EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. FUUSIKA * MATEMAATIKA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * МАТЕМАТИКА PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS

SOPRE OTHOCHTER 1989, 38, 1 Heredo Margonine colesidor approve

УДК 530.12:531.51

B. YHT

НАРУШЕНИЕ ЗАКОНА СОХРАНЕНИЯ ЭНЕРГИИ В РЕЛЯТИВИСТСКОЙ ТЕОРИИ ГРАВИТАЦИИ

(Представил Я. Эйнасто)

В рамках релятивистской теории гравитации Логунова определяется нарушение закона сохранения энергии в свободно падающих физических лабораториях.

1. Введение. В общей теории относительности (ОТО) Эйнштейна нет вполне удовлетворительного определения локальной плотности энергии. Физически это является следствием принципа эквивалентности (свободно падающему наблюдателю гравитационное поле кажется отсутствующим); математической причиной этого является нетензорный характер связности. А. А. Логунов с сотрудниками [^{1, 2}] развивает релятивистскую теорию гравитации (РТГ), исключая принцип эквивалентности, но сохраняя нетензорный характер связности. В данной работе докажем, что вследствие нетензорного характера связности истинного пространства (ИП) Минковского энергия Логунова 1⁰⁰ становится несохраняющейся в наших лабораториях величиной, если учитывать абсолютный * характер гравитационного поля, в котором Солнечная система свободно падает.

2. Законы сохранения и криволинейные координаты. Напомним, что имеется принципиальное различие между законом сохранения электрического заряда и законом сохранения энергии. Первому закону можно придать форму закона сохранения не только в прямоугольных, но и в криволинейных координатах, второму — нет. Первый закон переносится автоматически на случай искривленного пространства-времени (ПВ), второй — нет.

Остановимся на некоторых деталях закона сохранения энергии. Пусть в галилеевых координатах тензор энергии-импульса (ТЭИ) удовлетворяет закону сохранения энергии ** $T^{\mu\nu}_{,\nu}$ =0. В криволинейных координатах форма закона сохранения энергии нарушается

$$\gamma - \gamma T^{0\nu}{}_{i\nu} = (\gamma - \gamma T^{0\nu}){}_{,\nu} + \gamma - \gamma \Gamma^{0}_{\sigma\nu} T^{\sigma\nu} = 0, \qquad (1)$$

^{*} Словом абсолютный мы характеризуем те тензорные в РТГ величины, которые в ОТО являются нетензорными.

^{**} Греческие буквы — индексы принимают значения 0, 1. 2, 3, латинские — 1, 2, 3; по дважды встречающемуся индексу производится суммирование; $\gamma_{\mu\nu}$ — метрический тензор ИП Минковского, $g_{\mu\nu}$ — метрический тензор (эффективного) пространства Римана, $\Gamma_{\mu\nu}^{\alpha}(\gamma)$ и $\Gamma_{\mu\nu}^{\alpha}(g)$ — соответствующие символы Кристоффеля; $\gamma = \det \gamma_{\mu\nu}$, $g = \det g_{\mu\nu}$, $T^{\alpha\beta}{}_{,\beta}$ — обычная производная, $T^{\alpha\beta}{}_{;\beta}$ — ковариантная производная в пространстве Римана, $T^{\alpha\beta}{}_{|\beta}$ — ковариантная производная в криволинейных координатах ИП Минковского. Пользуемся единицами, в которых скорость света c = 1 и эйнштейновская гравитационная постоянная $\varkappa = 8\pi$.

$$\frac{d}{dt} \int_{V} \sqrt{-\gamma} T^{00} d^3 x = - \oint_{\partial V} \sqrt{-\gamma} T^{0i} d\Sigma_i - \int_{V} \sqrt{-\gamma} \Gamma^0_{\sigma v} T^{\sigma v} d^3 x,$$

где ∂V — граница трехмерной области V, а $d\Sigma_i$ — элемент границы. Изменение энергии в рассматриваемом объеме V не равняется потоку энергии через границу ∂V объема.

Покажем, что свойство (1) тензора второго ранга имеет следующие последствия: в ОТО нет универсальных тензорных законов сохранения, а в РТГ законы сохранения для наших лабораторий нарушаются.

