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Abstract. The paper studies the model matching problem for a discrete time nonlinear
system in the presence of input disturbances. Both the cases of measurable and un-
measurable disturbances are considered. Instrumental in the problem soliution are two
versions of the inversion (structure) algorithm for the discrete time nonlinear system
with disturbances which produce two finite sequences of uniquely defined integers,
the so-called invertibility indices, either with respect to control, or with respect to both
inputs. The necessary and sufficient conditions for the local solvability of the problem
are derived in terms of the invertibility indices of the plant, the so-called extended
system, formed from the plant and the model, and the so-called auxiliary system,
formed from the plant. If these conditions are satisfied, the inversion algorithm provides
a systematic procedure for constructing the precompensator that solves the problem.

Key words: discrete time systems, nonlinear control systems, model matching, dis-
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1. INTRODUCTION

Given a plant and a model, the model matching problem (MMP)
consists in designing a precompensator for the plant such that the
input-output map of the compensated plant matches that of the given
model. The MMP for nonlinear systems has received much attention in
the literature ['-°], while most results have been obtained for continuous
time nonlinear systems, which are linear in control and are local in the
sense that they are valid in some neighbourhood of the initial point in
the state space. The problem has been studied in different settings: by
tools of differential geometry [!-2] and differential algebra [3], via the
structure algorithm [*] or on the basis of the zero-dynamics algorithm
[’], by considering the model matching problem as the disturbance
decoupling problem [®], or in terms of formal structure at infinity
[7]. It has been shown in [®] that certain necessary structural conditions
for the solvability of a nonlinear model matching problem can be deduced
from the Jacobian linearizations of the plant and the model. Despite the
growing interest in the area, the papers, except [?], do not address the
case of nonlinear systems with input disturbances, and assume that all
output variables are measurable.

* The results of this paper appeared partly in the Preprints of 2nd IFAC sympo-
sium on Nonlinear Control System Design, Bordeaux 1992,
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The problem dealt with in this paper concerns the matching of a
given model by compensating a nonlinear discrete-time plant subject to
input disturbances. The results of this paper generalize those of [?], for
the case of discrete-time nonlinear system without disturbances. The
approach chosen by the author follows closely that of [7]. In particular,
the idea of using two versions of the inversion algorithm which is the
corner-stone of the paper was already exploited in the continous-time
case by Moog, Perdon and Conte [7].

Throughout the paper we shall adopt a local viewpoint, and we
shall work on finite time interval. However, contrary to the continuous
time case, in the discrete time case the local study is impossible around
an arbitrary initial state since even in one step the state can move far
from the initial state regardless of the small input values. By this reason
we shall consider the MMP in the presence of disturbances locally
around the equilibrium points of the system, the model and the compen-
sator.

Our goal is to establish the necessary and sufficient conditions for
the local solvability of the MMP in the presence of disturbances with
the precompensator in the form of dynamic state feedback and a system-
atic procedure of constructing a precompensator that solves the
problem. Both the cases of measurable and unmeasurable disturbances
will be considered.

The organization of the paper is as follows. In the following
section the mathematical formulation of the problems will be given. In
Section 3 two versions of the inversion (structure) algorithm for discrete
time nonlinear systems with two types of inputs — controls and
disturbances — will be given. In one version, inversion is accomplished
with regard to both inputs, controls and disturbances, whereas in the
other version the disturbances are considered as system parameters and
inversion is accomplished with regard to control inputs only. In Sections
4 and 5 we give our main results derived on the basis of these two
versions of the inversion algorithm for the cases of measurable and
unmeasurable disturbances, respectively.

2. PROBLEM STATEMENT

Consider a discrete-time nonlinear plant P described by equations
of the form

x(t41)=f(x(t), u(t), w(t)), x(0)=x, O0<I<IF, @

y(t)=h(x(1)),

where for every {=0,1,...,fr the states x(f) belong to an open sub-
set X of R", the controls u(f) belong to an open subset U of R™, the
disturbances w(f) belong to an open subset W of R’, and the outputs
y(t) belong to an open subset Y of RP. The mappings f and h are sup-
posed to be real analytic.

Furthermore, let a discrete-time nonlinear model M be given, which
is described by equations

ML) =M (M (2), w (1)), 2M(0)=x, 0<I<Ir,

(2.2)
yM(t)=hM(xM(1)),
where the states x"(f) belong to an open subset XM of R"~, the inputs
uM(t) belong to an open subset UM of R™, and the outputs y*(¢) belong
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to an open subset Y of RP. The mappings f* and A™ are supposed to
be real analytic.

The compensator C used to control the plant P is in the case of
measurable disturbances a discrete-time nonlinear system described by
equations of the form

XE (L 1) =[O (x€ (1), x(t), uM(t), w(t)), x¢(0) =xC, O<<I<tr,

u(t)=nhe(xC(t), x(t), u" (¢), w(t))
with the state x¢(f) = X¢, an open subset of R%, and real analytic f¢
and h€, or, in the case of unmeasurable disturbances, a discrete-time
nonlinear system described by equations of the form
xC(t41)=fc(x€(t), x (), uM(t)), x€(0)=x¢, O0<IIy,

(2.4)

u(t) =he(xC (1), x(t), u™ (1))

with the state x¢(f) = X¢, an open subset of R". and real analytic
f¢ and hC. The composition of (2.1) and (2.3) (or (2.4)) initialized
at (xo, xJ) is denoted by P-C. That is, the system P-C is in the case

of measurable disturbances described by equations:

x(t41) =f(x(£), K (xC(2), x(1), ™ (1), w(t)), w({)),
A€ (1) =fC(xC(t), x(¢), uM(t), w(f)), (2.5)
yPec(t)=nh(x(t)),

and in the case of unmeasurable disturbances by equations:

x(t+1)=[(x(2), h¢(x (1), x(2), u™ (1)), w (1)),
X (1) = (x°(2), x (1), uM (7)), (2.6)
yrec(t)=nh(x(1)).

