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In papers ['—3] the supersymmetric decays

w— e+vu+Ve, (1)

о—Н ° (2)

mediated by spin 1/2 wino (&) with v as zero spin s-neutrino have been

investigated. At present there is experimental evidence that scalar

neutrinos, if they exist, must have masses larger than that allowed by
phase spaces of these decays [*]. Nevertheless, the investigation of lepton
SUSY decays is not without interest. Firstly, leptons heavier than tau

lepton may exist in nature and, secondly, the SUSY decays are in some

cases more model-dependent than ordinary decays. The present paper
serves to prove the latter statement.

The SUSY decay matrix elements used in papers [!~®] are straight
supersummetric extensions of those used in the Standard Model. It is

known that the Standard Models allows only left-handed leptons in

weak decay processes. However, there exist models (e.g. the left-right
symmetric model) with right-handed leptons. The possibility that right-
handed leptons may participate in weak decay processes is not infinite-

simally small [®].
Extending the models with right-handed leptons to SUSY decay of

heavy lepton

| Г —Н,
|

(3)
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one can take the decay matrix element as

¢ 1o ^

МB=ПП!(РК+OРЬ) (p;+m;) (Pr+BPr)UL (4)

.

1 1
with PL=—2— (I—ys), PR=7 (14+ys) and а,В as small parameters

characterizing the right-handedness of leptons.***
Neglecting the term with product ap (it gives only a small correction

to the SUSY extension of the Standard Model decay analyzed in [
and variation of the @ propagator with p%, the squared matrix element

has the form
”

|Ms|?= |M|*+p*|M:|*+a?|Ms|*+B (MMT+MM") (5)

with
.

@° с

М=№рд‚ Urys(l —ys) Uy, (6)

&° &

M,= Эт- Ui(l=xys) Ur. (7)

In (7) the upper sign belongs to Mi and the lower one to Mo.
The squared matrix element (5) gives the following final charged

lepton energy-angular distribution for the polarized initial heavy lepton:

Gmi 1
дГsЦsу=—ё}-ЪЗ—' exJ(x){x(l—x)[l4n (х)]‘Ч—Ё x(x) — 2xx?7+

1

4 2pox[141(x)] 420(0Bx— reos 0| -1—2) (x) +

4x[l4ln (x)]242x2 +2Bo[ 140(x)] — 20%(a®— В?) ]}ахасоs @,

(8)
where

2 2 12

| I(х)=[ I—2%+ц2(х)] ,
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The mass of the final charged particle is taken to be zero. Without o

terms Eq. (8) coincide with the one given in [*]. The o terms with a, P
are due to right-handed leptons in the decay process. Since the parame-
ter ¢ may be quite large, the right-handed leptons may play a decisive

role in the lepton SUSY decay. That can be seen more clearly in the zero

mess limit of s-neutrinos. Then the spin-averaged distribution takes the

form:

*** Other notations here and afterwards see [! %]
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2 b| Gm 2 , . _
dFOSUS\ =—4—JT,3—L— вх2{l —Ёх+2о[[3+о(а2+[32)]} dx. (9)

From definitions of ¢ and &, one can see that o may be large enough
to compensate for the suppressing influence of parameter e. Therefore,
the part with o in (9) caused by right-handed leptons may be larger than
that caused by ordinary (left-handed) leptons. Everything depends on

comparative values of parameter ¢ and factors eof, eo?a?, вс?В?. Anyway,
it is clear that all these factors must be quite small in the case of L=np
or t in (3). Otherwise the deviations from the ordinary decay spectrum
caused by the SUSY decay would contradict the experimental data. Since

. { My )3 My
eo= \— —,

s

m;„ my

/My 2
Т

2

o=() ()
m;fl my

parameters a« and p must be very small, or the mass of the wino very

large, in order to fulfill this requirement.
Let us illustrate the statement with an example.
Neglecting the effects of right-handed leptons in ordinary decay pro-

cess, one may write out the Michel parameter characterizing the joint
spectrum of ordinary and SUSY decays as

,

3 1 e (144 A

о—- —Н (10)
3 ]14
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with A=oo[B+o(a®+p?)].
In the case of A=o, this expression coincides with the one given by

Buchmiiller and Scheck [?].
Let us now take a=p=o.ol, This value is much smaller than that

allowed by experimental evidence. Taking into account this value, the

expression (10) and experimental data [°] one can find that the lower
limit of the wino mass must be somewhere in the region of 10* GeV in

the case of p-decay and in the region of some hundred GeV in the case

ol t-decay. To stress the possible role of right-handed leptons in SUSY

decays, let us point out that using Eq. (10) without A-terms Buchmiiller
and Scheck have deduced the wino mass’s lower limit m~>>4m,. Should

the fourth generation of leptons exist in nature, the phase space of
reaction (3) would permit the decay with s-neutrinos considerably more

massive than those analyzed т [!-%]. Н decay (3) is allowed, the consi-

derations given above acquire some importance.

One of the authors (I.0. would like to thank Madis Koiv for useful

discussions.
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