EËSTI NSV TEADUSTE AKADEEMIA TÕIMETISED. FUUSIKA * MATEMAATIKA

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * MATEMATUKA PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS

1989, 38, 1

УДК 535.33

Инна РЕБАНЕ

ТЕОРИЯ ДВУХСТУПЕНЧАТОГО ИМПУЛЬСНОГО ФОТОВЫЖИГАНИЯ ПРЕДЕЛЬНО УЗКИХ СПЕКТРАЛЬНЫХ ПРОВАЛОВ

(Представил В. Хижняков)

1. Введение

Фотовыжигание узких провалов шириной до 10-3 см-1 в спектрах примесных систем при стационарном возбуждении в неоднородной полосе чисто электронного перехода примесного центра широко используется как метод устранения неоднородного уширения спектров [1-4]. Фотовыжигание спектральных провалов (ФСП) импульсами пикосекундной длительности позволяет осуществлять параллельное выжигание многих спектральных провалов (СП) и лежит в основе спектрально-временной голографической записи информации в неоднородно уширенной полосе поглощения двухуровневой системы [5]. Оптическая информация, записанная путем одноступенчатого фотовыжигания, неизбежно портится при считывании. Это можно избежать, если использовать трехуровневые системы с двухступенчатым выжиганием, где селективное возбуждение первой ступени «закрепляется» фотохимическим превращением через вторую ступень возбуждения [6-8]. В данной работе двухступенчатое ФСП импульсами рассмотрено с позиций теории переходных (зависящих от времени) спектров вторичного свечения [9]. Теоретически показана возможность дальнейшего сужения СП в трехуровневых системах при введении временной задержки T между селектирующим и закрепляющим импульсами.

2. Провал в функции неоднородного распределения

Кинетику образования провала удобно рассматривать как преобразование функции неоднородного распределения (ФНР) центров по частоте данного перехода $\varrho(\Omega,t)$ [³]. В рассматриваемом случае трехуровневых систем необходимо ввести двухмерную ФНР, учитывающую неоднородное распределение частот Ω_{01} и Ω_{12} переходов $0 \rightarrow 1$ и $1 \rightarrow 2$. Пусть функция $\varrho_0(\Omega_{01},\Omega_{12})$ описывает двухмерное неоднородное распределение, существовавшее до взаимодействия центров со световыми импульсами, причем области частот Ω_{01} и Ω_{12} не перекрываются. Пусть на систему падают последовательно два импульса, из которых первый переводит систему с уровня 0 на уровень 0, а второй переводит систему с уровня 0 на уровень 0, а второй переводит фотопревращение центра, выводящее его из резонанса с обоими импульсами.

Возникающая в результате этого двухмерная ФНР изменяется во времени по экспоненциальному закону, если выполняются некоторые условия [3]:

$$\varrho(\Omega_{01}, \Omega_{12}, t) = \varrho_0(\Omega_{01}, \Omega_{12}) \exp\left[-P(\Omega_{01}, \Omega_{12}, t)\right],$$
 (1)

где

$$P(\Omega_{01}, \Omega_{12}, t) = \alpha \int_{-\infty}^{t} dt' W(\Omega_{01}, \Omega_{12}, t').$$
 (2)

Здесь $W(\Omega_{01}, \Omega_{12}, t')$ — вероятность нахождения молекулы на уровне 2 в момент времени t', а $P(\Omega_{01}, \Omega_{12}, t)$ — вероятность выхода центра из резонанса с возбуждающими импульсами к моменту t (вероятность ФСП). При условии достаточно малой интенсивности возбуждения можно обеспечить выполнимость условия $W(\Omega_{01}, \Omega_{12}, t') \ll 1$ и рассмотреть процесс двухступенчатого возбуждения во втором порядке теории возмущений, учитывая только один акт последовательного поглощения двух импульсов [9]:

$$W(\Omega_{01}, \Omega_{12}, t') = \iint_{-\infty}^{t'} dt_1 dt'_1 S_2(t_1, t'_1) \int_{-\infty}^{t_1} dt_2 \int_{-\infty}^{t'_1} dt'_2 S_1(t_2, t'_2) \times \times F(t'_1 - t_1, t' - t'_1, t'_1 - t'_2, t_1 - t_2),$$
(3)

где $S_1(t_2, t_2')$ и $S_2(t_1, t_1')$ — корреляционные функции первого и второго (селектирующего и закрепляющего) светового импульса,

$$F(t'_{1} - t_{1}, t' - t'_{1}, t'_{1} - t'_{2}, t_{1} - t_{2}) = \left\langle v_{\omega_{1}}^{+} \exp\left[i\left(\hat{H} + \frac{i}{2}\hat{\gamma}\right)(t_{1} - t_{2})\right] \right\rangle \times v_{\omega_{2}}^{+} \exp\left[i\hat{H}(t'_{1} - t_{1}) - \frac{1}{2}\hat{\gamma}(2t' - t_{1} - t'_{1})\right]v_{\omega_{2}} \times \left\langle \exp\left[-i\left(\hat{H} - \frac{i}{2}\hat{\gamma}\right)(t'_{1} - t'_{2})\right]v_{\omega_{1}} \exp\left[-i\hat{H}(t'_{2} - t_{2})\right]\right\rangle$$

$$(4)$$

корреляционная функция примесного центра (трехуровневой системы).