We are assumed to work in a neighbourhood of an equilibrium point
of the system (2.1), that is around (x° u° w°) & XXUXW such that
f(x0 u®, ©w°) =x° From the fact that f(x° u0 w°)=x0 it follows that
using the control sequence u(0),u(l),... with each u(f) sufficiently
close to u°% and provided the disturbance sequence w(0),w (1), ... is
such that each w(f) is sufficiently close to w’ we can keep the states
x(t) sufficiently close to x° and the outputs y(*) sufficiently close
to y®=~h(x%). We say that the equilibrium point (x™°, u"°) of the model
M is corresponding to the equilibrium point (x° «° w®) of the plant P
if the following equalities hold:

FH (xM0, MO) = xMO,
hM (xM0) = yMO— 0,

Again, we say that the equilibrium point (x€°, x°, uM°, ©°, u°)
(or (x€0, x0, u™° %)) of the compensator (2.3) (or.(2.4)) corresponds to

the equilibrium points (x° «° w®) and (xM° uM°) of the plant P and
the model M, respectively, if the following equalities hold:

fC (xCO, xO’ u"fo’ wo) =xCO, llc (xCO’ xo’ u/”o, wo) =u0
( fc (xCO, xO’ uMO) =xC0, hC (xco’ xo, uMO) =u0 ).

9



Definition 2.1. Nonlinear discrete-time local model matching
problem in the presence of measurable disturbances. Given the plant P
around the equilibrium point (x° u° w°), the model M around the equi-
librium point (xM9 uMO%) corresponding to (x° u w®) and a point
(x(0), x*(0)), find, if possible, the neighbourhoods V;=XC0X XX UMOX
X WO of (x€0, x0,uMO w®) in XCXXXUMXW and V, of u® in U, the com-
pensator C: V,— V, with initial state x°(0), defined by equations in the
form (2.3), as well the neighbourhood X™° of x™° and map &: XM?— XC0
with the property that

g7 (£, x(0), £(x" (0)), @ (0), ..., w(t—1), u™(0), ...
S uM(E—1)) — gM (£, xM(0), uM(0), ..., uM(t—1)), I<tr

does not depend on u™ and w for all (x(0), x"(0)) & XOXXM, jor all
w and uM in the scope of C, and for some finite tr.

Definition 2.2. Nonlinear discrete-time local model matching
problem in the presence of unmeasurable disturbances. Given the plant
P around the equilibrium point (x°, u°, w°), the model M around the equi-
librium point (xMO, uMO) corresponding to (x°, u° w°) and a point (x(0),
xM(0)), find, if possible, the neighbourhoods V,=XCOXX°XUMO of
(x©0, X9, uMO)" in XCX XX UM gnd. V, of u in, U,  the. compensator
C:V\—V, with initial state x°(0), defined by equations in the form
(2.4), as well the neighbourhood XM° of xM° and map &: XM9— XCO with
the property that

yPc(t, x(0), E(x*(0)), @ (0),...,w(t—1),uM(0),...,uM(t—1)) —
oML s (0) w2)s .« el — 1)), ElF

does not depend on uM and w for all (x(0),x™(0)) € XO XXM, for all
uM in the scope of C, for all w around w°, and for some finite tp.
Note that the adjective local in Definition 2.1 (Definition 2.2) in
general means that the problem solution is looked for
(i) in the neighbourhoods XCOXXOXUMOX WO (XCOXXOXUM) and U°
of the points (xCOXxOXuMXw®) ((x€°, x°, uM°)) and u°, respectively,
(ii) on a restricted time interval, that is on 0<<{<Cfp. The localness
in time is due to the fact that for some finite fr the points (x€, x, u™, w)
((xC, x, u™)) and u can escape from XCOXXOX UMONX WO (XCOXXOX UMO)
and U°, respectively.

3. INVERSION ALGORITHMS FOR SYSTEMS WITH
DISTURBANCES

An inversion algorithm for discrete-time nonlinear system without
disturbances was introduced in ['°] and given in more general and
simple form by Kotta and Nijmeijer [!']. Below we will give, in the
spirit of [!'] and [7], two special versions of an inversion algorithm for
discrete-time nonlinear system (2.1) with disturbances. The first version
accomplishes inversion with regard to both types of inputs, controls and
disturbances, whereas the other version considers disturbances as system
parameters, and accomplishes inversion with regard to control inputs
only. We present both versions of the inversion algorithm simultaneously.
When the two versions differ, the second version will be given in
parantheses.

