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1. Introduction

An experimental method of determining parameters of thin elastic

layer (the Poisson’s ratio v, the velocity of transverse wave ¢; and the
thickness 2d) is proposed in papers [!2] based on the detection of Lamb-

type waves. In these papers the dispersion curves of zero-order antisym-
metric Ay and symmetric So Lamb-type waves are described by the follow-

ing approximate formulas

w=Tk2+Tyk* (for the A, wave),

— T3k (for the Sy wave).

Неге o is the angular frequency, % is the wave number; T, T; and T 3 are
coefficients.

The parameters of elastic layer v, ¢; and d from one side and the

coefficients T; (j=1,2,3) from the other side can be simply presented
one-to-one [2]. After the detection of the dispersion curves and using the

signal processing techniques for determining the approximate T; values,
both the thickness 2d of the layer and its elastic constants v and ¢; can

be estimated.

In this paper, more exact approximations are proposed for the disper-
sion curves of Lamb-type waves A, and So. This allows one to extend

the range of frequency measurement (up to kd~1.5) and to determine

the parametersof the layer from the single Lamb-type wave; either A
or So. Two variants of formulas are given below (the first one is based

оп the A, wave and the second is based оп the S, wave) for estimating
v, ¢; and d, and the errors involved in such a procedure are being
discussed. `

2. Asymptotic formulas for describing the dispersion curves of the

zero-order Lamb-type waves A, and S,

As is well known, the dispersion equations for the antisymmetric A,
and symmetric S; (I==o, 1,2, ...) Lamb-type waves propagating in a

plane layer which is stress-free on both surfaces, have the form
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F=o, E=o, (1)
where

F=qthpi—q2thp;, E=q,cth p,— @z cthpy, (2)

фи= 2—#)% @=4V(l—y)(I=,
2 —— 2 —

Pl=—y—Vl—Yäy2, Pt——-—y—']/l—y2,

__ol=l/ Sk,s{o 2-IYO— C[_ 2_2\7
, y— С, ,

z—ktd,

r=ÄŽ=kd, ® вО
С

y Ct cP ‚

Here the following notations are изе@: c;, c¢; are the longitudinal and
transverse velocities in the linear elasticity theory, v is the Poisson’s

ratio, 2d is the thickness of the layer, k; is the wave number of the trans-

verse wave; c¢Ph k and A are the phase velocity, wave number and the
wave halfthickness of a Lamb-type wave, respectively.

From Eqgs. (1) the dependence y(z) should be found.
Now we shall obtain the asymptotic description for the dispersion

curves of the zero-order antisymmetric A, and symmetric So Lamb-type
waves at small z values (z<l).

‚

The A, wave. Using the notation A=2z/y, we shall search for the solu-
tion of the equation F=o in the form

-

M(z2z) =a,2*(l4+a:z2+a22*+a32%) +0 (26). (3)

By substituting (3) in the equation F=o, using the asymptotic expansions
of thp, and thp, at small values of the arguments and by equating the
coeificients at (identical) z powers, after simple but tedious calculations
we obtain

3 3 17 — 7у
„=3 а-, а— У D 4I—W a

201—v) 15
(Э

а—
1179— 818v+-409v?

*°
2100(1—v)

’

а— 3 а—„
5951 — 260340953— 1901;

2 126000(1 —v)?
-

We shall also present the approximate formula for the phase velocity.
Substituting in (3) y=2/A, and rejecting the O term, we shall write

2
1)=—. (5)

Ya. Vl+aiz+4az--a32°

The S, wave. Analogously, from the equation E=o we obtain the

asymptotic expansion for the wave halfthickness A of the S, wave

A 2 (2) =5.22(14512245924+532%) +0 (219). (6)

where

—IУ —У
sо==

у° (6— 10у--Зу")_ (7)*—
9

, 51 ==
6(l—\7)

, 2— 180(1—\’)2 ,
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IR LB 168у-+ 183%°— i ilA |за— 7560(1 —у)° ;
Corresponding to (5), the approximate formula of the phase velocity

takes the form

1
у(2)==— —-— (8)

Vs. V145122452244532°

Further, apart from the expansion (3) and (6), we shall use the for-

mulas, in the right hand sides of which there are less terms than in (3)
and (6). We shall name the n-th order (n=o, 1,2,3) approximations the

following expansions for the Ay and Sy, waves, respectively:

Х‘п (2) =a.2? 3 ajz! (ао==l), (9)
: j=o

№ () =s.г? М 52® — (so=1), (10)
j=o

where the coefficients 2s, S», 4;, $; (j=1,2,3) are defined by the formulas

(4) and (7).

