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Abstract.The solution to the nonlinear vector equations governing an inextensible flexible

helicoidal fibre yields a one-parametersetofsolitary waves. Analytical expressions are found
for the displacements, internal force, axial and angular momenta, and energy of the wave.

Transient problems of the collision of the solitary waves are considered numerically.
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Waves in flexible wavy fibres are due to the interaction of longitudinal
and transverse oscillations. Such a process has been considered to describe

plane and spatial motions of a one-dimensional atomic chain (mass-spring
system) and other systems [*~7]. Similar waves arise in large vibrations of

elastic cables where the interaction of longitudinal-transverse oscillations

is significant [®°]. The propagation of solitons in molecular systems is

described by a DNA model as an alpha-helix, first introduced in [*°] (see
аl5O [*!]). Many works are devoted to solitary waves as a rotating flux in

fluid dynamics (see [l?] where an analogue to Euler’s elastica dynamics is

pointed out as well).

In the present work, as the simplest system of this kind, we consider

a helix consisting of an inextensible fibre with no bending stiffness. Such

a system devoid of strain energy is, in its simplicity, comparable to an

ideal gas of rigid particles. The helix model is of particular interest since

a complete and general analytical solution of the non-linear equations
governing the dynamics of the fibre reveals the existence of propagating
solitary waves irrespective of the initial helix parameters or amplitude of
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the internal force. To the authors’ best knowledge, the existence of solitary
waves in this system has not been considered previously.

It should be noted that helicoidal systems are relevant to a wide variety
of fields in which coiled structures are important: from the modelling
of macromolecules such as DNA to video or audio tapes, storage spool
dynamics, and deployable structures for satellite applications [!*]. The

three-dimensional spatial chaos obtained by numerical simulations in [!?]
resembles a soliton gas of the waves described below. Moreover, such a

system can be used as an energy absorber under dynamic extension [*3].
Note that the deployable systems may also serve as demonstrations of the

solitary waves. .
We consider an inextensible, flexible fibre of mass density p per unit

length, whose equation of motion is

[F(S,H)R'(S,t)] = p R(S,I), (1a)

subject to the auxiliary condition representing inextensibility,

R'|=l. (1b)

Here, F is a non-negative tension force, and R is the position vector.

Primes and dots appearing above denote derivatives with respect to the

Lagrange coordinate, S, along the fibre, and time, ¢, respectively.
Our goal is to find a steady-state solution to these equations for a

solitary wave in the helix. However, first, the trivial case which corresponds
to a fibre of arbitrary shape under a constant tension force, F, deserves to

be mentioned. In this case, Eq. (la) degenerates to the linear wave

equation with constant coefficients, whose general solution is well known

as the d’Alembert’s solution, R = R(S — сё), с = + /F/p, where,
in the considered case, R is an arbitrary vector function which satisfies

the equality (1b). Since the particle velocity ÖR/Öt and the tangent
vector, -—cOR/05, coincide, this solution corresponds to a flow of the

fibre material along the trajectory defined by the given geometry of the

arbitrary fibre and thus, for this trivial case, the geometry of the fibre

remains constant.

We now consider a helix of initial radius Ro and let y denote the

initial angle between the fibre and the axis of the helix, z. We note

that to an observer moving along the helicoidal fibre with a speed v,

ап the associated angular velocity about the z-axis, vsiny/Ro (with an

orthogonal triad natural to the helix), the initial geometryappears invariant;
hence a solitary wave is expected to exist as a steady-state solution in the

coordinate system attached to the moving observer.
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Letting R(S,t) be represented as the sum of the longitudinal vector,

R.(S,t), and a vector R(S,t) lying in the cross-section of the helix, we

introduce the non-dimensional quantities

r: =R;/Ry, r=R/Ry, s=S/RyP 7 =vt/Ry, (2)

and express the vectors r, and r as follows :

rr(s,6) = [scosy + u(£€)]kz, (|К.| = 1),

I'(S,E) — А(б)еі‚\’э A= ЗіП’)’‚ Е—B — Т, (3)

where A(£) and u(£) are arbitrary functions, and where the vector r(s, £) is

defined in a complex variable plane which coincides with the cross-section

ofthe helix. Forv > 0, the conditions at infinity are expected to correspond
to the initial shape of the helix, i.e.