Step 1. Calculate i
y(t+1)=h(f(x(1), u(t), w(t))) =ai(x, u, w),
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and define

h(f (%, 4, @))

Quw, 1= rank

d
0(u, w) Px=x0, u=u9 ‘w=uwd

(o i=rank —2—h(j (x4, @)

du |x=x°,u=u°,w=w°) '

Let us assume that Quw., 1=const (gu, i1==const) in some neighbourhood
0, of (x° u° w°). Permute, if necessary, the components of the output
so that the first Quw, 1(Qu, 1) rows of the matrix

O (f(x, u, w))/0(u, w) (Oh(F(x, u, w))/du)

are linearly independent. Decompose y(f+1) and h(f(x, u,w)) accord-
ing to

g =["HDY ) =] 2O
yi(t+1) ai(x’u’w)

where 7 (¢+1) and @, (x, u, w) consist of the first Quw, 1(Qu,1) compo-
nents of y(f+1) and A(f(x, 4, w)), respectively. Since the last

P — Quw, 1(P—0Qu.1) r1Oows of the matrix 0JAa(f(x,u, w))/d(u, w)
(ah(f(x u, w))/ou) are linearly dependent on the first g uuw, 1(Qu ) rows,
we can wrlte

B+ =a(x(1), u(t), ©(t)),
oltH1) =i (x (), Ga (1+1)),

(g1 (1) = (x(8), w (8), §i (141))).
Denote @, (") by A;(").

Step k41 (k=1). Suppose that in Steps 1 through k, 7i(t+1),
Ta(t+2), ..., Je(t+k), ye(t+k) have been defined so that
Jt+1)=a(x(t),u(t), w(t)),
g2(t+2)=(72(X(t),u(t),W(t),:li1(t+2)),
Te(tHk) = (x(1), u(t), w(t), {Fi(t+)), 1<i<k—1, i+1<j<h}),
Gr(t+R) = e (x(0), (G: (1)), 1<i<k, i<j<k})

Jo(t+2)=az(x(f), u(t), w(t), w(t4+1), ji(t42)),
e (t+k) =ar (x(1), u(t), w(t),. .., w(t+k—1),
{7:(t4)), ISisk— 1, i+1<j<k}),

Gr(t+R) = (x (1), W (), ..., @({+k—1),
{7:(t+4)), 1<ih, ij<R})
Suppose also that the matrix 04, (") /0 (u, w) (0Ak(‘)/0u), where Ar=
=[a]...a]]" has full row rank equal to Quw,(Qu &) in some neigh-

bourhood Ok of (x9, u° w°). Compute

etk = (F(2(1), (), @ (1)), (Fult+j41), 1<i<<h, i<j<h))=
=ar(x(t), u(t), w(t), {F:(t+)), I<Si<k, i+1<j<k+1})



G (tHR+1) = (F (x(2), w (), @ (), (1), ..., w(I+k),
{T:(t+j+1), ISi<k, i<j<k}) =
=apn(x(t), u(t), w(t), ..., w(t+k),
{7:(t4)), 1<i<k, l+l<]<k~}—1})
and define
d Ar(’) ]
o(u, w) Lags () dx=2, u=u’, w=uwd

d [Ax() ] )
ou ak+1(') X=x% u=ul, W=w’ .

Quw, k+1==rank

(Qu, r+1=rank

Let us assume that Quuw, r+r=const (Qu, r+1=const) in some neigh-
bourhood On4+; of (x° «° wP). Permute, if necessary, the components of

yr(t+k+1) so that the first Quw, #+1(Qu, k1) rows of the matrix
0 0 L
d(u, w) AL’aZH]T( [AT k+‘] )

are linearly independent. Decompose g;k(t—{—k—{—l) and ag+1 according to

A 7 t a 1
yk(t+k+l)=[gk+‘(+k+l)], ak+i=[‘:k+i ]’ |

Yr+1 (E+R+1) A1 '
where §r+1(t4+k+1) and @+ consist of the first Quw, #+1— Quuw,

(Qu, #+1 — Qu, ) components of ;k(t+k+l) and ae+1, respectively. Since
the last p — Quw, #+1 (P — Qu, #+1) rows of the matrix

0
d(u, w) A @’ ( k+1]T)

are linearly dependent on the first Quw, #+1 (Qu +1) rows, we can write
u(t+1) =an(x(t), u(t), w(f)),
et (kA1) =@ (2 (1), w(t), ©(E), {Fi(t+)), 1<i<k, i+1<j<k+1)})
Y (k1) =Pt (x(8), Fi(t+D), 1<i<k+1, i<j<k+1})
Jrr(t+-k+1) =ap (x(2), u(t), (), ..., w(t+k),

. {F:(t4])), 1<i=k, ;+1<]<k+l})

Yett (EFR+1) =pes (2(2), w(2), ..., w(t+k),

{7:(t+4)), I<isk+1, i<j<k+1})

Denote Apt= [AT a’ 1. End of step k+1.

k41
Note that we can apply the inversion algorithm not necessarily in
a unique way. There exist, in general, different permutations of output

components gk(t—l—k—l—l) at step k41, k=0, so that the first

Quow, #+1(Qu, #+1) rows of matrix [0AT,al ,]7/0(u, w) (3[A],a]  17/0u)
are linearly independent. Different permutations of output components,
that is, different selections of Fe+1(f4k-+1) in each step result in dif-
ferent functions Ae+1(7) and Ye+1("); see ["] for a relation between such
different selections.
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In the inversion algorithm certain constant rank conditions have been
imposed to ensure that the algorithm can be applied around a given
equilibrium point. We shall summarize these conditions in the definition
of the regularity of the equilibrium point. Note that our definition of the
regularity reminds the one of [!?].

Definition 3.1. We call the equilibrium point (x° u® w°) of a
system (2.1) regular with respect to the inversion algorithm if for some
specific application of the inversion algorithm

rank [0Ar/du, 0Ar/0w] =Quw, k, k=1
(3.1)

(rank 0Ax/0u=0gu, r, k=1)

in some neighbourhood of (x° u® w°). We call (x° u® w®) strongly regu-
lar if (3.1) holds for each application of the algorithm.

