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Abstract. Using the formalism of spinprojectors, we propose a general theory of mass-
less hali-odd-integer helicity gauge fields corresponding to the Pauli-Fierz program.
The general realizations of helicities 3/2, 5/2 and 7/2 for symmetrical tensor-bispinor
fields are considered.

Key words: gauge fields, half-odd-integer helicity.

1. INTRODUCTION

In modern field theory, consistent interaction of massless higher-
helicity fields with themselves and with lower-spin fields has become one
of the principal issues. Important results as regards the description of
higher-spin interactions were presented in ['~°]. The cubic interaction for
any massless higher-helicity field, constructed in [®] includes gravita-
tional and Yang-Mills interactions. In consistent theory, an infinite sys-
tem of massless higher-helicity fields appears to be necessary.

The massless Lagrangians for arbitrary helicity were given by Fronsdal
[¢], and Fang and Fronsdal [7] using the symmetric tensors and tensor-
bispinors. The vierbein description of massless %auge fields was pro-
posed by Aragone and Deser [®] and Vasiliev [°]. The higher-helicity
theories suggested in these papers require restrictions on fields and
gauge parameters which do not follow from the action principle. In this
paper, we generally formulate a theory of half-odd-integer helicity gauge
fields which is in accordance with the Pauli-Fierz program [!°]. The
integer-helicity case was discussed in our previous paper [''].

2. HELICITY A=n-+1/2 LAGRANGIAN WAVE EQUATIONS

The helicity A=n+1/2 (n=2) is described by three Lorentz fields
P1, P2 and s, which correspond to the representations 1= (1/2(n+1),
1/2n)® (1/2n, 1/2(n+1)), 2=(1/2n, 1/2(n—1))D(1/2(n—1), 1/2n)
and 3=(1/2(n—1), 1/2(n—2))®(1/2(n—2), 1/2(n—1)). The gauge
parameter &4 corresponds to the representation 4=(1/2n, 1/2(n—1))®
®(1/2(n—1), 1/2n). ¢, and &4 correspond to the same representation,
but are usually extracted from different Lorentz fields.
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The generar gauge-invariant wave equation is

( B afz O \l {‘Pi\
VO § bBar P2 dpas P2 | =0, (2.1)
‘ 0 efa fﬁss} { \Pa’
where
n+1/2 n—1/2
Pu= 2 au(s)p,, Ba= I an(s)p}
s=1/2 s={/2
Baz= gzaas s)BS, . -
s=1/2
n—1/2 n—1/2 (22)
Bo= 2 an(s)B,, Pu= 2 an(s)Bs,,
s=1/2 s=1{/2
n—3/2 n—3/2
Br= 2 ax(s)B3;, Bu= 2 a2(s)Ps,,
s=1/2 s=1/2
and
s 1/2 1/2
eI s’;l—-}l—/l , azz(s)=s+n/ ~ paply )_s—l— /l ,
ants) = (HSTYD 0 —s41/2) )
2n+1 (23)
_ (st s —1y) yr |
0a(8) = 2n—1

p;, are the spin-projection operators defined in the same way as in [*].

Eq. (2.1) is gauge-invariant if det Bs=0 (s=1/2,..., n—1/2) [*],
where Bs are the reduced spin-matrices formed from parameters
a,...,f and aij(s). The conditions det Bs=0 are satisfies if we impose
the following conditions on the parameters a,...,f:

Liid2acdns
o, <2 Ho (2n+41) (n—1)2—4n
+1 (2n+1)(n—1)n

The gauge transformation of Eq. (2.1) is

cf. (2.4)

Piats

Bosgs

n
dp=ayO|  a(n+1) i (2.5)
e(n—1)

af (n+1)

where a is a nonzero coefficient and

Basgs

n—1/2 n—1/2
Bu= 2 an(s)Bj,, Bu= I ax(s)p;,,
s=1/2 s=1/2

(2.6)

n—3/2
Bu= 2 a2s(s)Bs,

s=1/2



The source constraint Q=/=0 is given by the operator

Ay bsith n d(n—1)
Q*=)DO (ﬁu b(nt1) Biz bi(nF1) ﬁaa) e (2.7)
where
n—1/2 n—1/2
Bu= 2 an(s)B}, Bu= 2 ax=(s)ps,
s=1/2 s=1/2
neg/2 (2.8)
Bua= 2 a2s(s) By,
s=1/2

