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Abstract. The paper studies the model matching problem for a discrete time nonlinear

system in the presence of input disturbances. Both the cases of measurable and un-

measurable disturbances are considered. Instrumental in the problem solution are two
versions of the inversion (structure) algorithm for the discrete time nonlinear system
with disturbances which produce two finite sequences of uniquely defined integers,
the so-called invertibility indices, either with respect to control, or with respect to both

inputs. The necessary and sufficient conditions for the local solvability of the problem
are derived in terms of the invertibility indices of the plant, the so-called extended

system, formed from the plant and the model, and the so-called auxiliary system,
formed from the plant. If these conditions are satisfied, the inversion algorithm provides
a systematic procedure for constructing the precompensator that solves the problem.

Key words: discrete time systems, nonlinear control systems, model matching, dis-

turbance decoupling, inversion algorithm.

I. INTRODUCTION

Given a plant and a model, the model matching problem (MMP)
consists in designing a precompensator for the plant such that the
input-output map of the compensated plant matches that of the given
model. The MMP for nonlinear systems has received much attention in

the literature ['-°], while most results have been obtained for continuous
time nonlinear systems, which are linear in control and are local in the
sense that they are valid т some neighbourhood of the initial point in
the state space. The problem has been studied in different settings: by
tools of differential geometry ['+2] and differential algebra [3], via the

structure algorithm [*] or on the basis of the zero-dynamics algorithm
[°], by considering the model matching problem as the disturbance

decoupling problem [°], ог in terms of formal structure at infinity
[7]. Tt has been shown in [®] that certain necessary structural conditions
for the solvability of a nonlinear model matching problem can be deduced
from the Jacobian linearizations of the plant and the model. Despite the

growing interest in the area, the papers, except [?], do not address the

case of nonlinear systems with input disturbances, and assume that all

output variables are measurable.

* The results of this paper appeared partly in the Preprints of 2nd IFAC sympo-
sium on Nonlinear Control System Design, Bordeaux 1992,

https://doi.org/10.3176/phys.math.1994.1.02
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The problem dealt with in this paper concerns the matching of a

given model by compensating a nonlinear discrete-time plant subject to

input disturbances. The results of this paper generalize those of [®], for
the case of discrete-time nonlinear system without disturbances. The

approach chosen by the author follows closely that of [7]. In particular,
the idea of using two versions of the inversion algorithm which is the
corner-stone of the paper was already exploited in the continous-time
case by Moog, Perdon and Conte [7].

Throughout the paper we shall adopt a local viewpoint, and we

shall work on finite time interval. However, contrary to the continuous
time case, in the discrete time case the local study is impossible around
an arbitrary initial state since even in one step the state can move far
from the initial state regardless of the small input values. By this reason

we shall consider the MMP in the presence of disturbances locally
around the equilibrium points of the system, the model and the compen-
sator.

Our goal is to establish the necessary and sufficient conditions for
the local solvability of the MMP in the presence of disturbances with
the precompensator in the form of dynamic state feedback and a system-
atic procedure of constructing a precompensator that solves the

problem. Both the cases of measurable and unmeasurable disturbances
will be considered.

The organization of the paper is as follows. In е following
section the mathematical formulation of the problems will be given. In
Section 3 two versions of the inversion (structure) algorithm for discrete
time nonlinear systems with two types of inputs — controls and
disturbances — will be given. In one version, inversion is accomplished
with regard to both inputs, controls and disturbances, whereas in the
other version the disturbances are considered as system parameters and
inversion is accomplished with regard to control inputs only. In Sections
4 and 5 we give our main results derived on the basis of these two

versions of the inversion algorithm for the cases of measurable and
unmeasurable disturbances, respectively.

2. PROBLEM STATEMENT

Consider a discrete-time nonlinear plant P described by equations
of the form

x(t+l) =f(x(1), u(t), w(t)), x(0) =x, O<l<lr,
(2.1)

y(b)=h(x(6)),

where for every /=0,1,...,/r the states x(?) belong to an open sub-
set X of R", the controls u(f) belong to an open subset U of R™, the

disturbances w(f) belong to an open subset W of R’, and the outputs
y(t) belong to an open subset Y of RP. The mappings f and h are sup-
posed to be real analytic,

Furthermore, let a discrete-time nonlinear model M be given, which
is described by equations
XM(1) ="(xM(2), u(t)), #M(o)=x], o<t<tr,

(2.2)

yM () =h"(xM(1)), |
where the states x"(f) belong to an open subset XM of R", the inputs
uM(t) belong to an open subset UM of R™, and the outputs y(¢) belong
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to an open subset У“ о! RP, The mappings f* and AM are supposed to

be real analytic.
The compensator C used to control the plant P is in the case of

measurable disturbances a discrete-time nonlinear system described by
equations of the form ;

x (t+l) =f(x°(6),x(t), "(1),w(1)), x(0) =x6, OTIZtr,

(2.3)

u(t) =he(x¢(t),x(t), u"(1), w(1)) |
with the state x¢(¢)& X¢, an open subset of R"%, and real analytic [¢
and hC, or, 11 the case of unmeasurable disturbances, a discrete-time
nonlinear system described by equations of the form

х° (#-Н1) == [° (Х° (0), # (6), и (1)), х°(0) ==хс, O<<l<lp,

(2.4)

и([)=/2с(хс([)‚х(і)‚цм([))

with the state x¢(f) & X¢, an open subset of R". and real analytic
f¢ and h€. The composition of (2.1) ап (2.3) (or (2.4)) initialized
at (xo, xJ) is denoted by P-C. That is, the system P-C is in the case

of measurable disturbances described by equations:

x(t4-1) =F (x (1), K¢ (xS(1), x(t), uM ({), w(1)), w(1)),
AC(E4l)=fC(xC(t), x(¢), uM(t), w(?)), (2.5)

y(D)=h(x(t)),

and in the case of unmeasurable disturbances by eguations:

x(tl)=[(x(t),h(x°(1),x(1),u™(1)),w(1)),
XC(tl) =fe(xC(2), x (1), u™(%)), (2.6)

y(b)=h(x(t)).