3. Region of the Validity of the Formulas

The formulas (3) and (6) are obtained in the assumption z<l. In

fact, they can be used outside the domain restricted by this condition.
The real limits of validity of these formulas, as well as of the aproxima-
tions of zero, first and second order, can be estimated by comparison of
the values of A obtained from the proposed formulas with the exact values,
which are obtained from the equations F=o and E=o.

In Fig. 1,2 and Table 1 the results of such a comparison are given.
The computation is carried out in the case of the aluminium layer with

parameters

,=6380 m/s, ¢;=3100 m/s, ;=2.79-10% kg/m3, v=0.3455. (11)

As can be seen from the comparison of columns of Table 1, the
third-order approximations (n =3) describe A(z) of the A, and S,
waves very exactly up to 2<C1.5. In this domain the error of the third-
order approximations is less than 0.2%. The third-order approximation
also gives a rather good description of A(z) of the Ay waves for bigger z

values. Because at z=mn/2 the A, wave can be generated in the layer, we

shall use, for determining the layer parameters, the domain z<Cl.s only.
In the region z<Cl.s the error of the second-order approximations is

less than 2% for the A, wave and 0.6% for the Sy, wave; in the region
z<l these errors are less than 0.9% and 0.04%, respectively.

As can be seen from Table 1, if, in calculating A(z), the 1% error can

be accepted, then the region of validity of the approximation of the first
order for the Ay wave and of the zero-order of the S, wave is restricted

by 2<C0.25 and z2<<0.75, respectively. In determining the parameters of

the layer in papers [!:?], approximations asymptotically equivalent to the
ones described above, are used.

The computations о! A(z2) for different v values [v=o+4o.l9 (9=
=0,1,2,3,4,5)] шт the domain o<<z<C2 have shown that up to z2<<Cl.s
the approximations of the third order work so well that they can be consi-

dered practically exact. Therefore the approximations (3), (6) and (5), (8)
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Fig. 1. The A, wave halfthickness approximations A, (n=0,1,2,3) (see formula (9))
for an aluminium layer.

Ay wave Sy wave

г |----— — L

A, | X3 | Ao l % | Ao X | X3 | м | A | X0

0.1 0326 0.326 0.326 0326 0.315 0.057 0.057 0.057 0.057 0.057

0.2: 0.477 0.477 0.477 0.475 0445 0.115 0.115 0O0.115 0.115 ° 0.114

03 10604 0604 0.604 0.597 — 0.545 0.172 0.172 0172 0.172 ° 0.172

0.4 0.719 0719 0.719 0.707 — 0.630 0229 0.229 0.229 ° 0.229 0.229
05 0829 0.829 0.827 0.808 0.704 0287 0.287 0287 0.287 0.286

06 0934 0.934 0.932 0.903 Q771 0.345 ...10.345 0.345 0.345 — 0.343
0.7 1037 1.037 1.033 0.994 0.833 0.404 0.404 -6.404 0.403 0.400

0.8 1.139 1.139 1.132 1.082 0.890 0.463 0.463 0463 0462 0.458
09 1.239 1.239 1.230 1.166 0.944 0.522 0.522 0522 - 0521 0515
1.0 1.888 1.339 1.327 1.248 0.995 0582 . 0582 0.582 0.581 0572

11 1.437 1.438 1.423 — 1.328 — 1.044 0643 0043 0.643 0.641 — 0.629
12 1.536 = 1.537 1.518 1.406 — 1.090 0.705 0705 0.705 0.701 0.687
1.3 1.636 — 1.636 — 1.613 — 1.483 1.135 0.769 0.768 0.767 0.764 — 0.744