Thus, using the inversion algorithm around the regular equilibrium
point (x°, u°, w°) of system (2.1), we obtain a sequence of integers

OsQuw, ASE, U SQuw. o ialel| <p
O<qui1< ... <Qu < ...<Pp).

Let o =max {Quw,» k=1} (o} =max {Qu,x, k=1}), and let a be
defined as the smallest 2 & N such that Quw, r=10%, (0u x=0} ). Analog-
ously to the case without input disturbances [!'], it can be proved that
the integers' 'Quw,1s - ., Quw, & -+. (Qu,1s -5 Qu & ...) do mot depend

on the chosen permutation of the components of y(f+k-+1). Thus,
around a strongly regular equilibrium point of the system, these integers
define some structural properties of the system. Analogously to ["], [*]
we call the Quw,x, =1 (0ur=1) the invertibility indices of
system (2.1).

Moreover, analogously to the case without disturbances ['], it can
be proved that around the regular equilibrium point the structure algo-
rithm terminates in at most n steps, that is

Qhw =Quw, n (@}, =0Qu n).

4. PROBLEM SOLUTION IN THE CASE OF MEASURABLE
DISTURBANCES

We shall now give necessary and sufficient conditions for the local
solvability of the MMP for P and M in the presence of measurable
disturbances. For this purpose we introduce the so-called extended
system PM, associated with the plant P and the model M:

x(t4+1)=f(x(t), u(t), w (1)),
XM(E41) =M (xM(2), uM (1)), (4.1)
yeM(t) =hPM (x (), xM (1)) =h(x(1)) — B (x"(2)).

The extended system (4.1) can be viewed as the system of the form
(2.1) with the control u(f), with the measurable disturbances w (¢)

and uM(t), and with the equilibrium point (x°, xM° u® w° uM).
We first prove the following lemma.

Lemma 4.1. Around the strongly regular equilibrium point
(X0, xM0, 40, wl, uMd) of PM we have @u, i(PM)=qy i(P), i=1, and in
particular @* (PM)=qg" (P).
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Proof. Consider the first step of the inversion algorithm with
regard to u for PM. We have

0u. 1(PM) =rank ;u [A(F (%, u, w)) — M (F (xM, uM) )] =
0
=rank = h(f(x, u, w)) =04 1(P).

Since the special form of the output function APM, we have

PO (tH1) =a" (x,u, w) — @ (M, uM) =§" (t+1) — a2 (M, uM),

Y (1) =af (3, u, @) — @y (6, ) =% (6, @, 7 (1) = a (2, ).

On the second step of the inversion algorithm we compute

G (E2) =V, (x(141), @ (t4+1), 7 (x(1+2))) —
—ar (xM(t4-1), uM (t4-1)) =ak (x(1), u(t), @(t), @ (t+1), §F (t42)) —
—a’, (xM(1), uM (1), u™ (t+1)),

and define

o LA TR T 1 et
Qu.e(PM)=rankE‘— l @t () —a () J =rankW laP ) I =0y 2[P).

Decomposing y°¥ ({+2) and af, (‘) —a; (), we have:
PO (1) =, (3, u, w) — @) (¥, u¥) =T (141) —aj (™, u),

.‘7;’M(t+2)=&; (x, u, w(t), w(t41), ~: (t+2)) —
— @ (M, u (1), uM (1)) =7, (t42) — a@; (¥, u" (1), u¥ (1+1)),

gEM(t42) =" (x, w(t), w(t+1), §° ((+1), 7 ((+2), 75 (142)) —
—az (M, uM (), uM (t41)).

In the same way we can prove the lemma.

Remark 42. Lemma 4.1 is the discrete-time counterpart of Lemma
2.1in [7].

Now we are ready to prove one of our main results. 3

Theorem 4.3. Consider the plant P described by equations (2.1)
around the equilibrium point (x° u° w°) and the model M described by
equations (2.2) around the equilibrium point (xM° uM®) corresponding to
(x°, u% w®). Assume that the equilibrium point of the system PM is
strongly regular with respect to both versions of the inversion algorithm.
The nonlinear discrete-time local model matching problem in the presence
of measurable disturbances for P and M is solvable, if and only if

Quwu“,i(PM)=Qu.i(P), l?l (42)

Proof. Sufficiency. Assume that (4.2) holds. Then, by Lemma
4.1, we have

Qut(PM) =Quwu“,t(PM)- (43) \
14



This implies that both versions of the inversion algorithm applied
to system PM coincide and at the ath step we obtain

FEM(tH1) =M (x, XM, u, uM, w),
§oM (t4-2) =a5M (x, XM, u, uM, w, M (t42)), (£.4)
‘;71;/!4 (t-|-(1) =.[j‘;M. (2, ;CM, it, ltl'.", w;. {!7;,)-/” (f.+l.).v

I<i<a—1, i+1<j<a})
and

YN (ta) =pPH (x, XM, {GO0(t+H]), 1<i<a, i<j<a}). (4.5)

The Jacobian matrix of the right-hand side of (4.4) with respect to u
around the point (x?, xM°, 4 uM% w?) according to the inversion algorlthm
has full row rank @* Moreover, BER X, X0 o B o R ,0})=0,

i=1, ..., a. So we may solve equation (4.4) for u(f) around the point
(x0, xM0) 40 yMo %) by applying the Implicit Function Theorem. We can
choose zero values for 7" ({+j). Then, from (4.4), we obtain

u(t)=mw(x(t), x"(t), u" (1), w(t)), (4.6)
which is such that for i=1,...,a
a-".“(x(t),xM(t),(p() uM(t), ), {0, ..., 0}) =0. (4.7)

Notice that @: V;— V, is analytic for some (possible small) nelghbour-
hoods V, and Vo of (x0, xM0, uM0, ©°) in X4+XMXUMX WO and «° in U°.
This implies that (4.7) will hold as long as (x(¢), xM(¢), uM(t),w(t))
e V, and defined by (4.6) u(f{) & Vo. Of cource, the equality (4.7) is
lost if we leave the neighbourhoods V,, or V, which may happen for
some finite ¢.