В конечных областях искривленного ПВ невозможно ввести галилеевы координаты и член $\sqrt{-g} \Gamma_{\sigma\nu}^{0}(g) T^{\sigma\nu}$ пишется в ОТО в нетензорной форме ($\sqrt{-g} \tau^{0\alpha}$), α , где $\tau^{0\alpha}$ интерпретируется (в квазигалилеевых координатах) как плотность энергии-импульса гравитационного поля. Имеется нетензорный закон сохранения [$\sqrt{-g} (T^{0\alpha} + \tau^{0\alpha})$], $\alpha = 0$. В случае гравитационного излучения из $\tau^{\mu\nu}$ можно получить настоящий ТЭИ путем усреднения по нескольким длинам волн [³]. В случае статических полей удовлетворительной процедуры «тензоризации» $\tau^{\mu\nu}$ нет. Поэтому локализовать удается только энергию излучения, но не энергию статического поля.

В теории гравитации Логунова галилеевы в окрестности Солнечной системы координаты являются криволинейными с точки зрения ИП Минковского координатами, что ведет к нарушению законов сохранения в наших лабораториях.

$$\gamma \overline{-\gamma} t^{0\nu}{}_{l\nu} = (\gamma \overline{-\gamma} t^{0\nu}){}_{,\nu} + \gamma \overline{-\gamma} \Gamma^{0}_{\alpha\nu}(\gamma) t^{\alpha\nu} = 0, \qquad (2)$$

где $t^{\mu\nu}$ — метрический тензор энергии-импульса ИП Минковского. *** Вычислим $\Gamma^0_{\alpha\nu}(\gamma)$ в инерциальных с точки зрения ОТО системах отсчета.

3. Галилеевы координаты ОТО как криволинейные координаты РТГ. Предположим, что наша лаборатория свободно падает в слабом однородном гравитационном поле, ньютоновский потенциал которого $U = -G\bar{x}$. Соответствующий приближенный линейный элемент в гармонических координатах следующий ([⁴], § 55):

$$ds^{2} = (1 + 2G\bar{x})d\bar{t}^{2} - (1 - 2G\bar{x})(d\bar{x}^{2} + d\bar{y}^{2} + d\bar{z}^{2}).$$
(3)

Этот же линейный элемент в рассматриваемом нами приближении можно получить из метрики Минковского

$$ds^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2 \tag{4}$$

с помощью преобразований координат

$$\begin{aligned} x &= \bar{x} + \frac{1}{2} G \bar{t}^2 - \frac{1}{2} G (\bar{x}^2 - \bar{y}^2 - \bar{z}^2) + O (G^2), \\ y &= \bar{y} - G \bar{x} \bar{y} + O (G^2), \\ z &= \bar{z} - G \bar{x} \bar{z} + O (G^2), \\ t &= \bar{t} + G \bar{x} \bar{t} + O (G^2). \end{aligned}$$
(5)

*** В РТГ можно получить законы сохранения энергии, переходя от тензорных величин tαβ к векторным tαβξβ, где ξβ вектор Киллинга. Но вектор ξβ описывает ускоренную относительно Солнечной системы (точнее, инерциальную относительно ИП Минковского) лабораторию и t⁰βξβ не является энергией в реальных, падающих свободно во внешних гравитационных полях лабораториях. Так как нас интересуют свободно падающие лаборатории, то вектор tαβξβ далее рассматривать не будем. Отметим

только, что в случае эффективной метрики (3) имеем $\overline{\gamma_{\alpha\beta}} = \text{diag}(1, -1, -1, -1), \overline{\xi}\alpha = = (1, 0, 0, 0),$ а в интересующих нас системах отсчета, заданных координатами (5) $x^{\alpha} = x^{\alpha}(\overline{x}\beta)$, имеем $\xi^{\alpha} = (1+Gx, +Gt, 0, 0).$

Символ $O(G^2)$ обозначает члены, пропорциональные G^2 . Иногда вместо этого символа ставим три точки или просто опускаем его: мы ограничиваемся всегда наименьшим неисчезающим приближением.

Принцип эквивалентности ОТО позволяет рассматривать систему отсчета (4) как инерциальную и пользоваться в ней всеми законами специальной теории относительности (СТО), включая законы сохранения энергии. В РТГ система отсчета (4) неинерциальная, а используемые в ней координаты x^{α} нелинейные функции (5) галилеевых координат \bar{x}^{β} ИП Минковского. Пользуясь законами преобразования символов Кристоффеля, получаем

$$\Gamma^{\mu}_{\alpha\beta}(\gamma) = -\frac{\partial^2 x^{\mu}}{\partial \bar{x}^{\alpha} \partial \bar{x}^{\beta}} + O(G^2),$$

$$\Gamma^{0}_{\alpha\beta}(\gamma) = -G(\delta_{\alpha 1}\delta_{\beta 0} + \delta_{\alpha 0}\delta_{\beta 1}) + O(G^2).$$
(6)