In the present approach, we first derive the wave equation and then
find the corresponding Lagrangian. To obtain the Lagrangian field
theory, we have to find the invariant bilinear form consistent with the
given equation. In case of (2.1), the corresponding bilinear form is

= lhllh-*-— IPz\Pz-i- lbalbs _ (2.9)
which gives the Lagrangian
i o T (nt1)a® -~ —
L=p:Burpr+a (1Brztpatabarps) +—————— P2Priprt-
(n41) [ (2n+1) (n — 1)2 — 4n] a2f
@)@ = 1)e (1P2323\I>3+1l>3l332¢2+
+-?f lI)sEsalPa) N (2.10)

Here ﬁ,,—-}Dﬁ
The Lagranglan (2.10) is invariant with respect to the following
transformation of parameters:

a—>a, b—>ub, c—>uc, d—>=d, e— e, [— M, (2.11)

where % and A are nonzero coefficients. The transformation (2.11) pre-
serves the gauge transformation, but leads to different source constraints
and bilinear forms. This transformation is equivalent to the following
redefinition of Eq. (2.1). If Eq. (2.1) is denoted by Q==0, then the trans-
formation (2.11) leads to a new equation

Q+ (% — 1) M22Q+ (A — 1) 55Q =0, (2.12)

where Il;; and Ils3 are projectors which extract the representations 2
and 3.
The other transformation of parameters is

b—b, a—xa, c—>xc, e—xe, d—>\d, [—1Af, (2.13)

where » and A are nonzero coefficients. This transformation extracts a
subset of equations corresponding to the same source constraint. The
transformation (2.13) is equivalent to the following field redefinition:

=P+ (% — 1) Taap+ (2 — 1) Maap. (2.14)

The redefinition of field wvariables was used in ['*15] to obtain the
Lagrangian corresponding to a given wave equation.
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The general structure of higher-helicity wave equations given here
is a natural generalization of the helicity A=25/2 case discussed in
['2]. It is possible to verify that all higher-helicity wave equations should
have the proposed structure.

3. THE SYMMETRICAL REALIZATION OF A GAUGE FIELD

The half-odd-integer helicity A=n-1/2 is usually described by the
symmetrical tensor-bispinor yg*#*.. The field corresponds to the re-
presentations 1= (1/2(n-+1), 1/2n)® (1/2n, 1/2(n+1)), 2=(1/2n,
1/2(n—1)) & (1/2(n—1), 1/2n), 3= (1/2(n—1), 1/2(n—2))®
®(1/2(n—2), 1/2(n—1)), ..., (1/2, 0) ® (0, 1/2). In the gauge-in-
variant equation (2.1), only the three first representations 1, 2 and 3
are used. The components of g*#» that correspond to the lower
representations (1/2(n—2), 1/2(n—3)) ® (1/2(n—3), 1/2(n—2)),
..oy (1/2, 0)® (0, 1/2) are free. Therefore, (2.1) has for @g*#» the form

bﬂu a[giz dg 8 Pi
c 2 D -
LS B ol i | R (.1
0 0 gt 0 VYa

where the field y, corresponds to all lower representations. Since the
lower representations are free, Eq. (3.1) admits an extra gauge in-
variance Y ="1q.

The field Y™ usually has an additional restriction yppPoHe-+tn=0
(n=3). 1 the wave equation is of the form (3.1), no additional restric-
tions are required. Imposing additional restrictions means that the
equation for y*-#. does not have the required structure (3.1) and
contains operators Ps, and Bsa which connect lower representations. In
that case, the wave equation has the following structure:

b%u agiz dg 8 P

€p2 2 P2 )| —

VOIS he ' fhe gpu (dm 0. (32)
0 0 0  hPea * MPa

Eq. (3.2) is gauge invariant with respect to the gauge transformation
(2.5); however, it has no consistent bilinear form or Lagrangian. To
obtain the consistent bilinear form the term gg8s.\p. has to be excluded.
The extra gauge invariance &p=1p, requires the elimination of AB.qa.
Therefore, the equation with additional restrictions imposed does not have
the correct structure and should be modified.

