
characteristics. However, Eq. (2.4’), where the two dispersion terms

concur, has dispersion characteristics akin to those of (2.6). Finally, Eqs.
(2.3) апа (2.4’) аге also tobe compared to simple equations governing

porous media and granular media, but we shall not do it here. It is of

greater interest to introduce nonlinearity.

3. GENERALIZATIONS OF BOUSSINESQ AND KdV EQUATIONS

The modelling (2.1)-(2.5) may be complicated in three ways. First, as

remarked by Whittaker ([*], p. 264), one may be tempted to introduce a

dissipative force varying like the relative velocity 0%/0t and opposing the

motion of “atoms” relative to their shell. This is sufficient to prevent an

annoying phenomenon ofresonance that would occur if the applied (light)
freguency matched the natural freguency 0,. Second, the restoring force

applied to atoms may be modelled by nonlinear springs, so that the second

contribution in (2.2) takes on the form

1 2(2 2 3) |Vl=§'(°o(‘; +§kg , (3.1)
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wherek& is a coefficient of nonlinearity. The third possibility (not obvious

in the original model where the elastic continuum is aether) is that the

matrix itself be weakly nonlinear, so that the first contribution in (2.2) be

replaced by

a

baa 2 (ди)з ] _VM = žE[(õ—X) +-3-0c Эх +... 1, o = const. (3.2)

In this last case, it is immediately checked that Eq. (2.4") is replaced by ап

equation of the form:

и„- “хх —@(l + Вд2) (их хх )+ & (u,,,~u,)=0 (33)

with B = const. From this we shall essentially retain the following
nonlinear generalization of (2.4”) which is sufficient for our purpose:

“„-“xx(l + Oluy) +£(utm—u“xx) =O, 3.4

which still contains the potentiality of a resonance phenomenon, but is

directly comparable to the nonlinear (“bad”) Boussinesq (B) equation of

crystal physics (see, e.g. [ls])

u,—yy (1 +€uy)-€u, =0 (3.5)

and to the “good” or “imProved” Boussinesq (for short GoB) equation
proposed by Bogolubsky [ 6] and others [!7]:

U, Uxx (1 +EUx) -Eu,,, = 0, (3.6)

where the same € in factor of nonlinear and dispersive contributions

indicates that these two effects intervene at the same order of magnitude.
The Boussinesq equation of fluid mechanics indeed contains a dispersive
term of the same type as Eq. (3.6). Contrary to (3.5), Eq. (3.6) presents
good stability properties, hence its qualification of “good”. The same

obviously holds good of (3.4) and its further generalization (3.3) that does

not contain derivatives of order higher than four. Equation (3.6) is also

referred to as the Regularized Long-Wave (RLW) Boussinesq equation.
But it was noticed by Christov and Maugin, while studying lattice models

in ferroelastic crystals and their continuum approximation, that another

way to remedy the “bad” dispersion was in fact to continue the expansion
and obtain dispersive terms with sixth-order and, perhaps, higher-order
space derivatives. Such a model in martensitic alloys prone to phase
transitions is given by [lB 19

иг— Uyx— [F(u)— B xx + UyxxxIxx=O, (3.7)
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where F(u) may be thought of as a polynomial in u starting with second

degree and B > 0. While Eqs. (3.5) and (3.6) are known to yield the KdV

equation after reduction to a one-directional motion, and thus exact

integrability in the sense of soliton theory [2°], Egs. (3.7) and (3.4) which

appear to be good physical models may not, in general, be exactly
integrable. Their associated evolution equations are generalizations of the

KdV systems, but rather than being interested in the infinite hierarchy of

conservation laws exhibited by exactly integrable systems, we prefer to

concentrate on the basic conservation laws which are still satisfied by
some, only nearly integrable, systems, in that they still exhibit the essential

quasi-particle features for some nonlinear-wave solutions, and this is more

transparent on the equations issued from elasticity than on their

companion evolution equations [2l'24].