$$v_{\omega_i} = \langle N - 1_{\omega_i} | \hat{V} | N \rangle$$

И

$$v_{\omega_2} = \langle N - 1_{\omega_1} - 1_{\omega_2} | \hat{V} | N - 1_{\omega_1} \rangle$$

однофотонные матричные элементы гамильтониана взаимодействия \hat{V} поля и вещества, описывающие уничтожение фотонов частоты ω_1 и ω_2 (ω_1 — средняя частота первого возбуждающего импульса, ω_2 — средняя частота второго импульса (условия резонанса $\omega_1 \approx \Omega_{01}$ и $\omega_2 \approx \Omega_{12}$), $|N\rangle$ — исходное состояние электромагнитного поля, \hat{H} — гамильтониан вещества (примесного центра), $\hat{\gamma}$ — оператор радиационного затухания трехуровневой системы; $\langle \ldots \rangle$ — знак усреднения по ансамблю колебаний на начальном электронном уровне.

Вероятность $W(\Omega_{01},\Omega_{12},t')$ можно записать также в виде

$$W(\Omega_{01}, \Omega_{12}, t') = \iiint d\omega_1 d\omega_2 d\omega'_1 d\omega'_2 \tilde{S}_1(\omega_1, \omega'_1) \tilde{S}_2(\omega_2, \omega'_2) \times \\ \times \iint_{-\infty}^{t'} dt_1 dt'_1 \iint_{-\infty}^{t_1} dt_2 \iint_{-\infty}^{t'_1} dt'_2 F(t'_1 - t_1, t' - t'_1, t'_1 - t'_2, t_1 - t_2) \times$$

$$\times \exp\left(i\omega_1 t_2 - i\omega_1' t_2' + i\omega_2 t_1 - i\omega_2' t_1'\right),\tag{5}$$

где функции $S_1(\omega_1,\omega_1')$ и $S_2(\omega_2,\omega_2')$ введены соотношениями

$$S_{1}(t_{2}, t_{2}') = \iint d\omega_{1} d\omega_{1}' \tilde{S}_{1}(\omega_{1}, \omega_{1}') \exp(i\omega_{1}t_{2} - i\omega_{1}'t_{2}')$$

$$S_{2}(t_{1}, t_{1}') = \iint d\omega_{2} d\omega_{2}' \tilde{S}_{2}(\omega_{2}, \omega_{2}') \exp(i\omega_{2}t_{1} - i\omega_{2}'t_{1}').$$
(6)

Используем в (5) новые переменные $\mu = t_1' - t_1$, $v = t' - \frac{1}{2}(t_1 + t_1' + |\mu|)$, $\tau = t_1' - t_2'$, $\tau' = t_1 - t_2$. Получим вероятность ФСП [10, 11]

$$P(\Omega_{01}, \Omega_{12}, t) = 2\alpha \operatorname{Re} \left\{ \int_{-\infty}^{t} dt' \int \int \int d\omega_1 d\omega_2 d\omega'_1 d\omega'_2 \tilde{S}_1(\omega_1, \omega'_1) \times \right.$$

$$\times \tilde{S}_2(\omega_2, \omega_2') \int \int_0^\infty \int d\mu \, d\nu \, d\tau \, d\tau' F(\mu, \nu, \tau, \tau') \exp \left[i\omega_1(t' - \mu - \nu - \tau') - \omega_2(t' - \mu - \nu - \tau')\right]$$

$$-i\omega'_{1}(t'-v-\tau)+i\omega_{2}(t'-\mu-v)-i\omega'_{2}(t_{1}-v)]\right\}. \tag{7}$$

Переходя к пределу $t \to \infty$ $(P(\Omega_{01}, \Omega_{12}) \equiv \lim_{t \to \infty} P(\Omega_{01}, \Omega_{12}, t))$, получим

$$P(\Omega_{01}, \Omega_{12}) = 2\alpha \operatorname{Re} \left\{ \int \int \int d\omega_1 d\omega_2 d\omega_1' \, \tilde{S}_1(\omega_1, \omega_1') \, \tilde{S}_2(\omega_2, \omega_1 + \omega_2 - \omega_1') \right\}$$

$$\times \iiint_{0}^{\infty} d\mu \, d\nu \, d\tau' \, d\tau' \, F(\mu, \nu, \tau, \tau') \, \exp\left[-i\omega_{1}(\mu + \tau') + i\omega'_{1}\tau - i\omega_{2}\mu\right] \right\}. \tag{8}$$

Вероятность выжигания $P(\Omega_{01},\Omega_{12})$ с помощью формулы (1) определяет окончательный провал в ФНР $\varrho(\Omega_{01},\Omega_{12})$ при выжигании двумя световыми импульсами, имеющими среднюю частоту в области Ω_{01} и Ω_{12} , соответственно.