We are assumed to work in a neighbourhood of an eguilibrium point
of the system (2.1), that is around (х°, w% w) e XXUXW such that

f(xo ul, w®) =x° From the fact that f(x° u® w°) =x° it follows that

using the control sequence и(0), и(1),... with each wu(¢) sufficiently
close tou% and provided the disturbance sequence w(o),w (1), ... is

such that each w(f) is sufficiently close to w° we can keep the states

x(t) sufficiently close to x° and the outputs y(°) sufficiently close

to y°=~h(x%). We say that the equilibrium point (x™° u°) of the model
M is corresponding to the equilibrium point (x° «° w°) of the plant P
if the following equalities hold:

f."Vf (xMO, uMO) =xMO,

hM (xMO) = yMO— 10,

Again, ме say that the equilibrium point (x€°, x°, uM9, w 0 1)
(ог (х©°, х°, имо, и°)) о {Пе compensator (2.3) (0r.(2.4)) corresponds '0
the equilibrium points (9 4% w®) ап@ (хМ°, цм°) of the plant P and
the model M, respectively, if the following equalities hold:

fC(xCO’ хо’ иМО‚ wO) =xCo’ пс (xCO’ xO’ имо, wO) =uo

(fC(xCO, x9, uMO) =xo h(xCO, x9, uMY) =1 ) `
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Definition 2.1. Nonlinear discrete-time local model matching
problem in the presence of measurable disturbances. Given the plant P
around the equilibrium point (x° uf w°), the model M around the equi-
librium point (хМ®, м°) corresponding 10 (х°, и°, ш°) апа а рой
(x(0), x(0)), find, if possible, the neighbourhoods V,;=XCOXXXUMOX
XWO of (x€o, xO,uMO w0) п XCXXXUMXW апа И, о и° in U, the com-

pensator C: V,— V, with initial state x€(0), defined by equations in the
form (2.3), авs well the neighbourhood X™° of xM° and map & XM°— XCO
with the property that

yPoc(t,x(0),E(x"(0)), w(0),...,w(t—1), uM(0),...
~--,uM(t_l))_yM(t:xM(O)auM(O)’---)uM(t_l))’ t<tp

does not depend on u" and w for all (x(0), xM(0)) &X° XXM, jor all

w and u™ in the scope of C, and for some finite tr.

Definition 2.2. Nonlinear discrete-time local model matching
problem in the presence of unmeasurable disturbances. Given the plant
Р агоипа the equilibrium point (x° u° w°), the model M around the equi-
librium point (хМ°, цмо) corresponding 10 (х°, и°, @°) and a point (x(0),
xM(0)), find, { possible, the neighbourhoods V,=XCOXXXUM°? of
(х©°, х°, им°) in XCXXXUM апа И, оф и° п U, the compensator
С:И —Й, with initial state x€(0), defined by equations in the form
(2.4), as well the neighbourhood XM° of xM° and map &: XM°— XCO with

the property that

yPoc(t, x(0), &(x"(0)), @w(0),...,w(t—1),uM(0),...,u"(t—1)) —

— yM(t, xM(0), uM(o),...,uM(t— 1)), t<iF

does not depend on uM and w for all (x(0),xM(0)) & XOXXM°, for ай
uM in the scope of C, for all w around w°, and for some finite tp.

Note that the adjective local in Definition 2.1 (Definition 2.2) in

general means that the problem solution is looked for

(i) м the neighbourhoods XCOXXOXUMOXWO (XCOXXOXUM?) and U°

of the points (x€OXxOXuMO<w?) ((x°, x° uM®)) and u respectively,
(ii) on a restricted time interval, that is on o<<{<Cf{p. The localness

in time is due to the fact that for some finite /r the points (x€, x, u™, @)
((x€, x, u™)) and u can escape from XCOXXOXUMOXWO (XCOX XX UMO)
and U°, respectively.

3. INVERSION ALGORITHMS FOR SYSTEMS WITH

DISTURBANCES

An inversion algorithm for discrete-time nonlinear system without

disturbances was introduced in [!°] and given in more general and

simple form by Kotta and Nijmeijer [!']. Below ме will give, in the

spirit of ['!] апа [7], two special versions of an inversion algorithm for

discrete-time nonlinear system (2.1) with disturbances. The first version

accomplishes inversion with regard to both types of inputs, controls and

disturbances, whereas the other version considers disturbances as system
parameters, and accomplishes inversion with regard to control inputs
only. We present both versions of the inversion algorithm simultaneously.
When the two versions differ, the second version will be given in

parantheses.