4. KdV EQUATIONS AND CONSERVATION LAWS

To make the argument mentioned at the end of Section 3 more palpable,
consider the classical KdV equation

у,+ уу+ 62 ууу =O, (4.1)

where & is a characteristic length. This is rewritten here in the

conventional form

у, + буу, + У =O. (4.2)

The first two laws in the hierarchgl of conservation laws associated to this

exactly integrable equation are [
Ö Ö 2

B l (4.3)

and

0,2 0, 3 2

3(v+v )+x(4v +By +sv +v,,)=0 (4.4)

The first of these is obviously obtained by a mere rewriting of (4.2), so that

this is not precisely a new equation, but it also gives the evolution of a

“measure” of the solution. That is, on integrating (4.1) over the real line

and with vanishing fields and field derivatives at infinity, we obtain the

conservation of the quantity

- +0

(4.5)М0 = Г_:\›сіх = [u] _»,

if we set v =i, and [..] denotes the difference (the “jump”) between values

of the enclosure at the two infinities. Here i is a potential for v and M,
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may be interpreted as a difference of potential or, in electrical terms, the

“voltage” of the solution. Equation (4.4) is more elaborate although it is

the one that follows by a straightforward application of a powerful
algorithm %9, p. 56). In early studies of the KdV equation when such

algorithm did not exist, instead of (4.4) it was proposed to consider the

conservation equation (cf. [2s])

Ё 1at(§v2)+_a_( -

а
2v +уу —1 2

XX žvx) =O, (4.6)

which, at first sight, is not related to (4.4). But if we remark that the second

x-derivative of (4.3) can be rewritten as

д д‚ 2

a—t"xx +sx (6vx +6yv,, + Vi) = 0 (4.7)

i.e. itself a conservation law, then a mere addition of twice (4.6) and once

(4.7) indeed yields (4.4). This remark is somewhat annoying because it

already shows the existence of an infinity of conservation laws containing
the contribution v? in the conserved quantity. Even more than that, a false

symmetry between successive conservation laws can be built, being
merely an artefact of the one-dimensionality of our system in space. For

instance, the ad hoc linear combination of (4.6) and (4.7) yields the

conservation of the quantity (3v* + Vyy)» Which happens to be the flux

present in the first conservation law (4.3). Such misleading coincidences

have already been noted in wave-propagation problems in one spatial
dimension (cf. [26], р. 211).

The third conservation law in the line of (4.3) апа (4.6), not 94.4)‚
obtained by multiplying (4.2) by 3y* and rearranging terms, reads P р.
126)

д( 3 2) 9(9 4 2 12a—t(v —%vx)+é;(§v +3v vxx+žvxx+vxvt) =O. (4.8)

The logic and usefulness of the various conservation laws recalled so far

are not obvious. First of all, as might be useful in further perturbation
studies, if we want to exploit these conservation laws, it may be relevant to

think of soliton solutions indeed as quasi-particles. Such “particles”, by
their very nature (they are pointlike), have only very few attributes: mass

M, momentumP, and energy E. Because of the one-dimensional spatiality
of the problem, the last two quantities are not independent: they s2atisfy a

Galilean-Newtonian or relativistic r;latiozn. This r%latiog is E= P /2M,
in Newtonian mechanics and /со = Мосо+Р in relativistic
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mechanics, where cy is a characteristic limit speed (playing the role of the

light velocity of relativity theory). The above formalism does not clearly
show this, althoughVA2 obviously is an energy. Therefore, a different look

can be given at Eq. (4.4). For that purpose we consider the total

Hamiltonian

H = —_[R(v3 — švš )dx. (4.9)

With (v,u) playing the role of Hamiltonian variables usually denoted (p,q),
the first equation g, = 8 H/Sp yields the compatibility condition u,, = v,,
while the second Hamilton equation, v, = — d(8 H/8v)/dx, is none other

than the KdV equation (4.2). Thus energy conservation appears to be

related to the conservation law (4.8) rather than to (4.6) or (4.4). Now, if

we consider v = i, as in (4.5), then the canonical momentum of the v-

motion should read (cf. [26])

P = —JR u u,dx. (4.10)

But we immediately check that iz satisfies the equation

- -2 -

u,+3u, +u,,, =O. (4.11)

On account of this, P transforms to

-3
- - 2

Р = J.R (Bu, + ихиххх) ах = —[В (3y +yv, )dx. (4.12)

Obviously, P and H are quantities of the same nature as canonical

momentum and energy are space and time components of the same object.
In particular, for a true soliton solution propagating without deformation at

speed c in one space dimension, &, = — cii, and -- ü,ü, = су?. То епа with

the case of the KdV equation, which is exactly integrable, and prepare the

way for other systems which are not integrable, we note that this equation
can be rewritten as the Hamiltonian system:

V=U,,

w=v,, (4.13)

-
-2

U, = -Зи, -,›

a nonlinear system that contains at most first-order derivatives and is,

therefore, more amenable to computations.