В случае стационарного ФСП светом с произвольным спектральным распределением в промежутке времени (0,t) $(t\gg \gamma^{-1})$ вероят-

ность выжигания

$$P_{c\tau}(\Omega_{01}, \Omega_{12}, t) = \alpha t \iint d\omega_1 d\omega_2 \widetilde{S}_1(\omega_1) \widetilde{S}_2(\omega_2) \times$$

$$\times 2 \operatorname{Re} \left\{ \iiint d\mu \, d\nu \, d\tau \, d\tau' \, F(\mu, \nu, \tau, \tau') \, \exp \left[i\omega_1(\tau - \tau' - \mu) - i\omega_2 \mu \right] \right\}, \quad (9)$$

где $\widetilde{S}(\omega)$ — интенсивность возбуждающего света на частоте ω . Таким образом, сравнивая формулы (8) и (9), видим, что при двухступенчатом импульсном ФСП вероятности выжигания, а отсюда и получаемые спектральные провалы существенно различны при выжигании импульсами и при стационарном выжигании. Рассмотрение одноступенчатого импульсного ФСП показывает, что при условии совпадения распределения частот и суммарной дозы облучения выжигание одиночным импульсом и выжигание в стационарном режиме приводит к образованию одинаковых провалов (см. Приложение).

В заключение рассмотрим случай, где первый этап выжигания 0→1 происходит импульсом, а второй 1→2 — стационарным светом.

Вероятность ФСП следующая:

$$P(\Omega_{01}, \Omega_{12}) = \alpha \int d\omega_2 \, \tilde{S}_2(\omega_2) \int d\omega_1 \tilde{S}_1(\omega_1, \omega_1) \times \times 2 \operatorname{Re} \left\{ \iint_0^{\infty} d\mu \, d\nu \, d\tau \, d\tau' \, F(\mu, \nu, \tau, \tau') \, \exp \left[i\omega_1(\tau - \tau' - \mu) - i\omega_2 \mu \right] \right\}.$$
(10)

Сравнивая формулы (9) и (10) видим, что если равенство $t \tilde{S}_1(\omega_1) = \tilde{S}_1(\omega_1, \omega_1)$ выполняется при каждой частоте ω_1 , то в рассматриваемом случае образуется такой же провал, как и в случае стационарного выжигания.

3. Случай короткого закрепляющего импульса

Пусть при ФСП закрепляющий импульс существенно короче селектирующего импульса, времен релаксации уровней 1 и 2, а также спект-

рально шире неоднородного распределения частоты Ω_{12} . В этом случае можно положить

$$S_2(t_1, t_1') = S_{20}\delta(t_1 - \tau_2)\delta(t_1' - \tau_2), \tag{11}$$

где S_{20} — константа, τ_2 — момент прохождения центра закрепляющим импульсом. Из формул (2) и (3) получаем ($t \rightarrow \infty$) вероятность выжигания $P(\Omega_{10})$, определяющую провал в ФНР $\varrho(\Omega_{01})$:

$$P(\Omega_{01}) = \alpha S_{20} \int_{\tau_2}^{\infty} dt' \int_{-\infty}^{\tau_2} dt_2 dt'_2 S_1(t_2, t'_2) F(0, t' - \tau_2, \tau_2 - t'_2, \tau_2 - t_2).$$
 (12)

Предположим, что корреляционная функция селектирующего импульса следующая (импульс когерентный и затухает по экспоненциальному закону):

$$S_{1}(t_{2}, t_{2}') = \theta(t_{2} - \tau_{1}) \theta(t_{2}' - \tau_{1}) \Delta \exp \left[i\omega_{0}(t_{2} - t_{2}') - \frac{\Delta}{2} (t_{2} + t_{2}' - 2\tau_{1}) \right],$$
(13)

 $(\tau_1{<}\tau_2)$, где τ_1 — начальный момент прохождения центра селектирующего импульса, ω_0 и Δ — его частота максимума и спектральная

ширина, т. е. полная ширина на половине высоты.