Step 1. Calculate ;

y(t+l)=h(f(x(t),u(t), w(t)))=ai(x, u, W),
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and define

д

Ouw, 15 rank
S

MB O) B R w=w

(о. i=rank —-(i(x,u, ) )ul— FAD
150

^8 | х== @, и==и',ш==шO/
°

Let us assume that Quw, I==const (gu, I==const) in some neighbourhood
O; of (x° u° w°). Permute, if necessary, the components of the output
$0 that the first Quuw, 1(Qu,1) rows of the matrix

ОА( (х, и, @) ) /д(и, @)— (дА((х, и, @))/ди)
are linearly independent. Decompose y({+l) and A(f(x, u, @)) ассога-

ing to

gty=[P (a, [)
yi(t+l) а, (, и, @)

where й1 (/+1) апа @1 (х, и, ©) consist of the first Quw, 1(Qu,1) compo-
nents of y(f+l) апа A(f(x, u, w)), respectively. Since the last

р — оикс, 1(2 — ом, 1) rows of the matrix Oh(f(x,u, w))/d(u,w)
(Oh(f(x, u, w))/0u) are linearly dependent on the first Quuw, 1(Qu,1) rows,

we can write

Jr(t+l)=a(x(1), u(t), w(f)),
91 (t+l) = (x(0), 71(1+1)),

(91(1+1) =2y:(x(0),@(1),fr(t+1))).
Denote @,(') by A().

Step k4l (k=l). Suppose that т Steps 1 through #, ji({+l),

Ja(t+2),
..., Je(t+k), ye(t+k) have been defined so that

Ji(t+l)=a(x(t),u(t),w(t)),
Jo(142) =as (x(1), u(t), w(t), §1(142)),

7 (I+k)=õr(x(l),ü(1),w0),(7:o+]), I<i<h—1, i+l<j<kY),

9(t+k)= (x(1), (7i(+)), IDITk, I<j<k))

Jo(t+2)=ax(x(),u(t),w(t),w(i+l),jl(2+2)),
G (t-Hk)=an (x(0), u (), w(8), ..., w(t4h—l),

|

{7:(t+)), I<is<k—l, i+l<j<<Rk}),
Jr(IHR) = (x (1), ©(1),..., @w(t+k—l), .

{7:(t4)), I<i<k, i<j<k}) =

Suppose also that the matrix 04k(")/0(u, w) (0Ax(")/0u), where Ar=
=[al...a;]" has full row rank equal to Quw,(Qu #) in some neigh-
bourhood O of (¥, u% w?). Compute

#в k1) =pe(f (2(1), u(t), w(1), {Fult+j+l), I<i<k, i<j<k})=
=apst (X(1), u(t), (), {Fi(t+])), I<i<k, i+l<j<k+l})
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Gr (k1=i (F(£(2), u (1), @(1)), ©(I41),..., w(t+k),
{7:(t+j+l), I<isch, i<j<k})=
=ak+l(x(t)9 u(t)v w(t)v o 5

9
w(t+k)v

{T:(t4+)), I<i<k, i+l<j<k+l})

and define

g

д [Ak(') ]Quuw, k+l—rank
д(и,ш) а/е+l(') x=xo’ u=uo’ w=wd

—

д [Ak(') ] )(Qu, k =rank
ди 1анн() Jx=xu=w,w=w/' | |

Let us assume that Quw, k+l=const (Qu, r+l=const) in some neigh-
bourhood Ok+i of (x 9 u° w°). Permute, if necessary, the components of

yr(t+k+l) so that the first Quw, #+l(Qu #+l) rows of the matrix

д д [. Т

д(и, @) [Až'až“lr(
ди ['АТ’;’ЦЁН])

are linearly independent. Decompose _t}k(t-&—k—{—l) and ag+y according 10

^”t k ~

yk(t+k+l)=[f’*“( + +”], ак— [ oo ]
"

Ye+l (E+R+l) авн !

where ür(/+k+l) апа @вн consist of the first Ouw,k+l—Ouw,k

(ou, 41— Qu, ») components of yr(f+k-+1) and aes+, respectively. Since

the last p — Quw, £+l(P — Qu, £+l) rows of the matrix

д доуНЫ(о М )
are linearly dependent on the first Quw, #+l (Qu, #+l) rows, we can write

Frt+l)=ay(x(f),u(t),w(t)),
Feri(t+k+l)=õrsi(x(0),ü(1),@(1), {Fi(t+), I<i<k, i+l<j<k+l})

yn(t+k+l])= (x(), {7(1)), I<iSß+], i<j<k+l})

бын (-НЕ--1) =ar+l(x(B), u(t), w(t),..., w(t+kr),
Fi(t4)), I<i=k, i+l<j<k+l})

_l/k+l(t+k+l)=‘l|2k+l(X(t),UJ(t),...,W(t—l—k), :

{7:(t+4])), I<ik+l, i<j<k+l})

Denote Ap+l=[4], äšH]T. End of step k+l.

Note that we can apply the inversion algorithm not necessarily in
a unigue way. There exist, in general, different permutations of output

components y(t+k4+l) at step k+l, k=o, so that the first

Quw, #+l(oQu, #+l) rows of matrix [dA:,aIH,]T/G(u, w) (a[A:,a{H]T/du)
are linearly independent. Different permutations of output components,
that is, different selections of Fe+l(¢£+k-+1) in each step result in dif-
ferent functions Ax+1(") and фе (*); зее [*!] for a relation between such
different selections.
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In the inversion algorithm certain constant rank conditions have been

imposed to ensure that the algorithm can be applied around a given
equilibrium point. We shall summarize these conditions in the definition

of the regularity of the equilibrium point. Note that our definition of the

regularity reminds е опе о [??].