Construct the compensator C as

X€ (1) =¥ (€ (8), uM (2)), %°(0) =7,

u(t)=q(x(t), xM(t), u (1), w(t)).

We claim that (4.8) and &=1d (identity map) serve as the solution
of the MMP in the presence of measurable disturbances. In order to
show this, let us first remark that by (4.3), ;PM(t—i—k) in (4.5) remains
independent of u(¢) and w(f) for all k> a, since otherwise Quwu®, & (PM)
would be strictly greater than gu, »(PM). Therefore, yP°C(t—{—k) yM(t-|—k)

is independent of ™ and w for every k=1. Taking into account (4.4)
we obtain

groc (t+i) =g" (t+)), j=1,...,0

So, yP°C(t) —yM(t) is independent of u™ and w for 0<<i<<t,. The
sufficiency part of the Theorem has been proved.

(4.8)

Necessity. Let us assume that there exists a precompensator C
of the form (2.3) for P and M that locally, around the strongly regular
equilibrium point of PM (with respect to the both versions of the inver-
sion algorithm), solves the nonlinear discrete-time MMP in the presence
of measurable disturbances. Apply the first step of the inversion algo-
rithm to PM with respect to the control « only, considering disturbances
w and uM as parameters
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JoM(t41) =a (x (1), xM (1), u(t), ™ (t), w(t)),
A ©(49)
YoM (E41) =R (x (1), 2M (1), W (1), w (1), §EM (141)),

where

d -4 .
rank —— a5 () =qu,1(PM).

If we plug the output of C in (4.9), the equations do not depend on u™
and w any more since C solves the MMP in the presence of measurable
disturbances for P and M. In particular, this means that either

PM
d D4

WEO (4.10)

everywhere around the point (x° x™0, uM0, w? g9* %) or, if not, the
compensator C will guarantee the equality (4.10). Note that around the
strongly regular equilibrium point Jyi"/0(w, u™) is everywhere either
equal to zero or different from zero. This means that if opi¥/d(w, u™) ==

70, we can never make it equal to zero by the suitable choice of com-
pensator. This implies that oy""/0(w, u™) =0, which gives us

[ darM/ou  0a"M/d (w, uM) ]

ww, u™ PM) = k =rank
Quw, u™, 1 ( ) =ran [ . —— uM)J
1

7PM
oy

ou

= Qu; 1(PM)

Applying this argument repeatedly, we finally get Quw. .* 1(PM)=
=0u i(PM), i=1. The conclusion of the necessity part of the Theorem
follows using Lemma 4.1.

Note that in this paper sufficient conditions for the solvability of the
MMP, unlike to [7], are also necessary. The reason is that we work
under slightly stronger regularity conditions than the authors of [7] do.
To be more precise, Moog, Perdon and Conte worked around a strongly
regular equilibrium point with respect to the second version of the
inversion algorithm, whereas we work around an equilibrium point
which is strongly regular with respect to both versions of the inversion
algorithm. See also ['6] with this respect.

5. PROBLEM SOLUTION IN THE CASE OF UNMEASURABLE
DISTURBANCES

We shall now give the necessary and sufficient conditions for the
local solvability of the MMP for P and M in the presence of unmeasur-
able disturbances. For this purpose we introduce the so-called auxiliary
system P, associated with the plant P, with states (x(¢), u(f)), and in-
puts v (¢) as follows
x(I4+-1)=[(x(1), u(t),w(?)),
u(t+1)=uv(1), (5.1)
y(t) =h(x(t)).
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The equilibrium point of P, is (x° 40, 0% w®) with v°=u® The idea of
delaying the inputs, as is done by the introduction of the auxiliary sys-
tem P,, was already employed in ['3].

We first prove several lemmas.

Lemma 5.1. Apply the inversion algorithm with regard to u around
the strongly regular equilibrium point (x° u°, w°) to P. Then at every step
0§ the algorithm oy (t+k)/0w=0 if and only if Quw, x(P)=0qu, r(P) for
all k.