Для описания трехуровневой системы (примесного центра) используем модель, в которой релаксационные процессы на возбужденном уровне 1 описываются константами энергетической (продольной) и фазовой (поперечной) релаксации γ_1 и Γ , на уровне 2 — константой энергетической релаксации γ_2 . (В рассматриваемом случае учет модуляционного уширения (фазовой релаксации) уровня 2 не существен.) Соответствующая корреляционная функция трехуровневой системы следующая:

$$F(t'_{1}-t_{1}, t'-t_{1}, t'_{1}-t'_{2}, t_{1}-t_{2}) = C \exp \left[-\gamma_{2}t'-i\Omega_{12}(t_{1}-t'_{1})+\right]$$

$$+\frac{\gamma_{2}}{2}(t_{1}+t'_{1})-i\Omega_{01}(t_{2}-t'_{2})-\frac{\gamma_{1}}{2}(t_{1}+t'_{1}-t_{2}-t'_{2})-$$

$$-\frac{\Gamma}{2}(t_{1}-t_{2}+t'_{1}-t'_{2}+|t_{1}-t'_{1}|+|t_{2}-t'_{2}|-|t_{1}-t'_{2}|-|t'_{1}-t_{2}|)\right].$$
(14)

 $(C-\kappa_0)$ константа. В модели фононные крылья не учитываются.) При малых дозах облучения и после фотовыжигания ФНР $\varrho(\Omega_{01})$ будет иметь вид [11]:

$$\varrho(\Omega_{01}) \approx \varrho_0(\Omega_{01}) [1 - P(\Omega_{01})], \tag{15}$$

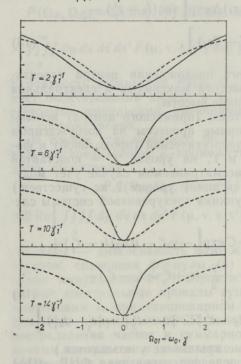
гле

$$P(\Omega_{01}) = P_2(\Omega_{01}) = \varepsilon \Delta \left\{ \exp\left(-\Delta T\right) \frac{\Gamma + a}{a\xi_1} - \exp\left(-\gamma_1 T\right) \frac{\Gamma - a}{a\xi_2} - \exp\left(-\gamma_1 T\right) \frac{\Gamma - a}{a\xi_2} - \exp\left(-\gamma_1 T\right) \frac{1}{2} \left[\left(x^2 - \frac{1}{4} (\Gamma^2 - a^2)\right) \cos(xT) + \left(\Gamma x \sin(xT)\right] \right] \right\},$$

$$(16)$$

где
$$\varepsilon = \alpha S_{20} C \gamma_2^{-1}$$
, $T = \tau_2 - \tau_1$, $x = \Omega_{01} - \omega_0$, $a = \gamma_1 - \Delta$, $\xi_1 = x^2 + \frac{1}{4} (\Gamma + a)^2$ и $\xi^2 = x^2 + \frac{1}{4} (\Gamma - a)^2$. Из формулы (16) видим, что провал в ФНР

монотонно сужается с ростом времени задержки T между выжигающими импульсами до предельной ширины $\sigma_2 = \Gamma + |\gamma_1 - \Delta|$ (см. рис. 1). Отметим, что в двухуровневой системе ширина СП в этой модели при выжигании импульсом $\sigma_1 = \Gamma + \gamma_1 + \Delta$ и при выжигании монохроматическим светом $\sigma_0 = \Gamma + \gamma_1$. Если T^{-1} и $|\gamma_1 - \Delta| \ll \gamma_1$ и Δ , то в трехуровневой системе ширина СП меньше как σ_1 , так и σ_0 . Если также $\Gamma < \gamma_1$ и Δ , то рассматриваемый провал может быть уже и σ_0 и σ_0 Таким образом, имеет место эффект компенсации спектральной ширины селектирующего импульса и ширины, обусловленной затуханием возбужденного уровня 1. Этот эффект аналогичен эффекту компенсации в зависящем от времени спектре резонансного вторичного свечения [9]. Формула (16) аналогична формуле, описывающей зависящий от времени спектр люминесценции (или поглощения) [9]. Модуляционное уширение уровня 1 — Γ не компенсируется, а прибавляется к величине $|\gamma_1 - \Delta|$.



 $\tau_1 = -2g^{-1}$ $\tau_1 = -6g^{-1}$ $\tau_2 = -8g^{-1}$ $\sigma_3 = -\omega_0 \cdot g^{-1}$

Рис. 1. Провал в ФНР $\varrho(\Omega_{01})$ при двухступенчатом (сплошная линия) и одноступенчатом (штриховая линия) ФСП. Параметры: $\Gamma = 0.5\gamma_1$, $\Delta = 0.99\gamma_1$ ($\sigma_0 = 1.5\gamma_1$, $\sigma_1 = 2.49\gamma_1$, $\sigma_2 = 0.51\gamma_1$).