(u, u', A', f)—>o, A—>l (& — +со, т > 0). (4)

Here and below, primes and dots denote derivatives with respect to the

non-dimensional coordinate, s, and time, 7, respectively. Note that the

vector r(s, &) is defined in a complex variable plane which coincides with

the cross-section of the helix. Substitution in Eq. (1a) then leads to

[(cosy +u')f] =u", (1 - Р)г" - 7'г' —№х — 28г =O. (5а,)

Integrating Eq. (sa) and using the inextensibility condition (1b), one can

find fromEq. (sb) the relation

f=ZO- m. ©

Substituting Eq. (6) back into Eq. (sb) and rearranging, leads to

2

r" — I\2—[(l — т?)г')! —
№?г

— дз)\г' = 0. (7)

In solving this 2D vector equation, we choose to represent the vector r by
means of the complex representation +

г = re*®, (8)

As will be subsequently seen, due to the propagating wave, the de-

formed fibre crosses the axis of the helix at the point of maximum tension
force; we define this point tobe £= 0. Furthermore, we find it convenient
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to define r = |r| for€> 0 and r = —|r| for£ < 0. This allows us to

integrate the vector equation (7) for r and ¢. The solution which satisfies

conditions (4) is given by

u=(r—l)cosvy, ¢=Ar—l+s), lni—i—;—/\zr = X26. (9a,b,c)

From the latter expression, it follows that

10)r| — I—2exp”>A+ED (lE|— 00), (

that is, the propagating disturbance decays exponentially as |£| —oo .

Thus the wave of the internal force (6) and the radius change are, in fact,

solitary waves. The dependence r(£) for several values of y is shown in

Fig. 1.

We also present expressions for the linear and angular momenta

p and H, respectively, as well as for the energy, T', of the wave as functions

of the helix properties Ry,~v, and p ,
and the wave parameter, v. It 15

worth noting that for a given helix, v is the sole parameter governing the

propagation of the solitary wave. Using the results mentioned, one obtains

р = 2pvßo / Ü dsk„ = -—2pvßo COs Y kz‚ (113)
0

o 0

—

] 2
H = 2pvß? /(; т?ф азК, = —špvßš siny kz, (11b)

Fig. 1. Helix radius (Eq. 9c). (a) y = 77/6 ; (b) y = 7/12; (c) y = п/24
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T= pszo/ (ü? +r2 +r?2@?) ds = špszo sin? 4. (11c)
0

Note that as y — 0 the angular momentum of the wave becomes

negligible compared to the linear momentum. In this case, expression (9c)
yields the asymptotic solution

A 2 № = 2,
/22

r ~ tanh ?é, f ~ —2—SCCh (76) , (123., b)

and the distribution of the force, Eq. (12b), coincides with that of solitons

governed by the KdV equation.
Some results of the numerical simulation of transient problems are

presented below. The discrete system is considered as a chain of masses

m connected to each other by inextensible, massless links. The masses are

numbered by j = 1,2, ...,
N, and the link lengths are taken tobe unity. In

this case the vector equations of motion of the chain are as follows:

pR;(t) = Fi+l(t) [R;i+l(t)-R;(t)]-F;(t) [R;(t)-R;-1(t)], (13a)

Rj+l — Rl =l, (13b)

where p=m/|R;+l - R;|7! is taken as unity.

We introduce the rectangular axes z,y and z with respective unit

vectors k., k, and k., and represent the difference as a unit vector

R j+l—R; = cos(a;j)cos(Bj)kz +cos(a;) sin(f;)ky +sin(a; )k, (14)

where «; and O; are Euler angles. The equations of motion of this chain

then become

а; сов(а;) — dš sin(a;) = Ер sin(aj+l) — 2F; sin(a;)+

+F;j-1 sin(a;-1), (15a)

‚Öj cos(a;) — 2djßj sin(a;) = Fj+l cos(aj+l) sin(Bj+l — B;)-

—F;_; cos(aj—l)sin(B; — Bj-1), (15b)



34

—äš — ,312 cosz(aj) = Fj+4l [cos(aj+l)COS(ßj+l — ‚3:' ) cos(a,-)+

+sin(a;+4l) sin(a;)] — 2F; + Fj-I[cos(a;j-1) cos(Bj — Bj-1) cos(a;)+

+ sin(aj—l ) sin(a;)]. (15c)

Equations (13)-(15) are valid for any general shape of the fibre; note that

B = 0 corresponds to the plane chain.

The system (15) has been solved numerically for a helix withy = 7/6
by the finite difference method using the explicit scheme of the first order

with respect to time with steps ¢ = ¢1,¢2,...,¢",.... The structure of the

three-diagonal matrix (15¢) permits one to obtain the values of the internal

force F;(t”) at each step. The quantities o;(t"*!) апа B;(t"*!) may
then be found from Egs. (15a) and (15b).

The accuracy of the scheme used was checked as follows. Initial

positions and velocities of masses were taken corresponding to a wave

(6a, 6b) located far from the free ends of the helix. This permits us to

avoid any essential influence of the end effects. (Although the support
of the wave is infinite, we define its "effective length", l.¢, such that

F(¢ = l.y)/F(¢€ = 0) = 107°). The effective length is seen to depend
only on the lead of the helix. The applied finite difference scheme is

non-conservative; hence the calculated amplitude of the wave appears to

decrease slowly with time. Nevertheless, the calculations reveal that the

wave shape and velocity correspond to the theoretical data, and that no

disturbances exist outside the "effective support" of the wave (Fig. 2).