Proof. Consider in detail the first step of the inversion algorithm
applied to P. Compute y({+1)=h(f(x(t),u(t),w(¢))), and define

a
Qu, 1= rankd—u—h(f(x, u,w)) PR p—

0
Quw, 1= rank—————h(f(x, u, w))

d(u, w) jx=2, u=u, w=1" -

Now permute the components of the output so that the first gu,1 rows
of Oh(f(x,u,w))/0u are linearly independent, and write accordingly

g]i(f—}—l):ﬁi(x, u, W),
(5.2)

yi(t+1)=ai(x,u, w),

where 0d,(x, u, w)/0u has full row rank g. s+ Then, from (5.2), we have

u=¢t(x,w, ji(t4+1)) and hence &1(t+1)=51(x, E(x,w, i1 (t41)), w)=
=1 (x, @, §1({+1)). Moreover, from the identity gi=a1(x, (X, @, 1), @),

we obtain
day 0§ ! day -l d __( day )+l664
du Oow ' OJw ow du Jw

where (d@,/du)* is a right inverse of 0d:/du, that is (0a:/du) (0d:/du)*=
=1. Now, assume that

Opi(t+1)  day . day 9t day o ( das )+ om _
Jw T dw ou ow Ow du ou ow 3

Taking into account that 0a,/0u=ua (x, u, w) [0d/du], we can easily
check that this yields

0d, aa, /
A 6“ dw p“': aﬁ( 0&1
s o il e RLUAS L b
O —aﬂ- ou du
ou ow

Quw, 1=rank A*=Qu, 1.

Conversely, assume that Qu,1=0Quw,1. This implies that there is a
matrix a(x, %, w) such that

001 061 001 0&'1

ow Jw

’

ou ou
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Hence

da,  oda, ( day )+ om__  0a O ( day )+ om _
ow  ou \ ou ow " ow ou \ ou ow
and thus

=0.

Opu(t+1)  dar  day ( day )+ iy
ow: 0w du \ ou Jw
The rest of the proof runs as before.

Remark 52. Lemma 5.1 is discrete-time counterpart of Lemma 4.2
i J5],

Lemma 5.3. Apply the inversion algorithm with regard to control
u around the strongly regular equilibrium point (x° u®, w®) to P. Then
at every step of the algorithm da? (') /J0w=0 if and only if for all k=1

Quw, k(Pa) =0z, k(Pa)-

Proof. Let us consider the first step of the inversion algorithm
applied to P and P,. Compute

y+1)=h(f(x(1), u(t), w(t))) =af (x, u, w) =af(x, u, W),

and define

d
s 5 ,(P)=ranka—ua’; ),

0o, 1(Pa) =rank ——a%=(),

d
coltecet e Ms B g | 7
Qew, 1 (Pa) =rank a(v, w) afe().

Assume that da” ()/dw==0. As a’ (')=a*("), which yields

Qrw, l(Pa) = 0v; 1 (Pa)-

Conversely, assume that Quw,1(Pas) =00,1(Pa). Take into account that,
by construction of the system Pq, Qo,1(Pa)=0; this implies that
dafe(")/ow=0a’, (') /0w=0. So, da* ()/dw=0 iff Qow, 1(Pa) =00, 1(Pa).

Permute the components of the outputs of both systems P and P, so
that the first gu, 1 rows of da’ (*)/du are linearly independent, and write

accordingly (taking into account that either da?(’)/dw=0, or, equiv-
alently, Quw, 1(Pa) =00, 1(Pa)):

75 (t+1)=a" (x,u),

i ) (5.3)
Yy (t+1)=a’ (x,u),

where da” ()/0u has a full row rank g4 1(P). Then, from (5.3), we

have u=E(x§* (t4+1)) and hence P (t+1)=a’ (x,E(x 3" (t4+1))).
Moreover, from the identity §* =a” (x,&(x,5%)), we obtain
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oar . oar, 05 _,

ox ' Ou o0x

or

ou (G(iip )+ dar £4
Ry 2 " Vil (5-4)

where (da’ /ou)* is a right inverse of da}/ou, that is (da}/du)X
X (0" fou)r=1.

Now, consider in detail the second step of the inversion algorithm
for P and P,. Compute

y? (142) =a” (F(x, 4, ©), §( (%, u, @), 5 (t+42))) =

=af (x,u, w, 7" (t42)) (5.5)
and
[“”(fxuw ] [ xuwv)l
y"“(f+2)= e =ale(x, u, w, ).
a”(f(xuw J l (xuwv)]
(5.6)
From (5.6) we obtain
Qo 2(Pa) =rank (da’y (") /0v) =rank 5 al ( =0u,1(P). (5.7)
Assume that da, () /0w =0. As
da; by (55) dai Of , dai Ot Of by (54)
o ool 5o e = (5.8)
Jw ox Jw oOu O0x OJw
_ dal" of  odai ( day )+ dar  of
. 0x. Ow ou ou 0x Ow
by (5.6) (5.7) dax'  das’ ( dass )+ day’
R ow dv \ dv ow ’
which implies
lpr. ,(Pa) =
5} Pa Pa ( ()dma 0(121 )
E— Pa (- — + 1
“ d(v, w) @’y () _()%_( dasy ) dv ow
du du

Thus
Quw, Q(Pa) =I’al'1k A*=Qv, Q(Pa).

Conversely, assume that Quw,2(Pa)==00,2(Pa). This implies that there
is a matrix a(x, &, w, v) such that

P P P P,
aaz; dazi“ daz{ dagf
—aq i

dv: v ' odw’ ow
9% 19



Hence

=0,

day’  day ( daz )+ daz’
dw v \ ov ! ow

and thus, by (5.8), daf(’)/0dw=0. Repeated application of the above

arguments completes the proof.
Now we are ready to prove the other of our main results.