48

S.OTHER SYSTEMS

Now we return to the point alluded to at the end of Section 3. A

generalization of the KdV equation, which also generalizes the Burgers
equation of turbulence fame and the Kuramoto-Sivashinsky equation of

convection problems, is the so-called Kuramoto-Sivashinsky—Velarde
(KSV) equation, or dissipation-modified KdV equation [2B], written as

1)(5.0,e =(v,Y+b4vxxx:x+b3V+byВу», +У, *

where ß, y and the b;’s are numerical coefficients. In a different vein we

may think that wave equations such as (3.5) and its generalizations such as

(3.7) have for associated evolution equations (via the reductive-

perturbation method), equations of the form

2)(5.=O.+
..AVD+Ь,Мос+x(vv,у+

хВ ууУ, +

Equations (5.1) and (5.2) have in common tobe nonexactly integrable, i.e,
to present no true soliton solutions in the mathematical sense of the term,

although an interplay of coefficients may be such that some dynamical
solutions exhibited resemble solitons in the sense that analytical one-

soliton solutions exist and little radiation is exhibited durinš the

interaction of such solitons (see the numerical simulations in [lB’ 19, 24]).
Such systems may be called nearly integrable if they indeed correspond to

perturbations of exactly integrable systems. Furthermore, for all practical
purposes, their “quasi-soliton” solutions may be exploited as “soliton”

solutions. That is, in some sense, next to a mathematical definition, we

have a physical-engineering approximate definition of solitons. Such

systems cannot be coped with by the methods of exactly integrable
systems, e.g., the inverse-scattering method, but conservation laws, or the

lack of exact conservation of certain entities, are most instrumental in

establishing the properties of such systems. This is particularly true of the

first few “conservation laws”, to which we can grant a classical

interpretation in terms of the mechanics of quasi-particles. For instance, as

noticed by Velarde [B], the energy density being defined as in (4.6), by the

integration of the product of Eq. (5.1) with v over the real line, for

“soliton” solutions we obtain a nonconservation of total energy as

d .
TE*O, (5.3)

where the nonzero right-hand side collects contributions of nonexactly
integrable terms in factor of b,, b4, and y coefficients. In the Benard-

Marangoni problem these three terms account for energy input, energy

dissipation, and nonlinear feedback, respectively. Because of a general
formalism that applies to three space dimensions [26] where the canonical
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momentum equation (also called balance of pseudomomentum or wave

momentum) is a vectorial equation and thus is not strictly replaceable by
the energy balance, we prefer to think about the above problem in terms of

the three basic attributes of quasi-particles: mass, momentum (total
pseudo- or wave momentum, canonical momentum in nondissipative
systems), and energy. The satisfaction of the corresponding three

conservation laws is a minimal requirement for the fulfillment of the

“physical” definition of solitons. We illustrate this with some of the wave

systems introduced in Section 3.

A. “Good” Boussinesq equation

This is Eq. (3.6), but with fourth-order space derivative rewritten as

R-W LO (5.4)

Introducing the auxiliary vaniables g and w, this can be rewritten as the

Hamiltonian system [29’ 30]:

U =4y,

w=u, (5.5)

q=w + (uz)x_wxxr

of which the first two are mere definitions of q and w. The mass,

momentum, and energy of “soliton” solutions of (5.4) or (5.5) are given by

M = IRudx, P = —_[Ruqu‚
s

E—_[l(2+ 2+2+Z3)d
°°

= |244 +W +u +3u )dx.

As the system considered is exactly integrable, the quantities defined in (5.6)
are strictly conserved. But their expressions may look somewhat awkward.

However, introducing the potential & by v = &,, with #,(x =— ) =O, it is

verified that

>
+0

-
- -

1 2 1-2
M = [и]—‹ю› ut =q) “q = uxut‚ žq

= žuta (57)

so that M has the same interpretation as in the KdV case, and P and £

indeed take their canonical definitions in terms of the potential &.