Рис. 2. Провал в ФНР $\varrho(\Omega_{01})$ при одноступенчатом (штриховая линия) и двухступенчатом (штрих-пунктир) ФСП селектирующим импульсом, а также при двухступенчатом ФСП суммой селектирующего импульса и добавочного δ -импульса (сплошная линия). Параметры: $\Gamma = 4\gamma_1$, $\Delta = 4,5\gamma_1$, $\tau_2 = \gamma_1^{-1}$ ($\sigma_0 = 5\gamma_1$, $\sigma_1 = 9,5\gamma_1$, $\sigma_2 = 7,5\gamma_1$, $\sigma_3 = 0,5\gamma_1$).

4. Использование интерференции для дальнейшего сужения провала

На первой ступени выжигания добавим к селектирующему импульсу (см. (13)) предельно короткий импульс (δ -импульс), проходящий центр в момент времени нуль. (Точнее добавочный импульс должен быть существенно короче селектирующего импульса, времен релаксации уровня 1, а также спектрально шире неоднородного распределения частоты Ω_{01} .) В этом случае корреляционная функция, описывающая выжигающее световое поле на первой ступени выжигания, имеет вид

$$S_{1}(t_{2}, t_{2}') = \delta(t_{2}) \delta(t_{2}') S_{10} + \theta(t_{2} - \tau_{1}) \theta(t_{2}' - \tau_{1}) \Delta \times$$

$$\times \exp \left[i\omega_{0}(t_{2} - t_{2}') - \frac{\Delta}{2} (t_{2} + t_{2}' - 2\tau_{1}) \right] + \delta(t_{2}') \theta(t_{2} - \tau_{1}) \sqrt{S_{10}\Delta} \times$$

$$\times \exp \left[i\omega_{0}t_{2} - \frac{\Delta}{2} (t_{2} - \tau_{1}) \right] + \delta(t_{2}) \theta(t_{2}' - \tau_{1}) \sqrt{S_{10}\Delta} \times$$

$$\times \exp \left[-i\omega_{0}t_{2}' - \frac{\Delta}{2} (t_{2}' - \tau_{1}) \right].$$
(17)

Подставляя формулы (17) и (14) в формулу (12) и интегрируя по формуле (12), получаем вероятность выжигания $P(\Omega_{01})$ в виде следующих трех слагаемых [12]:

$$P(\Omega_{01}) = P_1 + P_2(\Omega_{01}) + P_3(\Omega_{01}). \tag{18}$$

Здесь

$$P_1 = \varepsilon S_{10} \exp(-\gamma_1 \tau_2) \tag{19}$$

не зависит от частоты перехода Ω_{01} и соответствует выжиганию добавочным δ -импульсом. Вероятность $P_2(\Omega_{01})$ соответствует выжиганию селектирующим импульсом и определяется формулой (16). Вероятность $P_3(\Omega_{01})$ соответствует выжиганию интерференционным членом, возникшим вследствие интерференции селектирующего и добавочного импульсов

$$P_{3}(\Omega_{01}) = \varepsilon \sqrt{S_{10}\Delta} \exp\left(-\gamma_{1}\tau_{2} + \frac{\Delta}{2}\tau_{1}\right) \left\{ \left[(a+\Gamma) - \exp\left(\frac{a+\Gamma}{2}\tau_{1}\right) \times \right. \right.$$

$$\times \left. \left((a+\Gamma) \cos\left(x\tau_{1}\right) + 2x \sin\left(x\tau_{1}\right) \right) \right] \xi_{1}^{-1} + \left[\exp\left(\frac{a-\Gamma}{2}\tau_{2}\right) \times \right.$$

$$\times \left. \left((a-\Gamma) \cos\left(x\tau_{2}\right) + 2x \sin\left(x\tau_{2}\right) \right) - (a-\Gamma) \right] \xi_{2}^{-1} \right\}, \quad \text{при } \tau_{1} < 0;$$

$$P_{3}(\Omega_{01}) = \varepsilon \sqrt{S_{10}\Delta} \exp\left(-\gamma_{1}\tau_{2} + \frac{\Delta}{2}\tau_{1}\right) \left\{ \exp\left(\frac{a-\Gamma}{2}\tau_{2}\right) \times \right.$$

$$\times \left[(a-\Gamma) \cos\left(x\tau_{2}\right) + 2x \sin\left(x\tau_{2}\right) \right] - \left. \left(20 \right) \right.$$

$$- \exp\left(\frac{a-\Gamma}{2}\tau_{1}\right) \left[(a-\Gamma) \cos\left(x\tau_{1}\right) + 2x \sin\left(x\tau_{1}\right) \right] \right\} \xi_{2}^{-1}, \quad \text{при } \tau_{1} \geqslant 0.$$