Definition 3.1. We call the equilibrium point (х°, и°, ш°) о а

system (2.1) regular with respect to the inversion algorithm if for some

specific application of the inversion algorithm

rank [OAr/ou, OAr/ow] =oQuw, к, k=l
(3.1)

(гапК дА,‚/ди==ои x, k=l)

in some neighbourhood of (x°, u° ш°). \е саП (х°, и°, ш°) strongly regu-
lar if (3.1) holds for each application of the algorithm.

Thus, using the inversion algorithm around the regular equilibrium
point (x°, u° w°) of system (2.1), we obtain a sequence of integers

OgQuw, i< S šguw, k<
ee šp

(Ожo, 1 ... <oи в ... <р).

Let о*=max {Quw,» k=>l} (0} =max {Qur k=l}), and let a be

defined as the smallest k e N such that Quw, r=o%_ (Qu r=2o}). Analog-

ously to the case without input disturbances [!!], it can be proved that
the integers! ‘Quw.ls .<. Quw, &- 4. (Qu,ls -- - § Qu, k- ..) do not depend

on the chosen permutation of the components of ye(¢+4k4l). Thus,
around a strongly regular equilibrium point of the system, these integers
define some structural properties of the system. Analogously to ["], [*]
we call the Quw,x, =1 (oue=l) the invertibility indices of

system (2.1).
Moreover, analogously to the case without disturbances ['], it can

be proved that around the regular equilibrium point the structure algo-
rithm terminates in at most n steps, that is

0%„ — @ит, п (o*,==oи, п).

4. PROBLEM SOLUTION 1№ ТНЕ CASE OF MEASURABLE

DISTURBANCES

We shall now give necessary and sufficient conditions for the local

solvability of the MMP for P and M in the presence of measurable

disturbances. For this purpose we introduce the so-called extended

system PM, associated with the plant P and the model M:

х (#+-1) ==[(х(o),и(0),@()),
R (1) =" (2 (1), u (1)) (4.1)

yPM (th) =hP" (x(t), x" (E)) =h(x(6)) — h™ (xM(1)).

The extended system (4.1) can be viewed as the system of the form

(2.1) with the control и(#), with the measurable disturbances w(/)
and uM(t), and with the equilibrium point (x%, хМ°, и°, wW uM9).

We first prove the following lemma.

Lemma 4.1. Around the strongly regular equilibrium point
(xO, xMO 10 w0 uMO) о РМ ше have ои i(PM)==q., i(P), i=l, and in

particular o* (PM) =g’ (P).
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Ргоо Ё. Consider the first step of the inversion algorithm with

regard to u for PM. We have

д |
ou. 1(PM)=rank r[А((х, м, @)) — #({М (х“, и“))] =

д .

` =rank Õ—u-h(f(x, и,@))==о,1(Р).

Since the special form of the output function hPM, we have

7" (1+1) =37 (x, u, w) —ä* (x*, u )== 8 (1--1) — @* (х", и“),

y(t+l) =a (x, , w) — a3 (x", ü) =% (x, w54 (1+1))—@; (x*, 2).

On the second step of the inversion algorithm we compute

sM (t+2) =y" (x(1+1), w(1+1),77 (x(1+2))) —

— а* (х(7--1),и“(I+-1) ) =а? (х(0), и(0), 9(0), @((+НI), 97 (7+-2)) —

—а*,(х"(1), и"() и“ (7--1)), |
and define

‚

РМ к—°
[äc R - ]

k
9

[ді' (.)]
(Р)

“, =rank —

x
|=rank —

Al
=Ou:2(F).ue(PM)=rank

5| ar ¢y way()] o |az 0]

Decomposing g}’;’”(t+2) and at (') —а; ('), we have: |
2М (1--1)==@ (х, и, @) —@* (х“, и“)== 1(1--1) —@{ (х", и“),

7" (I+2) =ob (x, , w(t), w(1+1), 72 (1+2)) —

— @ (х", и" (1), M (t41 =75 (I+2) —õ7 (x%, ü (1), w" (E+I)),

ом ((--2) =P (x w(1), w(t+l), 5% (t+l), 5% (I+2), 75 (t+2) — —
—ay (M, uM (1), u(141)).

In the same way we can prove the lemma.

Remark 4.2. Lemma 4.1 is the discrete-time counterpart of Lemma

2.1 in [7].
Now we are ready to prove one of our main results. ‚
Theorem 4.3. Consider the plant P described by equations (2.1)

around the equilibrium point (x° u® w°®) and the model M described by
equations (2.2) around the equilibrium point (xM° uM®) corresponding to

(х°, и°, @°). Аssите that the equilibrium point о the system РМ is

strongly regular with respect to both versions of the inversion algorithm.
The nonlinear discrete-time local model matching problem in the presence
of measurable disturbances for P and M is solvable, if and only if

Quwu",i(PM)=Qu,i(P), I>> 1. (42)

Proof. Sufficiency. Assume that (4.2) holds. Then, by Lemma
4.1, we have

Qu,i(PM) =Quwu“.t(PM). (43) .
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This implies that both versions of the inversion algorithm applied
to system PM coincide and at the ath step we obtain

FEM (¢4 1)=a"M (x, XM, u, u™, w),

goM(t4+2) =at™ (x, x™, u, uM, w, oM (14-2)), (4.4)

oM (tha) =am (x, XM, u, uM, w, {Fo (1)), —
I<i<a—l, iTl<j<oa))

and

y"(t+a)=pM"(x,x", AJPMAI+)), IZl<a, IjZa)). (4.5)