Simultaneously, in terms of elasticity theory, it is & that has the meaning of

a displacement, while u is a strain per se.
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B. Generalized Boussinesq equation

This is Eg. (3.7) which has higher-order space derivatives than the

previous case. This hints at introducing the auxiliary variables qg and w also

via higher-order space differentiation. Equation (3.7) is equivalent to the

following Hamiltonian system [18]:

Ut= Яхх›

W=, (5.8)

а; =и + Е(и)-Ву + д ›

where the first two are mere definitions of g and w. The mass, momentum,
and energy of soliton-like solutions of (3.7) or (5.8) are given by

M = -[R udx, P = _JR uqdx,

1,2 2 2 2
°Э

E = -[Rž(u +4,-2И(и) +Ви,+ п )ах,

where F(u) = — dU/du. The system considered is not exactly integrable and

we cannot expect the conservation of these three guantities tobe

automatically fulfilled. As a matter of fact, with u=й, апа и(х = - с ) = 0,
we find that ü, = g, and

—..
400

- - 12 1-2
M= [u]l_.,, P=- Ruxu,dx, žqx = žu„ (5.10)

and

dM dE dP 2 gt

e = o= = - T=- 5.11
я

0,
-

0,
-

7 [ихх]-‹›‹› .

( )

That is, P and E take on their canonical definition in terms of the potential
ü. But while E is conserved, P generally satisfies a Newtonian equation of

motion, where the driving force F may be called a pseudo-force if we

accept the jargon of [%6]. This force can be made zero by appropriate
boundary (limit) conditions, but it is easily conceived that if one

practically (numerically) works on a finite spatial interval, then the

nonsatisfaction of these boundary conditions will cause an accelerated

motion of the soliton solution while mass and energy may still be

conserved.

Return to Case A. Case A above can also be examined by using the first

equation of (5.8) [24]. Equation (5.4) is rewritten as

12)(5.=O,Buxx)xx) —+ Е(иUy — (U



51

where F(u) is a polynomial starting with u?, This is equivalent to the
Hamiltonian system

Ut= Яхх›
5.13

g=u+Fu)-Bu,,
( )

with, now, mass, momentum, and energy given by (compare to (5.9))

M= IR udx, P = ——[R uqxdx,

12 2 ,
(5.14)

Е = -[Rž(u +q,-2U (u) +ßux)dx.

In this formalism, both M and E are conserved but P generally satisfies a

Newtonian equation of motion

dP Iга 21°
Sfa (5.15)

and one should therefore be cautious while working on afinite interval.

C. Regularized long-wave Boussinesq equation

This is Eq. (3.6) rewritten as (compare to (5.12))

Uy — (u+ F(u) + Buy),, =O, (5.16)

where F(u) has the same meaning as in (5.12). Introducing q as in (5.13)1,

vgž see that Eq. (5.16) is equivalent to the following Hamiltonian system
K

U= Gxx»
5.17

4; - Васх = и + Е(0). 1D
The mixed space-time derivative in (5.16) creates some difficulty in the

interpretation of the following quantities. Mass, momentum, and energy of

soliton-like solutions of (5.16) or (5.17) are given by

M= JRudx, P = —JRu(qx—ßqxxx) dx,

1 2 2 2 (5.18)
E = JRž(u +9g, -2U (u) +But)dx.

It is difficult to recognize in P and E the canonical definitions of such

quantities. However, if we set u = ii, as before and note that g, = i,, then

the generalized local kinetic energy is
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1 2 2 1 -2 =2
K = ä(qx'*'ßu,) = ä(“t +ßuxt) ,

(5.19)

and thus P is none other than

- 6Х
Р = -JR uxš——ütdx, (5.20)

with a Lagrangian density

&= к—{ 1-22ux+u(z}x) ), (5.21)

where the functional Euler-Lagrange derivative is given by

- - 5.22)'B_:s-29: žg--õš—(—a'—g) = ut_ßuxxt = qx—quxX' (

du, du, 9*\Jdu,,

Equation (5.20) is the canonical (field theoretic) definition of the wave

momentum when the inertial terms contain the strange field &,,. The above

scheme can be given a mechanical interpretation if we remember that &

may be viewed as an elastic displacement for a one-dimensional model.

Then P represents the so-called lateral inertia. This indeed was the

original way the mixed space-time derivative was incorporated in the

linear equation (2.6). To end with this case we note that while mass and

energy are automatically conserved, momentum P in general satisfies a

Newtonian equation of motion with pseudoforce ¥ on a finite spatial
interval:

dP 1г 2 2 1а

w >aa- (5.23)

D. NonlinearMaxwell-Rayleigh model

This is Eq. (3.4) that we rewrite as (compare to (5.16))

иц —(и + F(u) + Bug)xx+Bg =O, B>o. (5.24)

Basing on the experience of case (5.16), this is equivalent to the

Hamiltonian system

Ut= Яхх›
5.25

Qı B(Gpx - Ixxx) =4 + F(u).
` )

The mass, momentum, and energy are then given by
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M = IRudx’ P = JRu{q_ß(qx“—qxxx)}dx’
1 2 2 _2 2

(5.26)
E = -[Rž(u +4,-Ва ~2U (u) +Ви, )ах.