Метрику $\gamma_{\mu\nu}$ можно вычислить и непосредственно. Определяя из (5) обратные функции $\bar{x}^{\alpha} = \bar{x}^{\alpha}(x^{\beta})$ и подставляя их в (3), имеем

$$g_{00} = (1 + 2Gx - 2Gx + ...), \quad g_{ik} = (-1 + 2Gx - 2Gx)\delta_{ik} + ...$$

В ОТО на основе принципа эквивалентности члены 2Gx и -2Gx сокращаются. В РТГ такая операция недопустима. Член 2Gx определяет гравитационное поле типа Максвелла—Фарадея, а член -2Gx относится к метрическому тензору ИП Минковского:

$$\gamma_{00} = (1 - 2Gx), \quad \gamma_{ik} = (-1 - 2Gx)\delta_{ik}. \tag{7}$$

4. Тензоры энергии-импульса. Напомним определения ТЭИ. Законам сохранения энергии придают в РТГ тензорную форму, абсолютизируя разложение

$$\sqrt{-g} g^{\mu\nu} = \sqrt{-\gamma} \gamma^{\mu\nu} + \sqrt{-\gamma} \Phi^{\mu\nu}, \qquad (8)$$

где Ф^и — тензор гравитационного поля относительно ИП Минковского. Плотность функции Лагранжа следующая [¹]:

$$L = L_g(\overline{\gamma} - \overline{\gamma} \gamma^{\mu\nu}, \overline{\gamma} - \overline{\gamma} \Phi^{\mu\nu}) + L_M(\overline{\gamma} - g g^{\mu\nu}, \Phi_A).$$

Здесь L_g — плотность функции Лагранжа гравитационного поля, L_M плотность функции Лагранжа вещества, Φ_A — поля вещества. Под веществом мы понимаем все виды материи, за исключением гравитационной. ТЭИ гравитационного поля определяется следующим образом: $\sqrt{-\gamma} t_g^{\mu\nu} = -2\delta L_g/\delta \gamma_{\mu\nu}$, он является тензором ИП Минковского и мерой его превращений может быть только тензор этого же пространства. Поэтому определяется $\sqrt{-\gamma} t_M^{\mu\nu} = -2\delta L_M/\delta \gamma_{\mu\nu}$, хотя на основе принципа геометризации РТГ движение всех видов вещества можно описать в эффективном римановом пространстве, не прибегая к разложению (8). Выполняется закон (не) сохранения

$$t^{\mu\nu}{}_{\nu}=0, \quad t^{\mu\nu}=t^{\mu\nu}+t^{\mu\nu}_{N}.$$

Наряду с $t^{\mu\nu}$ можно определить обычный метрический ТЭИ (эффективного)**** пространства Римана $\sqrt{-g} T^{\mu\nu} = -2\delta L_M/\delta g_{\mu\nu}, T^{\mu\nu} = 0.$

**** Слово эффективный заключено в скобки, когда сказанное относится как к ОТО, так и к РТГ, 5. Предсказываемое теорией Логунова нарушение закона сохранения энергии. Рассмотрим случай, когда $t_{g \mid v}^{0v} = 0$. Из выражений (2) и (6) следует, что нарушение закона сохранения энергии в наших лабораториях имеет следующую форму:

$$(\sqrt{-\gamma} t_M^{0\alpha})_{,\alpha} = 2 \sqrt{-\gamma} G t_M^{01}.$$
⁽⁹⁾

Здесь G — абсолютное ускорение Солнечной системы в локально однородном фоновом гравитационном поле $U = -G\bar{x}$. Это поле порождено Галактикой и другими неоднородностями в распределении масс, обнаруженных вплоть до расстояний 300 Мпс.

В более или менее чистом виде система отсчета (4) реализуется в свободно гравитирующей, невращающейся космической лаборатории, если вычесть эффекты, связанные с вращением и гравитационным полем Земли. Нужно учесть также то обстоятельство, что кроме свободного падения в фоновом поле $U = -G\bar{x}$, Земля падает свободно еще в гравитационном поле Солнца с ускорением 0,6 см/с². Направление последнего ускорения, в отличие от *G*, периодически меняется.

6. Лифт Эйнштейна. Будем называть падающую в однородном гравитационном поле лабораторию лифтом Эйнштейна. В лифте (эффективное) пространство Римана плоское, в нем были введены галилеевы координаты (4), $g_{\mu\nu}$ =diag(1, -1, -1, -1), в то время как метрика ИП Минковского $\gamma_{\mu\nu}$ дана выражениями (7). Функция Лагранжа вещества $L_M = L_M (\sqrt{-g} g^{\mu\nu}, \Phi_A)$ переходит в лифте в функцию Лагранжа СТО, метрический ТЭИ эффективного риманова пространства $T^{\mu\nu}$ в метрический ТЭИ СТО, удовлетворяющий закону сохранения энергии.