The Jacobian matrix of the right-hand side of (4.4) with respect to u

around the point (x% xM°, u° uM® w?) according to the inversion algorithm
has full row rank @*. Moreover, 2PM (x9, xO, u9, uM9, w, {O,. . {,o})==o,
i=l, ...,

@. So we may solve equation (4.4) for u(f{) around the point
(xO, xMO, и%, и“®, wW by applying the Implicit Function Theorem. We can

choose zero values for 7°™(¢+j). Then, from (4.4), we obtain

u(t)=q(x(t), xM(t), u"(t), w(t)), (4.6)

which is such that for i=1,...,a

atM(x(t),"(1), (),ut(1),w(t), {0,...,0})=0. (4.7)

Notice that ¢: V,— V, is analytic for some (possible small) neighbour-
Поойs И, апа И, оЁ (х°, х“°, и“°, @°) in X4-XMXUMXW and u° in U°.

This implies that (4.7) will hold as long as (х(7),хМ(1), иМ (1),@() ©

e V, and defined by (4.6) u(f) & V,. Of cource, the equality (4.7) is

lost if we leave the neighbourhoods V,, or V, which may happen for
some finite Zp.

Construct the compensator C as

х° (#--1)==["(х°(2),и (#)), х°(0)==х,
(4.8)

u(t) =g(x(), х" #) ,и“ (2), @ ()).
We claim that (48) апа ¢=ld (identity map) serve as the solution

of the MMP in the presence of measurable disturbances. In order to

show this, letus first remark that by (4.3), y**(¢+4£) in (4.5) remains

independent of u(f) and w(?) for all k>, since otherwise Quwu¥,& (PM)

would be strictly greater than ow, »«(PM). Therefore, y?°°(t-+k)—y"(t-+k)
is independent of u™ and w for every k2>l. Taking into account (4.4)
we obtain

g‘;’°c(t+j)=;7’;_‘(t+j), j=1,..., a

So, yP°c(t) —yM(t) is independent of u" and w for O</<fr. The

sufficiency part of the Theorem has been proved.

Necessity. Let us assume that there exists a precompensator C
of the form (2.3) for P and M that locally, around the strongly regular
equilibrium point of PM (with respect to the both versions of the inver-
sion algorithm), solves the nonlinear discrete-time MMP in the presence
of measurable disturbances. Apply the first step of the inversion algo-
rithm to PM with respect to the control « only, considering disturbances
© ап( иМ а$ рагате{егs
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FoM(t-1) =a"M (x(1), M(1), u(t), uh (t), w(t)),
^

° (4.9)
и(Е-Р1) =P (x(t), XM (1), M (£), 0(1), М (#+Нl)),
where

rank = ДРМ (:) — РМ)дal — Ou, 1( Ä

If we plug the output of C in (4.9), the equations do not depend on u™
and w any more since C solves the MMP in the presence of measurable
disturbances for P and M. In particular, this means that either

PM

P о

(4.10)
o(w, uM)

everywhere around the point (¥ x™°, 40, wO, М,°) ог, if not, the

compensator C will guarantee the equality (4.10). Note that around the

strongly regular equilibrium point oy#*/d(w, u™) 15 everywhere either

equal to zero or different from zero. This means that if Oxp‘:M/d(w, им)5Е
==o, we can never make it equal to zero by the suitable choice оЁ com-

pensator. This implies that d¢”"/d(w, u™)=o, which gives us

[õäPM/õu даРм /д (@, uM)]
AA

Ouw,uM,l(PM)=l'ankl
! !

J =ranka—a€M—-
PM M0 pM/0 (w, uM)

=9и_ 1(РМ).

Applying this argument repeatedly, we finally get Quw. .(PM)=
=qu i(PM), i=l. The conclusion of the necessity part of the Theorem
follows using Lemma 4.1.

Note that in this paper sufficient conditions for the solvability of the

MMP, unlike to [7], are also necessary. The reason is that ме work
under slightly stronger regularity conditions than the authors of [7] do.
To be more precise, Moog, Perdon and Conte worked around a strongly
regular equilibrium point with respect to the second version of the
inversion algorithm, whereas we work around an equilibrium point
which is strongly regular with respect to both versions of the inversion

algorithm. See also ['6] with this respect.

5. PROBLEM SOLUTION IN THE CASE OF UNMEASURABLE

DISTURBANCES

We shall now give the necessary and sufficient conditions for the
local solvability of the MMP for P and M in the presence of unmeasur-

able disturbances. For this purpose we introduce the so-called auxiliary
system P, associated with the plant P, with states (x(¢), u(f)), and in-

puts v(f) as follows

x(t4+l)=[(x(t), u(t),w(?)),
u(t+l)=uv(t), (5.1)

y(t)=nh(x(?)).
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The equilibrium point of P, is (xO, u° v° w®) with v®=u® The idea of

delaying the inputs, as is done by the introduction of the auxiliary sys-
tem P,, was already employed in ['®].

We first prove several lemmas.

Lemma 5.1. Apply the inversion algorithm with regard to u around
the strongly regular equilibrium point (x° u°, w°) to P. Then at every step

0];1 tže algorithm oy(t+k)/ow=o if and only if Quw x(P)==ou,x(P) for
all

k.

Proof. Consider in detail the first step of the inversion algorithm
applied to P. Compute y({+l)=h(f(x(¢),u(t),w(f))), and define

д
и, 1— k —ou, 1— FANK

G h(i (x, u, @)
|х== , и== , ю== @..