With u = 4, it is checked that E and P have a canonical form, e.g. (5.20)
forP with

22 22) A(22),
620

õu, Ddu, Iduy” 9Х\ди,,

the local “kinetic energy” and Lagrangian being written as

K= %{й‚2+ я

.

ß(“xt"'“2
К_{l—2

“tt)}

54x+U (ity) }’ (5.28)

Again, the conservation of P over a finite interval of R would raise a

problem. Furthermore, here the interpretation of the kinetic energy (5.28);
in terms of a simple mechanical problem is not obvious (remember the

construct of the Maxwell-Rayleigh model of anomalous dispersion in

Section 1). But it was recently shown by Kecs [3l] that if effects of some

tangential stresses are not neglected in the Love—Rayleigh model of rods,
then a term + 0Lu,,,, will be added to the left-hand side of (2.6) so that,
with o >O, the corresponding nonlinear generalization will have

properties similar to those of (5.24).

6. CONCLUDING COMMENTS

The nontrivial example (5.26) concludes the present remarks on the

Boussinesq-KdV model and its generalizations. An elastic model

involvin% several degrees of freedom but one space dimension is dealt

with in [ 9]. The case of sine-Gordon—d’ Alembert systems considered as

nearly integrable generalizations of the celebrated (exactly integrable)
sine-Gordon/Frenkel-Kontorova model was dealt with in [22]. This is also

the case of generalized Zakharov models whose background is altogether
different (nonlinear Schrédinger equation). In all cases mentioned, but for

the nonlinear Maxwell-Rayleigh model, analytical one-soliton solutions

and numerical simulations of the interactions of true solitons or soliton-

like solutions have been given, especially in (18 19 24y testifying to the

fact that even in the case of only soliton-like solutions, i.e. solutions which
are close to purely solitonic behaviour, but not quite exactly, the three
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quasi-particle attributes, mass, momentum, and energy, are more than

enough to characterize the solutions, especially numerically. But the one-

dimensionality in space of the considered problems does not exploit these
at their best. In particular, it is only with several spatial dimensions that the

role of P as a co-vector, as we know from field theory in general and

elasticity in particular [261, will be fully exploited.
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MÕNEST BOUSSINESQI JA KdV-SÜSTEEMI ÜLDISTUSEST

Gerard A. MAUGIN

On esitatud argumendid kvaasiosakeste (neil on mass, impulss ja
energia) formalismi kasutamiseks Boussinesqi-Kortewegi-de Vriesi
mudelite solitoni tüüpi lahendite omaduste uurimiseks. Vaadeldud näited
hölmavad ka nende mudelite üldistusi, nagu pikkade lainete

regulariseeritud vdrrand, iildistatud Boussinesqi vorrand ja mittelineaarne

Maxwelli-Rayleigh’ vorrand. Koigi nende mudelite kohta on esitatud
hamiltoniaanid )а assotsieeritud globaalsed jddvusseadused. Kasutatud
formalismis on nimetatud laine impulsil (pseudoimpulsil ehk kanoonilisel

impulsil) tdhtis osa, kuna ta kujutab endast solitonide voi solitoni tiitipi
struktuuride liikkumisvorrandit.

О НЕКОТОРЫХ ОБОБЩЕНИЯХ СИСТЕМ БУССИНЕСКА И КдВ

Жерар А. МОЖЭН

Представлены — основные аргументы B пользу — применения
формализма квази-частиц (обладающих массой, импульсом и

энергией) для исследования солитонных свойств решений систем

Буссинеска-Кортевега-де Вриза и некоторых их обобщений, как

регуляризованное уравнение длинных волн, обобщенное уравнение
Буссинеска и нелинейное уравнение Максвелла-Релея. Для всех

этих CHCTEM — представлены — гамилтоновые — описания M

ассоциированные — глобальные — законы — сохранения. В этом

формализме важную POb играет T.H. BOJHOBOM — импульс

(псевдоимпульс или — канонический импульс), потому что он

представляет собой уравнение движения солитонов HIM COJNIMTOHO-

образных структур.
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