1.4 1.734 1735 1.707 1.558 — 1.178 0834 0833 0.821. 0824 — 0.801
1.5° 1.833 1.835 — 1.800 1.632 1.219 0901 0900 0896 0.887 0.858
1.6 — 1.931 1934;. 1884. 1704, 1259 0971 . 0968 0.963 0.950 , 0915
17 2.031 2.034 1.987 1.775 — 1.298 1045 1.039 1.032 1.014 0973
1.8 2.130 2.134 2.079 1.846 1.336 1.124 1.114 1.102 1.079 1.030
1.9 2.229 2.235 2172 1915 — 1.372 1.210 1.181 1.175 1.145 — 1.987
20 2329 2336 2264 1984 1.408 1.305 1379 1.250 1.212 ° 1.144

Table 1

The exact value of the wave halfthickness A, and its approximations Л,„ of the Ao

and S, waves for ап aluminius layer



43

Fig. 2. The S, wave halfthickness approximation\s An (n=0,1,2,3) (see formula (10))
and the exact value A, found from the equation E=o. At 2<<0.85 the approximation

curves do not differ from the exact ones.

Ao wave | So wave :
2—П ———i ii ——— ——— r t ———— ———

v=0.0|v=0.1|v=0.2|v=0.3:v=0.4lv=0.5|v=0.0|v=0.1lv=0.2iv=0.3iv=0.4lv=-——0.5
00 0000 0.000 0000 0.000 0000 0000 1.414 1.491 1.581 1.690 1.826 2.000
0.1 0276 0284 0292 0302 0313 0327 1414 1491 1581 1690 1825 1999

02 0378 0388 0399 0412 0428 0446 1414 1491 1581 1690 1824 1997

03 0450 0461 0474 0489 0507 0528 1414 1491 1581 1689 1822 1992

04 0504 0517 0531 0548 0567 0589 1414 1490 1580 1687 1819 1987

05 0548 0562 0577 0595 0615 0638 1414 1490 1579 1686 1815 1979

06 0585 0599 0615 0633 0654 0678 1414 1490 1579 1683 1811 1969

07 0616 0631 0647 0666 0687: 0711 1414 1490 1578 1681 1805 1958

08 0643 0658 0675 0693 0714 0738 1414 1490 1576 1678 1798 1945

09 0666 0681 0698 0717 0738 0762 -1414 1489 1575 1674 1790 1929

10 0686 0702 0719 0738 0759 0782 1414 1489 1573 1669 1780 1912

11 0704 0720 0737 0756 0776 0799 1414 1489 1571 1664 1770 1892
12 0720 0736 0753 0772 0792 0814 1414 1488 1569 1658 1757 1870

13 0734 0750 0767 0786 0806 0.827 1414 1487 1566 1651 1743 1845

14 0747 0763 0780 0798 0817 0838 1414 1487 1563 1643 1727 1817
15 0758 0774 0791 0809 0828 0848 1414 1486 1559 1633 1709 1787

16 0768 0785 0801 0819 0837 0856 1414 1485 1554 1622 1688 1754
17 0778 0794 0810 0828 0845 0863 1414 1483 1549 1610 1666 1718

18 078 0802 0819 0836 0853 0870 1414 1482 1543 1595 1640 1679
19 0794 0810 0826 0843 0859 0876 1414 1480 1535 1579 1612 1637

20 0801 0817 0833 0849 0865 0880 1414 1478 1527 1560 1581 15592

Table 2

The relative phase velocity y=c*"/c: of the A, and S, waves for different v values

computed according to asymptotic expansions (see formulas (5) and (8))
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have an independent value. These formulas could be directly obtained by
using the refined dynamical equations of bending and delating plates
proposed in [3].

In Fig. 3 and 4 are shown the dependences of y(z) for different values
of the Poisson’s ratio v, The relevant numerical data are given in Table 2.

