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I. Introduction

Consider a discrete time non-linear plant P described by equations of
the form

x((+1)=[(x(1), u(t), w(t)), x(0)=x0, y()=h(x()), (1)

where the states x(-) belong to an open part X of R”, the controls u(-)
belong to an open part U of R™, the unmeasurable disturbances w@(-)
belong to an open part W of R”, and the outputs y(-) belong to an open
part Y of RP. The mappings [ and h are supposed to be real analytic.

In the Dynamic Disturbance Decoupling Problem (DDDP) one

searches for a regular dynamic state feedback

2(t+l)=vp(2(l), x(1), v(t)), 2(0) =2O, u(t)=9(2(t),x(t), v(f)) (2)

with the p-dimensional compensator state 2(.)Z<R®, with a new

m-dimensional control v(#), so that in the feedback modified dynamics

x(t+l)=f(x(1), 9(z(t), x(f), v (1)), w(1)), (3)
z(t+l)=vyp(z(t), x(1), v())

the disturbances w(#) do not influence the outputs y(¢). Here the regula-
rity of (2) means that the dynamical system (2) with inputs v(f) and

outputs wu(f) is invertible, or, equivalently, that it defines a one-to-one

(x,z) — dependent correspondence between the input variable v and
the output variable w.

Throughout the paper we shall adopt a local vievpoint. However,
contrary to the continuous time case, in the discrete time case the local

study is impossible around an arbitrary initial state since even in one

step the state evolution can move far from the initial point. For this
reason we shall consider the DDDP locally around the equilibrium point
of the system. Such an approach was also used by Nijmeijer [!] in stud-

ing the input-output decoupling problem. So, we are assumed to work
in a neighboturhood of an equilibrium point of the system (1), that is

around (x%, % w®) &XXUXW such that f(xo, u®, w®)=x°. For the initial
state x(0) =x", the constant input sequence u(f)=u° {=o and the con-

stant disturbance sequence w(f) =w"° =O, there exists the constant out-

put sequence y(f) =y’=h(x°), t=o.
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In [2] the DDDP has been solved locally around the equilibrium
point of the system (1) under two additional assumptions. The first

assumption was that the original system (1) is square, i.e. the number
of inputs m equals the number of outputs p. The second assumption was

that the system (1) with w(¢) =0 is invertible. The purpose of this paper
is to give a complete regular local solution of the DDDP without any
further assumptions on the discrete time non-linear system (1). So we

will not assume here that m=p nor the invertibility of (1). The solution
of the DDDP we present here is an extension of the results earlier obtai-
ned by Kotta and Nijmeijer [?], which roughly indicate that the problem
is locally solvable if and only if it is solvable by means of a certain com-

pensator got from the inversion algorithm. Similar results for continuous

time non-linear systems, linear in control, have been obtained by Huiberts,
Nijmeijer and Van der Wegen ['].

2. Preliminary results

In this section we give preliminary results. The main tool in the solu-
tion of the DDDP is the so-called inversion (structure) algorithm for

discrete time nonlinear systems without disturbances. This algorithm has

been introduced by Kotta [?] юг construction of a right inverse of a

discrete time nonlinear system, and given in a more general and simple
form by Kotta and Nijmeijer [?]. Both algorithms can be considered as

generalizations of the algorithm obtained by Lee and Marcus [%] that

was only applicable under some restrictive assumptions. These assump-
tions have been shown to be a necessary and sufficient condition for
local static-state feedback input-output linearizability.

In the sequel we will present the inversion algorithm obtained by
Kotta and Nijmeijer [2] for the system (1) with w(f)=w?’. Let us denote

F(x(t), u(t), @°) by F(x(), u(t)).

Step 1. Calculate

y(t4-1)=h(F(x(t), u(t)),

and define .

—rank——ä——h(F(x u)) lQi_
Õu

‚ W | x=l9% u=l9°

Let us assume that o,;:=const is some neighbourhood О, о! (‚_‹o‚ и°).

Permute, if necessary, the components of the output so that the first os

rows of the matrix —;t-h(F(x, u)) are linearly independent. Decempose

y(t+l) and h(F(x,u)) according to

gi(t—H)] [а‚(х‚и)]I=[^
‚

h(F(x,u))=l» ,

where j 4 (4+l) and @(x, u) consist of the first 04 components of y(t—l—l.)
and h(F(x,u), respectively. Since the last p—o, rows of the matrix

—?—h(F(x, и)) are linearly dependent on the first 04 rows, we can write

ди

gu(t4+l)=a(x(t), u()),

st =ai(x(l), u(t)) =y(x(1), ys(t+l)).