Из (20) следует, что в случае $\tau_1 < 0$ (см. рис. 2) провал, определяемый вероятностью выжигания $P_3(\Omega_{01})$, сужается с ростом времени $|\tau_1|$ до предельной ширины $\sigma_3 = |\gamma_1 + \Gamma - \Delta|$. Таким образом, при каждых значениях γ_1 и Γ можно подобрать Δ так, чтобы выполнялось условие $\gamma_1 + \Gamma - \Delta = 0$. Тогда с ростом времени $|\tau_1|$ ширина провала (точнее, центрального минимума) в ФНР, определяемого вероятностью $P_3(\Omega_{01})$, стремится к нулю. Если $P_3(\Omega_{01}) \gg P_2(\Omega_{01})$, то и ширина суммарного провала, определяемого суммой вероятностей $P_2(\Omega_{01}) + P_3(\Omega_{01})$, с ростом $|\tau_1|$ стремится к нулю. Для выполнения условия $P_3(\Omega_{01}) \gg P_2(\Omega_{01})$ с ростом $|\tau_1|$ необходимо уменьшить параметр $d \equiv \sqrt{\Delta/S_{10}}$.

В случае $\tau_1 \geqslant 0$ провал, определяемый вероятностью выжигания $P_3(\Omega_{01})$, сужается с ростом времени задержки $T = \tau_2 - \tau_1$ до предельной ширины $\sigma_4 = |\gamma_1 - \Gamma - \Delta|$. При каждом $\Gamma < \gamma_1$ можно подобрать Δ таким образом, чтобы выполнялось условие $\gamma_1 - \Gamma - \Delta = 0$. Тогда с ростом времени T ширина провала в Φ HP, определяемого вероятностью $P_3(\Omega_{01})$, стремится к нулю. При $\gamma_1 \leqslant \Gamma$ наиболее узкие провалы получаются при $\Delta = 0$, что соответствует включению незатухающего воз-

буждения в момент времени т₁.

5. Увеличение спектрального разрешения метода выжигания провалов

Рассмотрим выжигание провалов в ФНР $\varrho(\Omega_{01})$ одновременно двумя одинаковыми селектирующими импульсами на частотах ω_0 и $\omega_0+\omega_1$. Корреляционная функция, описывающая выжигающее световое поле, имеет вид:

$$S(t_{2}, t_{2}') = \theta(t_{2} - \tau_{1}) \theta(t_{2}' - \tau_{1}) \Delta \exp \left[-\frac{\Delta}{2} (t_{2} + t_{2}' - 2\tau_{1}) \right] \times \left[\exp(i\omega_{0}t_{2}) + \exp(i(\omega_{0} + \omega_{1})t_{2}) \right] \left[\exp(-i\omega_{0}t_{2}') + \exp(-i(\omega_{0} + \omega_{1})t_{2}') \right].$$
(21)

Частотное распределение импульсов состоит из двух лоренцианов (с

шириной Δ) и интерференционного члена.

При ФСП в двухуровневой системе в рассматриваемом случае выжигаются либо два провала с максимумами на частотах $\Omega_{01} = \omega_0$ и $\Omega_{01} = \omega_0 + \omega_1$ и ширинами $\sigma_1 = \gamma_1 + \Gamma + \Delta$, либо один провал с максимумом на частоте $\Omega_{01} = \omega_0 + \omega_1/2$ (два провала сливаются в один).

Подставляя формулы (14) и (21) в формулу (12) и интегрируя по формуле (12), получаем вероятность выжигания $P(\Omega_{01})$ при двухступенчатом ФСП в виде следующих трех слагаемых [13]:

$$P(\Omega_{01}) = P_{22}(\Omega_{01}) = P_2(\Omega_{01}) + P_2(\Omega_{01} - \omega_1) + P_{2i}(\Omega_{01}).$$
 (22)

Вероятности $P_2(\Omega_{01})$ и $P_2(\Omega_{01}-\omega_1)$ соответствуют выжиганию селектирующими импульсами соответственно на частотах ω_0 и $\omega_0+\omega_1$ и определяются формулой (16) (для получения вероятности $P_2(\Omega_{01}-\omega_1)$ надо заменить в (16) ω_0 на $\omega_0+\omega_1$). Вероятность $P_{2i}(\Omega_{01})$ соответствует выжиганию интерференционным членом и имеет следующий вил:

$$\begin{split} P_{2i}(\Omega_{0i}) &= \varepsilon \Delta \exp\left(-\Delta T\right) \{ \left[\left(-2\omega_{1}x + a\left(\Gamma + a\right)\right) \xi_{1}^{-i} + \right. \\ &+ \left. \left(2\omega_{1}(x - \omega_{1}) + a\left(\Gamma + a\right)\right) \xi_{3}^{-i} \right] \xi_{5}^{-i} \cos\left(\omega_{1}\tau_{2}\right) + \\ &+ \left[\left(2ax + \omega_{1}(a + \Gamma)\right) \xi_{1}^{-i} + \left(-2a(x - \omega_{1}) + \omega_{1}(a + \Gamma)\right) \xi_{3}^{-i} \right] \xi_{5}^{-i} \sin\left(\omega_{1}\tau_{2}\right) \} - \\ &- \varepsilon \Delta \exp\left(-\gamma_{1}T\right) \left\{ \left[\left(2\omega_{1}x + a\left(\Gamma - a\right)\right) \xi_{2}^{-i} + \left(-2\omega_{1}(x - \omega_{1}) + a\left(\Gamma - a\right)\right) \xi_{4}^{-i} \right] \xi_{5}^{-i} \cos\left(\omega_{1}\tau_{1}\right) + \left[\left(-2ax + \omega_{1}(\Gamma - a)\right) \xi_{2}^{-i} + a\left(\Gamma - a\right) \xi_{2}^{-i} + a\left(\Gamma - a\right) \xi_{4}^{-i} \right] \xi_{5}^{-i} \sin\left(\omega_{1}\tau_{1}\right) \right\} - \\ &+ \left. \left(2a(x - \omega_{1}) + \omega_{1}(\Gamma - a)\right) \xi_{4}^{-i} \right] \xi_{5}^{-i} \sin\left(\omega_{1}\tau_{1}\right) \right\} - \\ &- \varepsilon \Delta \exp\left(-\frac{1}{2}\left(\Gamma + \gamma_{1} + \Delta\right)T\right) \left\{ \left[2\xi_{6}\cos y_{1} + a\left(\Gamma - a\right) + 2\Gamma x\right] \sin y_{1} \right] \xi_{1}^{-i} \xi_{4}^{-i} + a\left(\Gamma - a\right) + 2\Gamma x\right) \sin y_{2} \right] \xi_{2}^{-i} \xi_{3}^{-i} \right\}, \end{split}$$

$$\xi_{3} = (x - \omega_{1})^{2} + \frac{1}{4} (\Gamma + a)^{2}, \quad \xi_{6} = (x - \omega_{1})x + \frac{1}{4} (a^{2} - \Gamma^{2}),$$

$$\xi_{4} = (x - \omega_{1})^{2} + \frac{1}{4} (\Gamma - a)^{2}, \quad y_{1} = x\tau_{1} - (x - \omega_{1})\tau_{2},$$

$$\xi_{5} = \omega_{1}^{2} + a^{2}, \quad y_{2} = x\tau_{2} - (x - \omega_{1})\tau_{1}.$$

По формулам (15) и (22) и с учетом формул (16) и (23) произведены расчеты, которые представлены на рис. 3.

Штриховая линия показывает контур провала, получаемого при выжигании одновременно двумя селектирующими импульсами на частотах ω_0 и $\omega_0+\omega_1$ в двухуровневой системе. В трехуровневой системе эти же два селектирующих импульса приводят к появлению двух провалов (сплошная линия) по мере увеличения задержки T. Таким образом, используя данное двухступенчатое выжигание, значительно увеличивается спектральное разрешение метода Φ C Π .

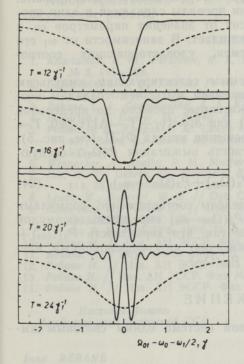


Рис. 3. Провалы в ФНР $\varrho(\Omega_{01})$ при двухступенчатом (сплошная линия) и одноступенчатом (штриховая линия) ФСП двумя селектирующими импульсами. Параметры: Γ =0, Δ =0,99 γ_1 , ω_1 =0,25 γ_1 (σ_0 = γ_1 , σ_1 ==1,99 γ_1 , σ_2 =0,01 γ_1).

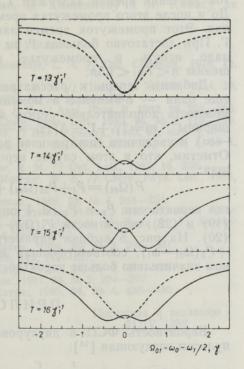


Рис. 4. То же, что и на рис. 3. Параметры: $\Gamma = 0.5\gamma_1$, $\Delta = 0.01\gamma_1$, $\omega_1 = 0.25\gamma_1$ ($\sigma_0 = 1.5\gamma_1$, $\sigma_1 = 1.51\gamma_1$, $\sigma_2 = 1.49\gamma_1$).