The gauge parameter eq*#n includes besides the needed represent-
ation 4 also lower representations (1/2(n—1), 1/2(n—2)) @
D(1/2(n—2), 1/2(n—1)), ..., (1/2, 0)® (0, 1/2). If the gauge
transformation is presented in the correct form (2.5), no additional
restrictions are required. The additional constraint yyef:-#...=0 means
that the gauge transformation does not have the correct form (2.5).

4. THE VIERBEIN REALIZATION OF A GAUGE FIELD

" In the vierbein case [®9], the tensor-bispinor field yh¥-¥ is used.
The vierbein field is symmetrical in indices wvs...v, and satisfies
y;p#"e-va=0. The gauge transformation is OPHVe-Va=Mg¥s"a, where

the gauge parameter satisfies y;g";;--;u=0.
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In the higher-helicity case (n>2), the vierbein realization is more
economical since the vierbein field corresponds to the representation
1,2,3 and 5=(1/2(n+1), 1/2(n—2))®(1/2(n—2), 1/2(n+1)). Now,
we proceed to show that the wvierbein realization is equivalent to the
symmetrical one. The general equation for the vierbein field is the fol-
lowing:

p Bz O 0 p
o o G dos g%%) ‘\i“, —o. &
0 hBm O 0 ¥s

The gauge parameter &' corresponds to the representation 4 and the
general gauge transformation is

a1Bues
Sw=v0] | @2Baes
o B B (4.2)
asfsies
where aj,...,as are to be determined by demanding the gauge in-

variance of Eq. (4.1). The gauge transformation is related with the
spins 1/2,...,n—1/2. In the spin s=n — 1/2 case, we obtain the fol-
lowing algebraic equation (['3]:

n
I’l+1 0 0 (o 1]
b ¢ 0 g Il oz |=0 (4.3)
0 00, 9 0
0 h: 4+0 a

Since a and b must be nonzero, it follows from (4.3) that A=0. By
demanding the existence of the consistent bilinear form we obtain
g=0. If g=h=0, Eq. (4.1) has the form (3.1), where y,=1s. There-
fore, the vierbein formulation of helicity A=n+1/2 is equivalent to the
symmetrical one.

Next, we proceed to discuss the equations for helicities 3/2, 5/2 and
7/2 in the symmetrical realization and to illustrate the general consider-
ations presented in previous sections.

5. HELICITY 3/2

Our general formalism is also applicable in the A=3/2 case, it we
set e=d=f=0 and c=2ab in (2.1). The massless A=3/2 was pre-
viously treated in the formalism of spinprojectors in ['6]. Here. we
display only general results.

The general massless A=3/2 wave equation has the form

| % —% )oryep+ (Tg—?l ) veoup+

b b ;
+ (i+—a~— A% ) YR OpyPyvp¥=0. (5.1)
CROS SRy
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This equation is invariant under the gauge transformaton
6¢“—0“e——-( l+y—-)yl‘dpype (5.2)

and gives the source constraint

duf"———( 1+l— ) dpyPyud*=0. (53)
The invariant bilinear form is
~ - 1
Putph=—puph — —- ( Bl )wmvvw‘ {8

Eq. (5.1) follows from the Lagrangian
L=_‘Puap\’p\l’“+( 2——%) (Va0 Y Py oY) —

1 a 3\~
63 S T (5.5)
2 ¥3 4
by varying it with respect to the conjugated wave function fpu=—$“—

— (1/4) (1 — a/b) by )
The transformation of parameters (2.11) a—a,b—>uxb, c—>xc is
equivalent to the following redeﬁnition of Eq. (5.1):