Denote @(x, u) by Ai(x, u). Denote ;o(t)=h(x(t)) and go==o.
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Step k+l (k=l). ASuppose that in Steps 1 through £, 5)(1+1),
J02(14+2), ..., Ju(t+k), yr(t+k) have been defined so that `

j (i+l]) =õi(x(2), ü(6)),

ja (I+2) =õ(x(t), ü(t), 1(1+2)),

gr(tt+k)=an(x(t), u(t), {Fi(l+)), I<Si<k—1, i+l<j<k}),

Y(t+k)=y(x(1), {Fi(l4]), I<i<h, i<<j<<k}).

Suppose also that the matrix Ap=[al ...aT] has full rank equal ЮЮ 0
in some neighbourhood Oy of (x9 u%).

Compute d

^ ^ . A
yh(tHk+l)=y(F(x(1), u(t)), {Fi(t+i+l), I<i<k, i<j<hk})=

A

=anrl(x(l), u(l), {Fi(t4])), I<i<k, i+l<j<k+l})

and define

д ГА, (-) ]e |Ок— Гап
38 ak+l(-) x=2o, u=lo9, ,o.=h(ao)

Let us assume that gnyr=const is some neighbourhood Opiy оЁ (a7 u).
Permute, if necessary, the componenfs of yr(f+k-+1) so that the first

or+l rows of the matrix "

д

A [ААТ’ Ty НЫ

are linearly independent. Decompose _z}h(t—}—k—l—l) апа акн ассог@те '0

^ s(e+D) ] [s+]tk!l — [ ^

,
a —

^

,yr(t+ki])
pei (t+k+l) R+

e

where §r4l(f+k+l) апа dpyy consist of the first ok4il—o£2 components
of yn(t+k+l) and Ah+l, respectfully. Since the last p— grys rows ОЁ

the matrix A [AT, aT |7 are linearly dependent on the first a 1 rows,
ди k k+l

we can write

7 4+l) =õi(x(t), ü(), |

бын ((-Ё-Н1)=авн(Х(, и(0), {F:(+)), I<i<k, i+l<j<k+l}),

st(k1=g (x(1), {Fi(t+)), I<i<k+l, i<j<k+l}).

Denote |
A"“:[A:’ dTl:+l]T'

End of the step £—+l. j
In the seguel we need a notion of regularity associated with the inver-

sion algorithm which will be defined below.

Definition. We call the eguilibrium point (x%, u%) о the system
(1) with w(f) =uw" regular if, for an appropriate application of the inver-

sion algorithm,
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д .
`

…

гапкы—А;‹(°)—9А‚ I<k (4)

in some neighbourhood of (x°, u®). We call (x° u°) strongly regular if (4)
holds for each application of the algorithm.

It has been proved by Kotta and Nijmeijer [?] that the integers o, ...

‚ ..›@& do not depend on the particular permutation of the components of

Yyr(t4+k+l). Thus, using this algorithm around a strongly regular
equilibrium point, we obtain a uniquely defined sequence оЁ integers
I<oi<<...<<re<<...<<min(p,m). Геё о*== тах{ок,В2 1} апа let a be
defined as the зтаПеs{ & ©М such IВа ок==o*. In analogy with Moog
[°], we call the ow’s the invertibility indices of the system (1) with

w(1)=w.
Next we shall show that around a regular equilibrium point the

structure algorithm terminates in at most n steps. To prove it, we need
the following Lemma.

Lemma 1. I the rank of the matrix OAq(-)/Ou is equal to p

(i.e. po=p) in some neighbourhood 0 of (x° u° ¢° ..., Y)=XXUX

XYe-t then for k=o, 1, ...,
a—l on nr(0) (where mp: XXUX¥o™!—

—X X Y% is the projection along U > Ylk on XXYk) the following
equalities hold:

o (x)

cank—2|ol(x, 1 (Е+-1))
— № (р—о). (5)

. дх . . .
.

. . . I==o .

9x (x, (yi(t+j), IZ)IZk, I<j<bk))

Proof. We shall prove the lemma only for the case k=a—l; the

proof for the other cases is analogous. Denote by yix(-) the &£ th compo-

nent of y;(-). Assume that

k
д 2о(-) а—!

гапк-о §..0 <š(P 0i),

Ya—1(")

and let, for example, (without loss of generality) the last row of the

matrix d(y?, ..., y*)7/0x be linearly dependent on the other, rows.