4. Determining the parameters of the elastic layer

Now v'e shall turn to the determination of the parameters of the elastic

layer v, ¢, d. We shall use the second-order approximations.
The A, wave. We shall rewrite the formula (9) at n=2 in the dimen-

sion form

84w4+33w3+w2 — Bok4=o, (12)

Fig. 3. The dispersion curves of the relative phase velocity y=cP?"/c, of the A, wave

for different v values. :

Fig. 4. The dispersion curves of the relative phase velocity y=c?"/c; of the S, wave

for different v values.
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where
‚а а а?Bo=£-t—)-, Вз=—аl—‚ B4=—a—2—.;—- (13)

а, Ct Ct

To determine the unknown parameters v, ¢;, d in (13), we shall pre-
sent (with some discrepancy) the dependence of the wave number on

frequency kexp(w) which has been obtained from the experiment. Setting
k“=k:xp, we shall find the values of coefficients Во, Вз апа В, in the

theoretical dependence (12). From the known values of By, Bs and By
the parameters v, ¢; and d can easily be found. Thus, introducing the
coefficient

B 3
D——BT (14)

from the second and third formulas of (13), taking into consideration

(4), we shall obtain the square equation for determining v. The solution
of this equation is

_

4090 — 1666--уIIOOB2OO—3149300° (15)у— 409 D — 686 `
When the Poisson’s ratio v is known, the transverse wave velocity ¢;

and the halfthickness of the layer d can be found according to the
formulas

4 —

—

17 —Zy)2 Во
_

ВзС;—V(
10 B2’ . (16)

which follow from the two first relations of (13).
The S, wave. Similarly, the second order approximation for the S,

wave can be expressed in the form

C3v3+Cov24-v — Cok2=o, (17)

where

2 2 \4

о— @?, Со=і‚ С2=sl‹'Ё—) ‚ C3=s2(£) : (18)
Sx Ct Ct

As in the case of the A, wave, the coefficients of equation (17) can be
considered known from the measurements. After simple calculations from
the second and third formulas of (18), we shall obtain the following
expression for v:

—

2.

e
SRV00/

|/ (19)
5 —3/

where

C?
=

C
(20)

After the value of v has been found, the values of s, and s, are cal-
culated according to formulas (7). To determine c; and d we use the
formulas

c,=}/Cos., d=c; JCss,. (21)
Thus, contrary to the procedure outlined in papers [!?], here the pa-

rameters v, ¢; and d could be determined either from the A, or Sy wave.
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5. Computational errors and iterative process

We shall now consider the computational errors which are introduced

with the proposed procedure, We shall assume that the dispersion curve

can be obtained as exact as desired from the measured data, i.e. that
for the Ay wave k‘;xp(w)=kt(m), and for the S, wave kZ (w)=F? ()

(here k, is the exact value of the wave number obtained either from the

equation F=o or from the equation E=o, respectively).
The error of the Poisson’s ratio v, which is defined either from

equation (15) (according to the A, wave) or from equation (19) (accor-
ding to the Sy wave), can be connected only with the error in determining
the coefficients D or / (see equations (14) and (20), respectively). In its

turn, the error of D and / is caused by the error of the solution obtained
on the second order approximations, i.e., by the difference between k()
calculated from (9), (10) at n=2, and k.(w), which causes a notorious

error in determining of either the values By, Bs and B, or Cy, C; and C3
by approximating the experimental curve by the curve given by either

expression (12) ог (17), respectively. In Fig. 5,6 the dependences In |54|
and 8s on v are shown. The quantities 64 and s are defined by

Av/v Av/v——— = — ——— | 22SN e
L

(22)

Here Av/v is the relative error of the evaluation of the Poisson’s ratio v;

AD/D and Al/I is the relative error in evaluating coeificients D and /,
respectively. .

The A, wave. As can be seen from Fig. 5, when the value of v is

determined according to the A, wave, even a small error in determining
the value of D can cause a considerable error in the value of v. This error

can be reduced by the following iterative process.
Letus assume that dependence k:., (w) is obtained from the experi-

ment. Then

(i) the coefficients B, B(3i) and B{? have to be found by comparing

k:xp(i) with the representation (12) at k=Rexpi) (if i=o, then

k‘zxp(o):k‘txp). Here index (i) marks the number of the iteration

(i=o, 1,2, ...); .
(ii) aecording to the formulas (14), (15) and (16), the values of v,

cö and d have tobe calculated. If it happens that vd>o.s, then

it should be put võ=o.s and if vÕ<O then it should be put võ=o;