@ +2 L iy =0, (5.6)

where (5.1) is denoted by Q"==0. The other transformation of par-
ameter (2.13) b—>b, a—=xa, c—xc is equivalent to the redefinition
of field variables

1
VY. (5.7)

L s

In ['7] the following A=3/2 equation was proposed:
OpyP Pt — Oy p¥=0. (5.8)
We see that, as compared with (5.1), (5.8) corresponds to the choice of
parameters a=—}’§/2, b=V§/2. Eq. (5.8) corresponds to a subset of
equations with the simplest gauge transformation
Opr=a0ke. (5.9)

The equation with the symmetrical choice of parameters a=b=~—}"_f§/2
used in supergravity corresponds to the simplest bilinear form =

=—yp* and can be obtained from (5.8) via the transformation (5.6),
where x=—1L

We have discussed the procedure of redefinition for the field equation,
since it is required in the higher-helicity case when we do not have
spinprojectors at our disposal. Then one must start from the equation
of type (5.8) and modify it in order to have the correct equation of
motion and Lagrangian.
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6. HELICITY 5/2

In ['?], the helicity 5/2 case was discussed in the same formalism.
Here, we present the general results and comment on them.

The general massless A=5/2 wave equation for the symmetrical ten-
sor-bispinor corresponding to (2.1) has the form

oorer (L) S (- L) S e

2  ab  atb \ 2
+( 4202 S oyt
9 ' 4 695

d 2
D4 ) S

e
| ol Rovs - A ) N 0pYalp?” +

L( e+d iy =3 )n““aov°¢°p= 1 (6.1)

where Zn,’ indicates the sum of n terms which is symmetrical in free
indices.
The general gauge transformation is

3 gk V5 :
opw= 3 ore" — r 1 . Z’ OryVype? —

2 o ! A
(H-—V—) 2 Y'OpyPe'+ 1% (gf‘— 1) " 0py?yoe” —
1 ( 75, V5e ) _
P ) oo LV 6.2
3 7 3a 3af (8l o (6:2)

and the general source constraint is

& I
dpJon — l (1 _% ) Y*0pYo ]po____ ( _i__,lf;) ()uYUYDJPH—}_

U L (S P e —£+%) 01, =0. (63)

The invariant bilinear form

1 a\ -
‘Pu\\P“‘ lhwlL“‘ —?( 1 —b—) PupY?yopoH —

L (24 _ 30 ), (6.4)
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yields the Lagrangian
>R a 1 v N
L=puOpyPipr+-2 ( —g e ?) (Pup0°Yoh ™ +Pupy?0ap*) +
; ¥
a? 2a 4 \-
( S Sl e ) PupY?Ovy Yoot +
2 375 9

1 2 e ) 210% — ~
e i &) J R IR TR
9 395 4 20

302  27a%  8la? 1
' ( f [*

TR — Ve OV,
16 40e 80e2 6 ) PHudpyPy. (6.5)

The transformation of parameters (2.11) is equivalent to the following
redefinition of Eq. (6.1):

Q“V-l-’zl;‘ (k—1) 3 yoQ = (3 — % — 2 Qp=0,  (66)

1
12
where (7.1) has been denoted by QwW=0. The transformation (2.13)
is equivalent to the redefinition of the field ymv

1 g 1
P e (1 1) 3 o (Bh—x— 2t (67)

The gauge transformation (6.2) is related with the representation
(1,1/2)®(1/2, 1) extracted from e*, therefore, the additional constraint
voe?=0 is not required. Indeed, if we introduce

gh=gh ——;— YHyoe? (6.8)

which corresponds to (1,1/2)®(1/2,1), the gauge transformation (6.2)
is expressed as

. o /5 2 A
6¢u\'= E 0”8\'—% ( 23%_5_._‘_1 ) 2 ’Yuap‘yps\’_
1 ( ¥5  75e ) S
— — {1 =T ) V3P, 6.9
3\l ate deb b (51