Therefore, on the neighbourhood of (x*, у*, ...,
у*) & nq-1(0) there exist

functions v*,(x, {7:(4])), I<i<a— 1, i<j<<a—l}) such that

d -

s;' Уа—l, р—р(_—і(')=

a—2 p—p;
‚

д ^

ю-р --1
‚

Э^
6=šo šlvik(')*-õ;—yih(-)—!— š Ук ) daak(o). — (6)

Because of the analyticity of the functions yAik(-) the equality (6) hol~ds
on some suitable neighbourhood of every point from the set ma—1(0),
perhaps for the other functions yix(-). Therefore, the equality (6) holds

also around the point (F(x,u), y* ...,
y*). Multiplying both sides of

(6) to OF (x, u) /ou, and taking into account that
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д ^ д ^ oF
Wyü (F(x' u)’ ` ) Z?x—y” (x’ ) I

x=F(x,u) _дТ l(x,u)
we obtain

д ^

Ou Jo PP, (F(x,u), )= ‘
a—2 P—o; д ^

= 2) 2 vi() —— yi(F(x, u), )+
i=o ki

ди

Рр—-1 д ^

+ › Уа—і‚й(')—д_уа—і‚д(р(х» и), -).
h=l

и

Using the inversion algorithm the last equality results in

д1 &
s

Õ—uya,p—pa„.(x, {(H:(t4)), I<Si<a—l,i<jsa—l})=

a2[Py —P; д PPi д ^=Z( 2; vi(-) 77 Jinx()+ 2i Yik(')'õ—'yiH,h(')) +
: и и
=0 k=l h=o; 1—0;H+1 i

P—Pg -1 д
+ 3 Yaorr(-)5 Far(). (7)

h={
¢

The left hand side of (7) is actually the last row of the matrix dAq(-)/ou.
The only difference is that #; (1--]) in this matrix are equal to ji (/+j—l)
for I<i<<a, i+l<<j<<a. This fact, of course, does not restrict the gene-
rality, because 7;(¢+j) can take arbitrary values around y,. Recall that

by the inversion algorithm Ay(-)/du=o. Thus, the right hand side о!

(7) is the linear combination the p—l first rows of the matrix dAq«(-)/du
(where §;(t+j)=yi(t+j—l)). This contradiction proves the Lemma.

Lemma 2. Around the regular equilibrium point the structure algo-
rithm terminates in at most n steps, [. e.

о*==oл.

Proof. Assume at first that o*=p. Then by Lemma 1 we obtain

д .’;0(') —i —t

X
1a i=o i=o

Ya—1(")

From the other side, as x & X < R", for every x we have

д [!/0(') ]| гапКк——| . ....| <л.
дх

^

Ya—l(+)

In the case a>n this will give us a contradiction. Therefore, 1Ё о*==[.
then a<<n.

In the general case (o"<<p) we can extract a subsystem from the

system (1) with w=w?" that has ¢* outputs, and the result still holds.
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3. Main result

In this section we give our main result. We define a compensator for
a system (1) as follows. Let (x u% w°) beé a strongly regular equilibrium
point for (1) and let us apply the inversion algorithm to (1) with w=lw".
This yields at the nth step:

У„==А.(х(1), u(t), {Fi(t+)), I<i<n—l, i+l<j<n}), (8)

Yn (t+n) =yr(x*(t), #( I<i<n, i<j<n}),

where ¥,=[§T(t+1),§7(t+2),...,57 (t4+n)]T and the matrix

OA,(-)/0u has full row rank g, on a neighbourhood 0, of (x° «°). For

i=1,2,..., on, let t4vy; be the lowest time instant and f/+e; be the

highest time instant in which y; appears in (8). Then we can rewrite

(8) as
:

[ypk—|+i(t+k)v +> Yo, (t+k)]T= (9)

=an(x(t), u(t), {yi((+)), I<i<or—, vi+]jmin(k, ei))),

k=]1,2,...,n.

After a possible permutation of inputs we may assume that the Jacobian
matrix of the right hand side of (9) with respect to u'=(ul, ..., up )7
around the point (x9, «° ¢°

..., y°) has full row гапКол. Therefore, the

equation (9) сап be solved for wu!(f) wuniquely around the point
(x% u® ¢°

..., y°) by applying the Implicit Function Theorem. Define
u*=(up+l, ..., tm)T. Then, from (9), we obtain

ut(t)y= (x(1), {yi(t+)), I<i<<on, vi<j<ei}, W)) (10)

which is such that for k=l, 2, ...,
n

Yo, ,+I(E+R), ..\ Yo, (11+R) "= (11)

=an(x(t), 9 (), {yi(1), 1 <i<<ons, vitl<j<min(k, e)}).