(iii) the initial experimental curve should be corrected according to the
formula

——4
—

4k4exp(i+l) —k::xp (k*(i) ki ) - (23)

Here k. should be found from the equation F=o at v=v(?, ct———c(ti? and

d=d"%, while k:i) is the second order approximation

k'ži)= (ВФо*--ВФоB--о?) / ВО. (24)

The steps should be repeated until the process becomes established. By
using the curve kt ; (w) instead of the experimental curve Вкр ()

according to formula (23), we reduce the computational errors which are
connected with the replacement of the &* (ш) curve by its second-order

approximation. It should be noted that in the considered irequency range
the third-order approximation has sufficiently high precision. Here, we
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are dealing not with approximation of k(w), but of k*(w). Identifying
k% (0) with the analogous curve defined by the third-order approximation,
we shall rewrite the formula (24) in the form

бр = Bomprad B 0 Oo RGI. (25)

The S, wave. We shall turn now to the case of determining the para-
meters of the layer according to the dispersion curve of the S, wave. In

this case the relative error in determining coefficient / on several per-
cents is not frightful (see Fig. 6). Here, however, an obstacle of another
kind arises. It 15 connected with coefficients s; and s;. As can be seen

from formulas (7) s:<s, <l, and the coeificients s; and s, are propor-

Fig. 5. The dependence In|§4| on v for the A, wave (see formula (22)).

Fig. 6. The dependence 8s on v for the S, wave (see formula (22))
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tional 10 v2. From this follows that at small values of the Poisson’s ratio

v(v<<o.l) the difference of the values of A(z) defined by the approxima-
tions (10) at n=0,1,2 is less than 0.1% even at the largest value of
z=l.s. At larger values of the Poisson’s ratio the difference of the value
of A(z) defined by the second-order approximation differs from the that
of the third order in 1—2% only and at 1.0<2<1.5. This circumstance

strongly complicates the experimental determination of the coefficients

C» and C 3 in the equation (17) and at v—0 makes it just impossible.
At the determination of the parameters of the layer from the disper-

sion curve of the A, wave the values of A(z), defined by the first- and
second-order approximations, should be far enough from each other near the

upper boundary of the measurements z=z,. This requirement restricts

z4+ from below. Thus, for example, in the case of an aluminium layer,
using the 29% difference of the values of A(2) given by'the approximations
of the first and second orders, we shall obtain, on the basis of (9) at

n=l,2 or from Table 1 that z, should be larger than 0.4. In such a

manner behaves the approximation also for other materials. It should be
noted that at determining the parameters of an elastic layer according
to the procedure outlined in [!2?], the first-order approximation must also

significantly differ from the zero-order approximation.
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ELASTSE KIHI PARAMEETRITE MAARAMINE KASUTADES
NULLINDAT JARKU LAMBI TUUPI LAINETE DISPERSIOONIKOVERAID

On esitatud Lambi tiiipi lainete A, ja S, dispersioonikoverate asiimptootilised aren-

dused. Koverad kehtivad laias sagedusribas ulatudes kuni k,d~1,5, kus k; on poiki-
laine lainenumber ja d pool kihi paksust. Artiklis [?] esitatud meetodi arenduses on

antud Poissoni koefitsiendi v, ¢; ja d mairamise viis ithe Lambi thiipi laine (kas Ao
voi Sp) dispersioonikovera mootmise teel.

Юлий КАПЛУНОВ, Евгения НОЛЬДЕ, Наум ВЕКСЛЕР

ОТЫСКАНИЕ ПАРАМЕТРОВ УПРУГОГО СЛОЯ ПО ИЗМЕРЕННЫМ

ДИСПЕРСИОННЫМ КРИВЫМ ВОЛН ЛЕМБА НУЛЕВОГО ПОРЯДКА

Выведены асимптотические разложения дисперсионных кривых волн Лемба А) н

$,, работающие в широком диапазоне частот вплоть A0 kid~ 1,5 (здесь &, волновое

число поперечной волны,@—полутолщина слоя). Представлен способ отыскания

коэфЁ›ициента Пуассона v, ¢; и @ по измеренной дисперсионной кривой волны 40
ИЛИ Эр.
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