The simplest gauge transformation

o il 2 2
OPpv= 3 gregv= 3 ohle¥— % > O%yVyeeP (6.10)

corresponds th a=—2 Vg/S, e==3f. The equation with the simplest gauge

transformation and source constraint corresponds to a=b=—275/3,
e=d=—3

2 2

2
TpyPpy — 37 Oty — 3 yroppP + 2 yHOpy o™+
2 I
g 3 OO0y — - Mo (6.11)

and yields the Lagrangian, which was previously obtained in [7].
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The equation given in [!7]
FpyPprs — 3 Iy =0 (6.12)

corresponds to a=—2Y5/3, b=75/3, e=d=3/2. This equation is
invariant with respect to the gauge transformation (6.10), which is
usually written in the form &yrv=3jore", y,e?=0. Eq. (6.11) that
corresponds to the symmetrical choice of parameters is obtained from
(6.12) via the transformation (6.6), where x=A=—2

2
QW — ~12— (27 VAYe QP 1 QP ) =0. (6.13)

The derivation and analysis of some special A=5/2 wave equations
for symmetrical field ¢*¥ was presented in '8 19]. If gravity is
coupled to spin-5/2, the theory becomes inconsistent ['*-2!]. Besides the
symmetrical formulation of n==5/2 the vierbein formulation is used
[% 9], but the vierbein formulation results in similar consistency problems
as the symmetrical case, As demonstrated in Sec. 4, the two formulations
are equivalent.

7. “HELICITY 7/2

In this section, we apply the results obtained for A=3/2 and 5/2, to
the helicity 7/2 case. We do not have the general expressions for spin-
projectors, therefore, we discuss only one specific case. Since the known
realizations for the symmetrical tensor-bispinor field y**#s do not
satisfy the conditions outlined in Sec. 2, the corresponding equations
and Lagrangians should be modified.

We consider the equation given by De Wit and Freedman ['7]

3
O’ul“z“: == apyp\p“.“:“s —_— z au'yp'\p"l‘z“s= 0 (7. 1 )
This equation is gauge invariant with respect to the transformation
OPpHitatts= 37 giigh:ty if ypePts=0.
First, we find the correct gauge transformation corresponding to the
representation (3/2, 1)@ (1, 3/2). If we denote the corresponding gauge
parameter by e, the simplest gauge transformation is

3
61pu.u,u,=23 OMighi= 37 M ghsty —
g g (7.2)
- T D7 OMiytay,ePhs — 5 ) Orm Mgl

It is easy to verify that Eq. (7.1) is invariant with respect to the gauge
transformation (7.2).

Eq. (7.1) is not the correct equation of motion since the additional
restriction yop??;==0 is required. The field p*** corresponds to the re-
presentations 1= (2, 3/2) & (3/2, 2), 2= (3/2, 1)@ (I, 3/2), 3=
= (1, 1/2)®(1/2, 1) and 5=(1/2, 0)® (0, 1/2). The bispinor represent-
ation 5 does not enter into (2.1), therefore, the equation must also be
gauge invariant with respect to dp="1ps. The general structure of Eq.
(7.1) corresponds to (3.2). If the superfluous terms are eliminated, we
instead of (7.1) obtain the correct equation of motion
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\ 3
QM= gy yPr Mttty — 5. Oy pPHats -

1

3
5a = MOy Yoo =0. (7.3)

1 3
g 3 MOt

As we have seen in previous sections, this particular equation corre-
sponds to the nonsymmetrical choice of parameters. The symmetrical

choice (a=b, d=e) gives the bilinear form 'J’u.u;u;‘«l’"""‘"’=Eu.mu:¢“‘"‘”’
and the Lagrangian can be obtained from the equation corresponding

to the symmetrical choice of parameters by multiplying it to {uum,. The
symmetrical equation is obtained from (7.3) via the redefinition of field
equation

i'g 1 3
QHbaty — 5 7 yhypQPHMs — C > Qa0

3

1
AN AT M0 (7.4)

and results in

3 3
Opyphin — 37 Dby — 3yt
3 l 6 3
+ > yuldo\ﬂyp\pwzus-}-—Q_ 37 Orpraphsfy 4 3 it pyepPots —

P i 1 v
oy 2 NMH0ayTPHsPy — 4 2 Mty 0,y yppPe==0. (7.5)