Notice that ¢ : Vy— И, is analytic for some (possible small) neighbour-
hoods И, апа V, of (&% ¢° ..., 4% u*o) in XOX(Y?)"XU® and u' in

U, This implies that (11) will hold as long as (x(¢), {yi(t+j), | <<i<<on,
vi<j<ei}, u?(t)) =V, and defined by (10) u!'(f) =V, Of course, the

identity (11) is lost if we leave the neighbourhoods V; resp. V., which

may happen for some 7p.
Now, construct the compensator for (1) in the following way. Let_zi———

=(2il, ..., 2iey )T, i=l,
... @n be a vector of dimension в;— yi, °

a vector of dimehsion m — g,, and consider the system

zi(t4l)=A:zi(t)+Bvi(?),

i=]l, ..., On, (12)

u()=@(x(1), {zii(t), I<j<<ei —yi, vill), I<<i<<en}, V*()),

u?(t) =uo2(t)

with inputs v'=(vy, ..., vy )T and 03, outputs u= («'7, 4>7)T апа

(Ai, B;) т Brunovsky canonical form

О le-— —1A,-=[ £ ] Bi==(o, ...
0 1)7.

о.. 0
( )

Now we shall show that the compensator (12) is regular. K
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Lemma 3. The compensator (12) is invertible on a neighbourhood
о (х°, «°, у°).

Prooi. Obviously, (12) is invertible if and only ## the system

Zi(t+l)=AiZi(t)+Bivi(t), 1= 1, ..

+› @т (133)

ul(t) =o(x(t), 21(t), ..., 2p, (), vi(), v¥) (13b)

15 invertible. The system is invertible { it is both right and leit inver-
tible. Right invertibility of (13) means that given arbitrary u«!'*, we can

construct v'* that yields this desired «!*. From (13a) we obtain

vi(t)———z,-,ei_vi(t—{—]): =2il(t+Bi—vi). (14)

Denote the ith row of @,(-) in the structure algorithm by axi(-). Taking
into account that (13b) has been obtained around (x?, и°, P) as a solu-
tion of (9) with w?=u?®, y;(t+vi+j—l)=zi;(t), j=l, ..., ei—y; and

Yi(t+ei) =v;(t), we obtain

Zir(t) =ay(x(2), ul(t), u®), Il<i<o,

and taking into account (14), we can construct for i=l, ..., o; the new

control v”(¢) that yields u'*:

v*(t)=au(x(i+ei—yi), W(t-+ei—vyi), ), i=l, ..., 0. — (15)

Let us denote
`

‚

21 (#) ={го(): &:>2, i=l, ..., ol},

о1(7) ={0;(0): e:=2, i=l, ...,
ol}.

Then we obtain

2u(t) =ani (X(1), wi(t), u®, 21(t), 0:(t)), e+l<i<e,

and taking into account (14), (15), we can construct for i=g:+l, ..., 02
the new control v*(/) that yields u!*:

0% (1) =aai(x(t+ei—yi), U™ (tei—vi), u®, 2i(t+ei—yi),

v(tdei—vi)), atl<i<es.

Applying the above arguments repeatedly, we prove that given arbitrary
u', we can construct v'* that yields this desired «'*. Hence the compen-
sator (12) is right invertible on a neighbourhood of (x° и°, у°).

The left invertibility of (12) on a neighbourhood of (x° w% y°) means

that if whenever v(0) &Y° and v*(0) Y° are distinct controls, the

corresponding output sequences differ, and it follows from the fact that
the equation (9) сап be solved uniquely for w!(f) around the point
(x°, u° y°) by applying the Implicit Function Theorem.

Our main result can now be stated as follows.

Theorem. Consider the system (1) around a strongly regular equi-
librium point (x° u® w°). Apply the inversion algorithm 10 (1) with
w=w". Then the DDDP for system (1) is locally [inite time solvable
around (x° u® w°) if and only if for o<k<<n— 1

Oyn([(x, u, @), (i (t4i+l), I<<i<k, i<i<k})_1 (16)
w `
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Moreover, if (16) holds, the DDDP can be solved around (х°, и', @°) Бу
means of the compensator (12) with arbitrary initial state.