= rank
д

h(f(x, u,w))Quw, 17—
Õ(u,w)

yUy
|x=xo’u=uo’w=wo‘_. K

Now permute the components of the output so that the first gu,l rows

of Oh(f(x,u, w))/du are linearly independent, and write accordingly

у ((+-1) ==@((х, и, @),
(5.2)

91 (t+l) =01(x, u0),

where oä,(x, u, w)/Ou has full row rank 04 ,4. Then, from (5.2), we have

u=¢g(x,w, 1(t+1)) and hence yi(t+l)=ai(x,E(x, @, j1(t+1)), w)=
=ll (x, @, §1({+1)). Moreover, from the identity jl=õl(x, E(x, w, 71), W),
we obtain

0N OF ‚ д@,
_

д5
— ( да, )+ да

да дю д—° ов L BT

\Беге (да,/ди)+ is a right inverse of dai/du, that is (oai/du) (das/du)*=
==[.Now, assume that

opi(t4+l) —да
+

da; Ot da —U ( да, )+ LI

ow
°

д ди 0w dw ди \ди д
"

Taking into account that д&,/ди:а(х‚ u, w)[da,/ou], ме can easily
check that this yields

да да,
— — 10.,,

A
ди да

5 [ Õäi Õäi ]=
^ ^

= д да, \+
— о—

Р,

да да, oay (__ai_) ди да
— ——— ou ди

ди Jw

Quw, I=rank A*=Qu’ 1.

Conversely, assume that Qu,l=oQuw,l. This implies that there is a

matrix a(x, ¥, w) such that

да, да, —да да
—==(— , —=——==@—.

ди ди ow Jw
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Hence ¢ (O

a_%__dé_(_a@_y@__ 28 — „д (_да_)? о®
o

до ou \ди/ д
"

w ди \ди/ Tow
'

and thus |

Opu(t+l) d 0 —da ( да, )+ ä
_

ow:
—

д du \ди w
°

The rest of the proof runs as before. | |

КетагкК 5.2. Гетта 5.1 is discrete-time counterpart of Lemma 4.2
1п ['°].

Lemma 5.3. Apply the inversion algorithm with regard to control

и агоипа the strongly regular equilibrium point (x° u® w°) to P. Then
at every step of the algorithm da® (") /ow==o if and only if jor all k=l

Ovw, k'(Pa) == (0, k(Pa)-

Proof. Let us consider the first step of the inversion algorithm
applied to P and P,. Compute

y(t+l)=h(f(x(t),u(t),w(t))) =a* (x, u, w)=al"(x, u, W),

and define

Р) ==гапК
О

а(.. I(P)=rank——a"(),
PLy=thnk

-
a2y, | :ov,1(Ра) =гапК — — @* (°),

(Ра) =rank ——õ———aPa ()Ovw, 1 a)
—

Õ(U, w) 4 .

Assume that da”, (") /ow==o. As a® (')=aj*(’), which yields

Qtw,l(Pa)':Qv, l(Pa)-

Conversely, assume that Qow,l(Pa) =OO, 1(Pa). Take into account that,
by construction of the system Pq, o, 1(Pa)=0; 5 implies that

да?» (*) /ow=oa" (') /ow=o. So, da’ (*)/dw=o iii Quw, 1(Pa) =OO, 1(Pa).
Permute the components of the outputs of both systems P and P, so

that the first gu,4 rows of da” (*)/odu are linearly independent, and write

accordingly (taking into account that either da?()/0w=0, or, equiv-

alently, Quw, 1(Pa)=OO,1(Pa)):

jy (t+l)=a" (x,u),

: ‚

)- ВО . (5.3)

y? (t+l)=a" (x, u), | ’

where da’ (")/0u has a full row rank gu,l(P). Then, from (5.3), we

have w=E(x, §” (14+1)) and hence y” (t4l)=a’ (x,E(x§” (t4+1))).

Moreover, from the identity Щ’ Е‹'і’: (x, E(x, y*;)), we obtain
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даг —l‘ддЁ*-ЁЕ———o |
дх '

ди дх
—

|

or

_‘2&__( даг )+ dar i
x

=

N) x
(5.4)

where(da’ /ou)* is a right inverse о да? /ди, а{ 15 (да? /ди) х

х (да! /ди)+==l.
Now, consider in detail the second step of the inversion algorithm

for P and P,. Compute

и° (142) =a" (f(x, u, w), §([ (x, u, @), i (1+2)))=
=а! (х, и, @, 3' ({+2)) . (5.5)

апа

[ä'; (f(x, u, w), v) ] [a’;«; (x, u, w,v) |
yie(t+2)= = =af(x, u,w,v).

laf (f(x,u,w),v)J la’;:(x,u,w,v)l
(5.6)

From (5.6) we obtain

д
0». г(Р.) ==гапК (да?: (')/до) =rank—õ—u—af (") =Ou,l(P). (5.7)

Assume that da (')/дш==o. Аз

да by (55) dai др
+

dai 0t Of by (54) (5.8)
w

—

дх дш 'ди дх дш
1

et о; —da ( iy )+ даг õt
OD ——— — —— ——— — -———ч——‹=

дх OJw ди ди дх дш

by (5.6) (5.7) da»'— даз’ (_да;' ›+ даз"
=

д до до до'

which implies

]pv.x(PG)
Р Р

д Р Р дам — даг
A*t= —— a (') = да„“( да2l°)+ (—— ———)

2 —— [— д дд(0, @)
5 B

v @ _

Thus

va,?(Pa)=rankA*=Qv,2(Pa)-

Conversely, assume that Qow, 2(Pa)==oo,2(Psz). This implies that there

is a matrix a(x, 4, w, v) such that

da day õa
—

da
д0 ”ta v ei
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Hence .