The source constraint of (7.5) is also symmetrical with respect to the
gauge transformation (7.2)

2
ap.’p”z“x — r——é—— 2 Y“zap’yofpol": — —Tli— T’I”’z“s()p!pdo-= 0. (76)

The A==7/2 Lagrangian obtained from (7.5) is the following:

L =E B OoyPipHitats — 3 (E et auyp,.ppu,u,_}_i;wzu‘ YHOppP) 4

R R b (‘T’;wu,d“Y"lP“s"p-i-Ep on, OnYVPHHs) —
3 - 72
=g M BN o PR (1.7)

As compared with the Lagrangian of Fang and Fronsdal [7], we see
that the last term present in (7.7) has to be added.

In this section, we have realized the Pauli-Fierz program by de-
manding that all field equations and additional conditons should follow
from the action principle. Other higher-helicity wave equations and
Lagrangians should be modified in the same way as in the A=7/2 case.
The full expressions for gauge transformations and Lagrangians must
be used when discussing the nontrivial interactions of higher-spin fields.

We conclude this section with some remarks.

1. De Wit and Freedman developed the hierarchy of generalized Chris-
toffel symbols to derive higher-helicity wave equations [']. In the
higher-helicity case (A=>=7/2), this method needs some improvement
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because the equations of motion so obtained need to be modified. The
redefinition of the field equation

QWi ty — —él— S Y0 QPHy -ty — QL > nttaQPpts b= (7.8)

also needs some improvement. It works in the A=3/2 and 5/2 cases, but
in the ,==7/2 case takes the form (7.4).

2. In the .>7/2 case the vierbein realization is more economical, since
the vierbein field includes besides the representations 1, 2 and 3 only
one additional representation 5. However, it should be noted that the
vierbein field itself is defined using additional restrictions on field com-
ponents and, for this reason, the practical realization of the wierbein
field is quite troublesome. The symmetrical field offers a new interesting
possibility — to describe two or more independent helicities using the
same representation. For example, the symmetrical field yg*H:t allows
to describe the helicities 9/2 and 3/2.

8. CONCLUSIONS

In this paper, we gave the general form of arbitrary helicity fermion
gauge-invariant wave equations. It was demonstrated that the higher-
helicity (A=7/2) massless wave equations and Lagrangians should be
modified in order to maintain the required structure.

We used the formalism of spin-projection operators in the form
presented in ['*2% 23], It appears that this formalism allows to clarify
the general form of gauge invariant wave equations and shows which
representations must be used for field variables and gauge parameters.
Although the direct calculation of spin-projectors is complicated in the
general case, without knowing them, it is not easy to find the correct
expressions for the bilinear forms and Lagrangians.
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POOLARVULISE SPIRAALSUSEGA MASSITUD KALIBRATSIOONI-
VALJAD

Rein-Karl LOIDE, Ilmar OTS, Rein SAAR

Kasutades spinniprojektorite formalismi on antud Pauli-Fierzi pro-
grammile vastav poolarvulise spiraalsusega massitute kalibratsioonival-
jade iildine teooria. On vaadatud spiraalsuste 3/2, 5/2 ja 7/2 iildist rea-
lisatsiooni siimmeetriliste tensorbispiinor-viljadega.

BESMACCOBDBIE KAJIUBPOBOYHBIE MOJId NMOJYLEJOH
CIMUPAJIBHOCTH

Peitn-Kapa JIOMIE, Uasmap OTC, Peiin CAAP
C wucnoab3oBanuem GopMaaHaMa CHHHIPOEKTOPOB AaHa obuias Teopius
6e3MaccoBBIX KaJHOPOBOUHBIX MOJIEH MOJYLEJ0H CHHPaJbHOCTH, COOTBETCT-

Byrouasi nporpamme I[Taynn—®upua. PaccMorpena obuiasi peanusauus CrH-
paabHocTet 3/2, 5/2 u 7/2 nasi CHMMETPHUHBIX TE€H30POHCHHHOPHBIX MOJEH.
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