7. Движение вещества в лифте Эйнштейна с точки зрения РТГ. Рассмотрим вопрос, можно ли по нарушению закона сохранения энергии (9) определить ускорение G лифта. А. А. Логунов ([⁵], с. 7) пишет: «Согласно принципу геометризации, движение вещества под действием гравитационного поля Фиу в пространстве Минковского с метрикой үни тождественно его движению в эффективном римановом пространстве с метрикой $g^{\mu\nu}$. Метрический тензор $\gamma^{\mu\nu}$ пространства Минковского и тензор гравитационного поля Фиу являются первичными понятиями, а риманово пространство и его метрика g^{µv} — вторичными...». В рассматриваемом нами случае лифта Эйнштейна эффективное пространство Римана — это плоское ПВ (4). Из вышеприведенной цитаты следует, что движение вещества в любом однородном гравитационном поле тождественно его движению в лифте Эйнштейна. Далее А. А. Логунов ([6], с. 14) пишет: «В нашей теории (РТГ) физическая геометрия определяется не на основе изучения движения света и пробных тел, а на основе общих динамических свойств материи — ее законов сохранения, которые не только имеют фундаментальное значение, но и экспериментально проверяемы». Исходя из этих соображений определяются ТЭИ ИП Минковского $t_M^{\mu\nu}$ и $t_g^{\mu\nu}$. Неинерциальное с точки зрения РТГ движение лифта Эйнштейна сказывается в нарушении закона сохранения энергии (9). Но каким образом определить ускорение лифта, когда движение любого вида вещества не зависит от G и удовлетворяет известным в СТО законам сохранения $T_{\mu\nu} = 0$? На наш взгляд, на этот вопрос имеется только один ответ: экспериментально измеряемым (наблюдаемым) является ТЭИ СТО Тич, частный вид ТЭИ эффективного риманова пространства, а не $t_{\mu\nu}^{\mu\nu}$.

Переходим к энергии гравитационного поля $t_g^{\mu\nu}$. Энергию гравитационного поля можно измерить, превратив ее в другие виды энергии. Но так как мерой превращенной энергии является ненаблюдаемая энергия to ненаблюдаемой является и сама энергия гравитационного поля.

8. Непревращаемость энергии постоянного гравитационного поля. В случае эффективной метрики (4) имеем

$$t_g^{00} = \frac{7}{32\pi^2} G^2 + O(G^3).$$

Эта энергия не может превращаться в энергию вещества T^{00} , так как из уравнений Эйнштейна следует, что в плоском ПВ T^{µv}=0. 9. Вывод. В РТГ ИП Минковского не является экспериментально

наблюдаемым и, по-видимому, РТГ не предлагает окончательного решения проблемы энергии гравитационного поля.

ЛИТЕРАТУРА

- Логунов А. А., Мествиришвили М. А. // ТМФ, 1984, 61, 327—346.
 Logunov, A. A., Mestvirishvili, M. A. // Prog. Theor. Phys., 1985, 74, 31—50.
 Isaacson, R. A. Gravitational Radiation in the Limit of High Frequency. University of Maryland, 1967 (Technical report № 657, Ch. III), 44—67.
 Фок В. А. Теорня пространства, времени и тяготения. М., ГИТТЛ, 1955.
 Логунов А. А. Новые представления о пространстве-времени и гравитации. М., МГУ, 1986.
 Догинов А. А. Редатиристокая теория провитации и прима и правитации. М., МГУ, 1986.
- 6. Логунов А. А. Релятивистская теория гравитации и новые представления о про-странстве-времени. М., МГУ, 1986.

Институт астрофизики и физики атмосферы Академии наук Эстонской ССР Поступила в редакцию 29/1 1988

V. UNT

ENERGIA JÄÄVUSE SEADUSTE RIKKUMINE RELATIVISTLIKUS **GRAVITATSIOONITEOORIAS**

On näidatud, et erinevalt üldrelatiivsusteooriast ennustab Logunovi relativistlik gravitatsiooniteooria, et vabalt langevates laboratooriumides energia jäävuse seadused ei kehti.

V. UNT

VIOLATION OF CONSERVATION LAW OF ENERGY IN RELATIVISTIC THEORY OF GRAVITATION

Within the framework of the Logunov's relativistic theory of gravitation the violation of the conservation law of energy is found in freely falling frames of references.