даг
—

даё ( dasy’ )+ да;"
—0 |

ди до до -

and thus, by (5.8), da?(")/0w=0. Repeated application of the above

arguments completes the proof.
Now we are ready to prove the other of our main results.

Theorem 5.4. Consider the plant P described by equations (2.1)
around the equilibrium point (х°, и°, ш°) апа the model M described by
equations (2.2) around the equilibrium point (xM° uM°) corresponding 10

(x°, u®, w°). Assume that the equilibrium points of the systems P, Ра
and PM are strongly regular with respect to all the versions of the inver-

sion algorithm considered in the formulation of the Theorem. The non-

linear discrete-time local model matching problem in the presence of un-

measurable disturbance for P and M is solvable if and only if

Quw, i (Pa) =ov,i(Pa), i=l (5.9)

and

Quu"‘,i(PM)=Qu,i(P), I>l. (510)

Proof. Sufficiency. Assume that (5.9) holds. Then, by Lemma
4.1, we have

va,i(PaM)'=Qv,i(PaM), l>lv

and therefore, by Lemma 5.3,

daPM/ow=o, k=l (5.11)

Furthermore, assume that (5.10) holds. Then, by Lemma 4.1,

@иим, ; (РМ)== о,(РМ), i=l.

and therefore, by Lemma 5.1,

дурем/ди“==o, k=>l. (5.12)

Now, apply the inversion algorithm with regard to the control u to PM.

By (5.11) and (5.12), we obtain at the last ath step of the algorithm

goM (t+l) =atM (x, x™, u, uM),

g(t42 =atM (x, xM, u, u™, §EM(I4-2)), (5.13)

geM (t4-a) =at™ (x, xM, u, uM, {FP"(14]), I<i<a— 1, i+l<j<a})

and

YEM (t4-a)=9P (x, XM, (M(14]), I<i<a, i<j<a}). (5.14)

The Jacobian matrix of the right-hand side of (5.13) with respect 10 и

around the point (x° xM 40 uMO) according to the inversion algorithm
has full row rank@*. Moreover, abM (xO, xMO, o, uM°, {0,...,0})=0, i=

=1,...,a. So we may solve equation (5.13) for u(f) around the point
(XO, xMO, 40, yM°) by applying the Implicit Function Theorem. We сап

choose zero values to g°™(t+j). Then, from (5.13), we obtain

u(t)=qp(x(t), xM(t), u(t)), (5.15)
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which is such that for i=1,...,a

artM(x(t),xM(1), @(),uM(t), {0,...,0})=0. (5.16)

Notice that p: Vi — V, is analytic for some (possible small) neighbour-
поойs И, апа И, о (х°, хМ°, цМ°) in XXXMXUM and и° т U°. This
implies that (5.16) will hold as long as (x(¢),x™(t),u™({)) =V, and
defined by (5.15) u(f) Va. Of course, the equality (5.16) is lost if we

leave the neighbourhoods V; or V,, which may happen for some finite ¢g.
Construct the compensator C as

XC(t4l)=fM(xC(t), uM(t)), x¢(0) =xH,
() = (х(7), 2 (1), и (1)). (5.17)

It remains to prove that (5.17) and E=ld (identity map) serve as

a solution of the MMP in the presence of unmeasurable disturbances.

lAn order to show this, letus first remark that, by (5.11) and (5.12),

y"M(t+k) in (5.14) remains independent of и“(#) and w(f) for all

k>a. Therefore, §2°Q(t+k)— д’: (t+k) is independent of wM and w

for every k=l. Taking into account (5.16) we obtain

Free+=y t+j), j=1,...,a

So, yP°C¢(t)— y™(t) is independent of uM апа @ for o<Ci<<Ci{r, which 15

the desired conclusion.

Necessity. Let us assume that there exists a precompensator C
of the form (2.5) for P and M that locally solves the nonlinear discrete-

time MMP in the presence of unmeasurable disturbances.

Assume at first that the condition (5.9) does not hold for I=l,
that is

Qz:w,l(Pa)¢Qv,l(Pa)-

By Lemma 5.3 this means that

P
.

M;eo. (5.18)
Jw

Then at the first step of the inversion algorithm yPM({4I) explicitly
depends on w

PP (1) =h(x(t+l)) — B¥ (4 (141)) =

(519)
=af (x(t), u(t), w(t)) —a} (xM (), u™(¢)).

`

Since (2.5) solves the MMP for P and M, this w-dependence should

disappear if we plug (2.5) into (5.19). Since (2.5) does not depend on

w, this is not possible, except for the case if (2.5) is such that it

imposes the constraint

P
.да © —0 (5.20)

Jw

Of course, the latter is not possible around the regular equilibrium point
о P,. The reason is that around the regular equilibrium point
да? (*)/дш is everywhere either equal to zero or different from zero.

This meansthat if da’, (")/ow+o, we can never make it equal to zero
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by the suitable choice of the compensator. So we necessarily have that

(5.9) holds for i=l. Applying the same arguments repeatedly, we final-

ly have that (5.9) holds for every i=l.
Now, let us assume that (5.10) does not hold for i=l, that is .