Fig. 2. Decrease in the amplitude of the "numerical” solitary wave. (a) 7=o; (b) 7=475
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As a second case, we consider the formation of a wave under an

applied axial force (with zero initial conditions). A suddenly applied force

Fo remains constant during a given time 75 .
Inthis case, one solitary wave

or a sequence of waves arises (Fig. 3a, b). The number of waves depends

Fig. 3. Solitary wave formation under a suddenly applied force. (a) G=2.5; (b) G=12.5.
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оп two values: G = (To/Ro)V/Fo/p and y (the number increases with G).
Note that in the case considered no external angular momentum is applied.
Nevertheless a rotating solitary wave is formed which corresponds to the

theoretical solution with very high accuracy. A rotation in the opposite
direction takes place outside the wave support.

As a further case, we consider the formation of a solitary wave due

to an initial perturbation of the helix. For our given helix with y = 7/6,
the initial disturbance is taken as a solitary wave which corresponds to a

helix having v = «/12. In this case, the initial disturbance is transformed

into a sequence of stable solitary waves whose number increases with time

(Fig. 4). '

The collision of two waves propagating in the same and in opposite
directions was also investigated. In both cases, we found that the collision

is not perfectly elastic and that radiation takes place during the interaction.

Aftercollision (Figs. 5,6), the main waves continue to propagate as solitary
waves correspondingly to the analytical description (9), but the amplitudes
change with respect to the values before the collision. In the case of two

waves of unequal strength propagating in the same direction (Fig. 6),
the amplitude of the stronger wave decreases after the collision while the

amplitude of the weaker wave increases. In the case of the collision of

two identical waves which propagate in opposite directions (Fig. 5), the

amplitudes of both decrease. In both cases, small additional solitary waves

are created in the same manner as described above.

Fig. 4. Solitary wave formation under the initial disturbance. (a) 7 =0; (b) 7=30.
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Thus, although the solitary wave obtained propagates as a very stable

object, in the case of the collision of two waves, the amplitudes of the waves

are not conserved. The question arises: what is the cause of the energy
radiation due to the collision? We should first note that we encounter a

new phenomenon: in contrast to the traditional consideration of soliton

propagation, in a certain sense, a change of the waveguide occurs in the

considered system after the wave has passed; namely, a finite shift of phase
u = —2cos~y appears in the axial displacement, and ¢ = —2sin~ in the

Fig. s.Collision of two waves propagating in opposite directions.

Fig. 6. Collision of two waves propagating in the same direction. (a) before collision; (b)
after collision.
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rotation [see Eg. (9a, b)]. More specifically, recalling that the phenomenon
of wave propagation in the helix is a vector phenomenon, we note that

several quantities are associated with the wave: force, Р'; radius of the helix

change, |R| — Ro = Ro(lr| — 1); axial displacement, u; and angle change,
% — As. While the first two, force and radius change, appear as solitary
disturbances [see Eq. (6) and Fig. I], a constant, non-vanishing shift occurs

in the axial displacement and angle change as is mentioned above, resulting
in an altered waveguide. The presence of these last two disturbances may
be the reason for the energy radiation. In effect, the propagation of waves

after the collision requires their rearrangement ("perestroika") to satisfy
these new conditions. In the first case (i.e. collision of two solitary waves

propagating in the same direction), the weaker wave propagates in the

undisturbed helix before the collision, and in the tail of the stronger one

after the collision, while the opposite is true for the stronger wave. In

the second case (waves propagating in opposite directions), both waves

propagate initially in the undisturbed helix before the collision and in the

disturbed helix after the collision. In spite of such an energy radiation,
the numerical results show that the post-collision wave is formed as a very
stable object governed by the given analytical description.

In conclusion, it may be noted that the solution described above cor-

responds to arbitrary constants of integration which were chosen to satisfy
conditions (4) at infinity. However, solutions which correspond to condi-

tions other than those given by Eq. (4) also exist and, in particular, periodic
solutions. Such solutions will be treated in a subsequent paper.
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ÜKSIKLAINED SPIRAALIS

Leonid SLEPJAN, Vjatšeslav KRÕLOV, Raymond PARNES

On analüüsitud lainelevi painduvas mittekokkusurutavas helikoi-

daalses spiraalis, millel puudub potentsiaalne energia. Mittelineaarses

käsituses on liikumisvörrandite lahendid solitoni tüüpi.

УЕДИНЕННЫЕ ВОЛНЫ В СПИРАЛИ

Леонид СЛЕПЯН, Вячеслав КРЫЛОВ, Раймонд ПАРНЕС

Анализируются волны в гибкой несжимающей геликоидальной

спирали, характерным свойством которой является OTCYTCTBHE
потенциальной энергии. Показано, что в нелинейной постановке

решения уравнений движения имеют солитонный характер.
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