Theorem 5.4. Consider the plant P described by equations (2.1)
around the equilibrium point (x° u°, w°) and the model M described by
equations (2.2) around the equilibrium point (x™° uM) corresponding to
(x°, u®, w°). Assume that the equilibrium points of the systems P, Pa
and PM are strongly regular with respect to all the versions of the inver-
sion algorithm considered in the formulation of the Theorem. The non-
linear discrete-time local model matching problem in the presence of un-
measurable disturbance for P and M is solvable if and only if

va.i(Pa)=Qu,i(Pa), 121 (59)
and
Quu"‘,i(PM)=Qu,i(P), 121 (510)

Proof. Sufficiency. Assume that (5.9) holds. Then, by Lemma
4.1, we have

Qow, i(PaM) =0y, :(PM), i=1,

and therefore, by Lemma 5.3,

0aPM/0w=0, k=1. (5.11)
Furthermore, assume that (5.10) holds. Then, by Lemma 4.1,

Quun, i (PM) =qu, i (PM), i=>1.

and therefore, by Lemma 5.1,

opPM/ouM =0, k=1. (5.12)

Now, apply the inversion algorithm with regard to the control u to PM.
By (5.11) and (5.12), we obtain at the last ath step of the algorithm

g (t4-1) =atM (x, xM, u, u),

gaM (t42) =ak (x, xM, u, uM, §¥ (1+2)), (5.13)
oM (t4-a) =aPM (x, XM, u, uM, (P (1)), 1<i<a— 1, i+1<[<a})
and

zf’;,”(t+a)‘=¢';M(x, M AGEM (1), 1<i<a, i<j<a}). (5.14)

The Jacobian matrix of the right-hand side of (5.13) with respect to u
around the point (0 xM°, 4° u™%) according to the inversion algorithm
has full row rankg}. Moreover, @™ (£, x™0, u®, u™, {0,...,0})=0, i=

=1,...,a. So we may solve equation (5.13) for u(¢f) around the point
(%0, xM0, 40, yM°) by applying the Implicit Function Theorem. We can
choose zero values to §*¥(¢{+j). Then, from (5.13), we obtain

U= (L), MY, e (5.15)
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which is such that for i=1,...,a
arM(x(t), x"(t), ¢ (), uM(t), {0,...,0})=0. (5.16)

Notice that ¢ : V,—V, is analytic for some (possible small) neighbour-
hoods V; and Vs, of (x9 xMO yM0) in XXXMXUM and u® in U° This
implies that (5.16) will hold as long as (x(f),xM(¢),u™({)) &V, and
defined by (5.15) u(¢)e Va. Of course, the equality (5.16) is lost if we
leave the neighbourhoods V, or Vs, which may happen for some finite #g.

Construct the compensator C as
XC(E1) =M (x°(1), u"(t)), x°(0)=uxM,

w(t) =q(x(t), xM(t), u(t)).

It remains to prove that (5.17) and §=Id (identity map) serve as
a solution of the MMP in the presence of unmeasurable disturbances.
In order to show this, let us first remark that, by (5.11) and (5.12),

yA';M(t—f-k) in (5.14) remains independent of uM(f) and w(f) for all
k>a. Therefore, yAi°C-(t+k)—;’;’(t+k) is independent of uM and @
for every k=1. Taking into account (5.16) we obtain
e+ =g (t+j), j=1,...,0.

So, yP°C¢(t)—yM(t) is independent of uM and w for 0<Ci<Cir, which is
the desired conclusion.

(5.17)

Necessity. Let us assume that there exists a precompensator C
of the form (2.5) for P and M that locally solves the nonlinear discrete-
time MMP in the presence of unmeasurable disturbances.

Assume at first that the condition (5.9) does not hold for i=]l,
that is

Qrw, 1 (Pa) #Qv, l(Pu)-
By Lemma 5.3 this means that

da; (')

\ 5.18
i (5.18)

Then at the first step of the inversion algorithm yPM(¢4-1) explicitly
depends on w
yM ((+1)=h(x(t+1)) — M (x™ (1)) =

=af (x(t), u(t), w(t)) —al (xM(t), uM(t)). (5.19)

Since (2.5) solves the MMP for P and M, this w-dependence should
disappear if we plug (2.5) into (5.19). Since (2.5) does not depend on
w, this is not possible, except for the case if (2.5) is such that it
imposes the constraint

day ()

5.20
Jw % ( )

Of course, the latter is not possible around the regular equilibrium point
of P,. The reason is that around the regular equilibrium point
da” (')/0w is everywhere either equal to zero or different from zero.

This means that if daf ()/0w=0, we can never make it equal to zero
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by the suitable choice of the compensator. So we necessarily have that
(5.9) holds for i=1. Applying the same arguments repeatedly, we final-
ly have that (5.9) holds for every i=>1.

Now, let us assume that (5.10) does not hold for i=1, that is
Quu®, 1 (PM) #Qu,1(P).
By Lemma 4.1 this means that
Quu™, 1 (PM) £ Qu, 1 (PM).

Then applying the first step of the inversion algorithm to PM with
respect to the control « only, by Lemma 5.1 we obtain

opy
ouM

0,

and that

§EM (1 1) = abM (x (), £ (1), w" (), (1), G (E+1)) (5.21)

explicitly depends on u™. Since (2.5) solves the MMP for P and M, this
uM-dependence should disappear if we plug (2.5) into (5.21). But as
(5.21) does not depend on u explicitly, this is not possible except if (2.5)
is such that it imposes the constraint

oy
ouM

Of course, the latter is not possible around the regular equilibrium point
of PM. So we necessarily have that (5.10) holds for i==1. Applying the
same arguments repeatedly, we finally have that (5.10) holds for
every i=1.