Сиа 1 (PM) = Qu, 1 (P).
By Lemma 4.1 this means that

Оии“, 1 (РМ) э=ом, 1 (РМ).
Then applying the first step of the inversion algorithm Ю РМ with

respect to the control « only, by Lemma 5.1 we obtain

д
РМ

—L%O,
duM

and that

g(t+l) =a (x (E), x" (1), ü () 9 (2), 2М(#-1)) (5.21)

explicitly depends on uM. Since (2.5) solves the MMP for P and M, this

uM-dependence should disappear if we plug (2.5) into (5.21). But as

(5.21) does not depend on u explicitly, this is not possible except if (2.5)
is such that it imposes the constraint

g
ди“ |

Of course, the latter is not possible around the regular equilibrium point
о PM. So we necessarily have that (5.10) holds for i==l. Applying the

same arguments repeatedly, we finally have that (5.10) holds for

every i=l.

6. CONCLUSIONS

The necessary and sufficient conditions for local solvability of the

MMP in the presence of disturbances around the equilibrium points of

the system and the model have been given and a systematic procedure
for constructing a precompensator in the form of dynamic state feed-

back that solves the problem has been proposed. Note, however, that the

construction of a compensator is based on the implicit function theorem.

Both the cases of measurable and unmeasurable disturbances have been

considered. The solution — both the necessary and sufficient conditions

and the equations of the precompensator — have been derived on the

basis of the inversion (structure) algorithm for discrete time nonlinear

systems with disturbances. Actually, two versions of the inversion algo-
rithm have been used in the solution of the considered problem. In one

version, inversion is accomplished with regard to both types of inputs,
controls and disturbances, whereas in the other version the disturbances
are considered as system parameters and inversion is accomplished with

regard to control inputs only. Every version of the inversion algorithm
produces the finite sequence of uniquely defined integers, the so-called

invertibility indices, either with regard to controls and disturbances or

controls respectively. The necessary and sufficient conditions for the local

solvability of the MMP in the presence of unmeasurable disturbances have
been given in terms of invertibility indices (with respect to all inputs) of
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the plant and those of the so-called extended system formed from the plant
and the model. Namely, the problem is solvable if and only if the cor-
responding indices of these two systems are equal.

The necessary and sufficient conditions for local solvability of the
ММР т the presence of measurable disturbances have been presented in
terms of invertibility indices of the plant and of two other systems
formed from the plant and the model.

Using the vector space technique introduced by Grizzle in ['7] ‘it is
not difficult to show that the conditions in terms of invertibility indices
are actually system-intrinsic and algorithm-independent conditions.
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DISKREETSETE MITTELINEAARSETE SÜSTEEMIDE SOBITAMINE

HÄIRINGUTE OLEMASOLUL

Ulle KOTTA

Mittelineaarsete analiiiitiliste siisteemide klassi puhul on uuritud
diinaamilise tagasiside kujul esitatava kompensaatori konstrueerimise
Шезаппе! eesmargiga tagada suletud siisteemi ja etteantud mudelsiis-
teemi kokkulangevus. Varasemad tulemused on iildistatud juhule, kui

juhtimisobjekti mojutavad kahte liiki sisendid — juhttoimed ning hairin-

gud. Kisitlemist on leidnud nii moddetavate kui ka mittemoodetavate

hdiringute juht,
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Ulesande lahendus pohineb struktuuri- e. pdoramisalgoritmi kahel ver-

sioonil, mille abil on voimalik hdiringutega siisteemi jaoks leida kaks

tdisarvuliste struktuuriparameetrite 16plikku hulka, nn. pooratavusindek-
sid juhttoimete ja molema sisendi suhtes. On leitud i{ilesande lokaalse

lahenduvuse tarvilikud ja piisavad tingimused, mis on formuleeritud kahe

siisteemi — juhtimisobjekti ning juhtimisobjektist ja mudelsiisteemist

moodustatud nn. laiendatud siisteemi — pooratavusindeksite abil. Lahen-

duvustingimuste taidetuse korral on tuletatud kompensaatori vorrandid.

СОГЛАСОВАНИЕ НЕЛИНЕЙНЫХ СИСТЕМ ДИСКРЕТНОГО
ВРЕМЕНИ ПРИ ВОЗМУЩЕНИЯХ

Юлле KOTTA

Изучается задача построения компенсатора в виде динамической
обратной связи по состоянию системы, обеспечивающего совпадение

вход—выход отображений замкнутой системы и заданной модели для

класса нелинейных аналитических систем дискретного времени. Ранние

результаты обобщаются для случая объекта управления с выходами

двух типов — управлениями и возмущениями. Рассматриваются случаи

измеряемых, а также неизмеряемых возмущений.
Решение задачи основывается на двух варнантах алгоритма обраще-

ния, с помощью которых для системы с возмущениями можно найти два

конечных набора целочисленных структурных параметров системы, т. н.

индексы обратимости относительно управления и относительно обоих

входов. Найдены необходимые и достаточные условия разрешимости
задачи, сформулированные в терминах индексов обратимости двух сис-

тем — объекта управления и т.н. расширенНой системы, которая по-

строена на основе объекта управления и модели. При выполнении усло-
вий разрешимости задачи найдены уравнения компенсатора.
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	Fig. 1. Scattering angre as а function of frequency change, Z=oa!%w:/w, X= =A/a2w,, ©, — o;=2a!'/2wy; 1 — non-resonant case, 2 — resonant case. The frequency wo is defined by formula (9).
	Fig. 2. Direction of propagation of the active acoustic wave as a function of frequency change, o=+k;, Q, Х==А/а!”’?оо, @, —о; == 2а!/?о)).
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