Proof. Sufficiency. If (16) ~holds, then applying the inversion

algorithm to (1) with w=w? gives the same result as applying it to (1)
where we consider w as a parameter. It is now easy to see that the com-

pensator (12) applied to (1) locally around (x° u% wY) yields

yi(vi+j—l)=2is(o), j=1,..., &i—yi

yi(t—l—e,-):v,-(t), Oštštp', l=l, .* ~ @л,

which is independent from w(#), Furthermore, if (16) holds Ююг О й<

<<п —1, then it holds for every £2=o. Therefore,

yi(j) Юг (I<i<on, O<j<vyi—l) and (etI<i<<p, j=o)

being the components of &h(t-l—k), k=o are independent from w(¢) by
assumption. Therefore, (12) solves the DDDP.

Necessity. Let us assume that there exists a regular dynamic
feedback control defined by (2) for (1) that locally finite time solves the
DDDP. Furthermore, assume that (16) does not hold for £=o, that is

| h„д8 ({(х, и ®))o
да

Then at the first step of the inversion algorithm we have that y({+4l)
explicitly depends on w:

y(t4-1)= h(f(x(1), u(t), ©({)). (17)

Since (2) solves the DDDP for (1), this w-dependence should disappear
il we plug (2) in (17). However, this is not possible, since (2) does not

depend on w. Thus (2) must be such that it imposes the constraint

oh(f(x,u, w) A——(—](*%ä-a)—"—)—zši(x, u, Ш) =O.

But this would imply the nonregularity of (2). So we necessarily have
that (16) holds for k==o. Next, assume that (16) does not hold for k=l.
Then we obtain at the second step of the inversion algorithm applied to

(1) (where we consider w as a parameter):

ВЕ oys(f (5,4, @), 1 (+-2))
20

ди

Using the same argument as above, we can see that this w-dependence
will not disappear, unless (2) is constructed in such a way that the

constraint |

ду х, и, @),

#

(1--2и( и ), 1(-2))
— оеев(I+-9))—0

Jw

is imposed on the system. That will imply the existence of k{l,
...,

on}
such that v, cannot be chosen arbitrarily and would contradict the regu-
larity of (2). Therefore, (11) has to hold for #=l. Applying this algo-
rithm repeatedly, we can show that (11) holds for &==o, 1, ..., п—|,
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Ulle KOTTA

HAIRINGUTE DUNAAMILINE KOMPENSEERIMINE DISKREETSETES

MITTELINEAARSETES SUSTEEMIDES: ERINEVA SISENDITE JA VALJUNDITE

ARVUGA MITTEPOORATAVATE SUSTEEMIDE JUHT

On vaadeldud mitme sisendi ja mitme vdljundiga diskreetse mittelineaarse siisteemi

tarbeks sellise diinaamilise tagasiside kujul esitatud kompensaatori konstrueerimise
tilesannet, mis tagaks suletud siisteemi vidljundite invariantsuse mittemoodetavate hai-
ringute suhtes. Varasemad tulemused on iildistatud juhule, kus juhtimisobjekti sisen-

dite ja véljundite arv voib olla erinev ning ta ei pruugi olla pooratav. Ulesande lahen-
dus pohineb podéramisalgoritmil: tema terminites on esitatud i{ilesande lokaalse lahenda-
tavuse tarvilikud ja piisavad tingimused regulaarse (podratava) kompensaatori abil
juhtimisobjekti tasakaalupunkti {imbruses. Nende tingimuste tdidetuse korral on tule-
tatud kompensaatori vorrandid.

Юлле КОТТА

ДИНАМИЧЕСКАЯ КОМПЕНСАЦИЯ ВОЗМУЩЕНИЙ В ДИСКРЕТНЫХ
НЕЛИНЕЙНЫХ СИСТЕМАХ: СЛУЧАЙ НЕКВАДРАТНЫХ

И НЕОБРАТИМЫХ СИСТЕМ

В статье для дискретных нелинейных — систем со многими входами и выходами

рассматривается задача построения — компенсатора в виде динамической — обратной
связи по состоянию, обеспечивающего инвариантность выхода замкнутой системы по

отношению к неизмеряемым возмущениям. Ранние результаты обобщаются для слу-

чая необратимых систем с несовпадающим числом входов и выходов. Решение задачи

основывается на алгоритме обращения системы: в его терминах представлены необ-

ходимые и достаточные условия разрешимости задачи с помощью рёгулярного (обра-
тимого) компенсатора локально в окрестности точки равновесия системы. При выпол-

нении условий разрешимости задачи найдены уравнения компенсатора.
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