6. CONCLUSIONS

The necessary and sufficient conditions for local solvability of the
MMP in the presence of disturbances around the equilibrium points of
the system and the model have been given and a systematic procedure
for constructing a precompensator in the form of dynamic state feed-
back that solves the problem has been proposed. Note, however, that the
construction of a compensator is based on the implicit function theorem.
Both the cases of measurable and unmeasurable disturbances have been
considered. The solution — both the necessary and sufficient conditions
and the equations of the precompensator — have been derived on the
basis of the inversion (structure) algorithm for discrete time nonlinear
systems with disturbances. Actually, two versions of the inversion algo-
rithm have been used in the solution of the considered problem. In one
version, inversion is accomplished with regard to both types of inputs,
controls and disturbances, whereas in the other version the disturbances
are considered as system parameters and inversion is accomplished with
regard to control inputs only. Every version of the inversion algorithm
produces the finite sequence of uniquely defined integers, the so-called
invertibility indices, either with regard to controls and disturbances or
controls respectively. The necessary and sufficient conditions for the local
solvability of the MMP in the presence of unmeasurable disturbances have
been given in terms of invertibility indices (with respect to all inputs) of
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the plant and those of the so-called extended system formed from the plant
and the model. Namely, the problem is solvable if and only if the cor-
responding indices of these two systems are equal.

The necessary and sufficient conditions for local solvability of the
MMP in the presence of measurable disturbances have been presented in
terms of invertibility indices of the plant and of two other systems
formed from the plant and the model.

Using the vector space technique introduced by Grizzle in [7] it is
not difficult to show that the conditions in terms of invertibility indices
are actually system-intrinsic and algorithm-independent conditions.
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DISKREETSETE MITTELINEAARSETE SUSTEEMIDE SOBITAMINE
HAIRINGUTE OLEMASOLUL

Ulle KOTTA

Mittelineaarsete analiiiitiliste siisteemide klassi puhul on uuritud
diinaamilise tagasiside kujul esitatava kompensaatori konstrueerimise
iilesannet eesmargiga tagada suletud siisteemi ja etteantud mudelsiis-
teemi kokkulangevus. Varasemad tulemused on iildistatud juhule, kui
juhtimisobjekti mojutavad kahte liiki sisendid — juhttoimed ning héirin-
gud. Kisitlemist on leidnud nii moodetavate kui ka mittemoodetavate
hédiringute juht,
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Ulesande lahendus pohineb struktuuri- e. pééramisalgoritmi kahel ver-
sioonil, mille abil on voimalik héiringutega siisteemi jaoks leida kaks
tdisarvuliste struktuuriparameetrite 16plikku hulka, nn. poératavusindek-
sid juhttoimete ja molema sisendi suhtes. On leitud iilesande lokaalse
lahenduvuse tarvilikud ja piisavad tingimused, mis on formuleeritud kahe
siisteemi — juhtimisobjekti ning juhtimisobjektist ja mudelsiisteemist
moodustatud nn. laiendatud siisteemi — pooratavusindeksite abil. Lahen-
duvustingimuste tdidetuse korral on tuletatud kompensaatori vorrandid.

COTJIACOBAHHUE HEJIMHEWHBIX CUCTEM JOUCKPETHOIO
BPEMEHHU NPH BOSMYUEHHUAX

IOnae KOTTA

Hsyyaercss 3aaaya MOCTPOEHHsST KOMIIEHCAaTOopa B BlHJe JHHAMHYECKOI
o0paTHO#i CBSI3H TNO COCTOSIHHIO CHCTeMBI, 00ecneuHBaollero coBnaaeHnie
BXOJ—BbIXOA OTOOpaKeHHH 3aMKHYTOH CHCTeMbl M 3aJaHHOH MOAEJH AJs
Kjacca HeJHHEeHHbIX aHAJHTHYECKHX CHCTEM AHCKPETHOro BpeMeHH. Pauumue
pe3yabTraThl 060611aloTcss AMs caydass o0beKTa ynpaBJeHHs ¢ BbIXOLaMH
JBYX THNOB — yNpaBJeHHsSIMH H BO3MylleHHssMH. PaccMaTpHBaloTes ciayuyaH
H3MepsieMbIX, a TaKKe HeH3MepsieMblX BO3MYLIEHHI.

Pelenne 3agauu ocHOBBIBaeTCsl HA JBYX BapHaHTax aJaroputma obpaiie-
HHSI, C TOMOILBIO KOTOPBIX AJIsi CHCTEMbI ¢ BO3MYLIEHHAMH MOKHO HaHTH 1Ba
KOHEYHbIX Habopa LeJIOYHCJAEHHBIX CTPYKTYPHBIX MapaMeTPOB CHCTEMBbI, T. H.
HHIEeKChl 06paTHMOCTH OTHOCHTEJNbHO YNPaBJIEHHss H OTHOCHTEJbHO 000HX
BXoJ0B. Haiiaenol HeoOXoaHMble H J0OCTAaTOUHblE YCJOBHSI Pa3peilinMOCTH
3ajaul, choOpMyJHPOBAHHBIE B TEPMHHAX HHAEKCOB OOPATHMOCTH JABYX CHC-
TeM — o0beKkTa ynpaBJieHHSI H T.H. pacUIHpeHHOH CHCTeMBbl, KoTopas Mo-
CTpPoeHa Ha OCHOBe oObeKTa ynpaBJjeHHsi W Mojenu. [Ipu BuImoaHenuu ycJo-
BHI pa3pelliMOCTH 3aJaul HaleHb ypaBHeHHS KOMMeHcaTopa.
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