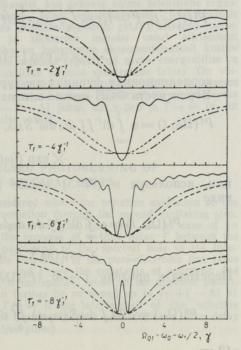


Рис. 5. Провалы в ФНР $\varrho(\Omega_{01})$ при одноступенчатом (штриховая линия) и двухступенчатом (штрих-пунктир) ФСП двумя селектирующими импульсами, а также при двухступенчатом ФСП суммой селектирующих импульсов и добавочного δ -импульса (сплошная линия). Параметры: $\Gamma = 4\gamma_1$, $\Delta = 4.5\gamma_1$, $\tau_2 = \gamma_1^{-1}$, $\omega_1 = \gamma_1$ ($\sigma_0 = 5\gamma_1$, $\sigma_1 = 9.5\gamma_1$, $\sigma_2 = 7.5\gamma_1$, $\sigma_3 = 0.5\gamma_1$).

В заключение отметим еще одно обстоятельство. Расчеты по формулам (15) и (22) (с учетом (16) и (23)) при значениях $0 \simeq \Delta < \gamma_1$ показывают (см. рис. 4), что даже в случае, когда сдвиг центральных частот селектирующих импульсов ω_1 значительно меньше ширины провала σ , выжигаемого каждым из этих импульсов, существует промежуток значений времен задержки T, при котором имеются два провала. До и после этого промежутка времени провалы сливаются в один провал. Этот промежуток времен зависит от значения параметров ω_1 и Γ . При достаточно больших Γ он пропадает. В зависимости от ω_1 его надо искать в промежутке времен, удовлетворяющих соотношению $\pi < T\omega_1 < 1,5\pi$.

Добавим теперь к рассматриваемым селектирующим импульсам еще один — δ -импульс в момент времени нуль, чем создадим возможность дополнительно сузить выжигаемые провалы до предельной ширины $\sigma_3 = |\gamma_1 + \Gamma - \Delta| (\tau_1 \to -\infty)$ или $\sigma_4 = |\gamma_1 - \Gamma - \Delta| (\tau_1 \geqslant 0, T \to -\infty)$ и увеличить спектральное разрешение метода Φ СП (см. рис. 5). Отметим, что в этом случае вероятность выжигания $P(\Omega_{01})$ следую-

щая:

$$P(\Omega_{01}) = P_1 + P_{22}(\Omega_{01}) + P_3(\Omega_{01}) + P_3(\Omega_{01} - \omega_0), \tag{24}$$

где вероятности P_1 и $P_{22}(\Omega_{01})$ определены соответственно формулами (19) и (22), вероятности $P_3(\Omega_{01})$ и $P_3(\Omega_{01}-\omega_0)$ определены формулой (20). На рис. 5 выбран параметр d так, что вероятность $P_3(\Omega_{01})+P_3(\Omega_{01}-\omega_1)$, соответствующая выжиганию интерференционным членом значительно больше вероятности $P_{22}(\Omega_{01})$.

ПРИЛОЖЕНИЕ

Вероятность Φ СП в двухуровневой системе одним световым импульсом следующая [14]:

$$P^{1}(\Omega_{0i}, t) = \alpha \int_{-\infty}^{t} dt' \int_{-\infty}^{t'} dt_{i} dt'_{i} S(t_{i}, t'_{i}) F^{1}(t'_{i} - t_{i}, t' - t_{i}), \qquad (\Pi 1)$$

где

$$F^{1}(t'_{1}-t_{1}, t'-t_{1}) = \left\langle v_{\omega}^{+} \exp\left[i\hat{H}(t'_{1}-t_{1}) - \frac{1}{2}\hat{\gamma}(2t'-t_{1}-t'_{1})\right] \right\rangle$$

$$\times v_{\omega} \exp\left[-i\hat{H}(t'_{1}-t_{1})\right] \right\rangle$$
(II 2)

корреляционная функция двухуровневой системы.
 Вероятность ФСП можно записать также в виде

$$P^{1}(\Omega_{01}, t) = \alpha \int_{-\infty}^{t} dt' \int \int d\omega d\omega' \tilde{S}(\omega, \omega') \int_{-\infty}^{t'} dt_{1} dt'_{1} F^{1}(t'_{1} - t_{1}, t' - t_{1}) \times \exp(i\omega t_{1} - i\omega' t'_{1})$$

$$(\Pi 3)$$

или, используя в (П 3) новые переменные $\tau = t' - t_1$, $\tau' = t' - t_1'$, в виде

$$P^{1}(\Omega_{01}, t) = \alpha \int_{-\infty}^{t} dt' \int \int d\omega d\omega' \tilde{S}(\omega, \omega') \int_{0}^{\infty} d\tau d\tau' F^{1}(\tau, \tau') \times \exp(i\omega'\tau' - i\omega\tau + i(\omega - \omega')t'). \tag{\Pi 4}$$

Переходя к пределу $t \to \infty$ $(P^1(\Omega_{01}) \equiv \lim_{t \to \infty} P^1(\Omega_{01}, t))$, получим

$$P^{1}(\Omega_{01}) = \alpha 2\pi \int d\omega \, \tilde{S}(\omega, \omega) \int_{0}^{\infty} d\tau \, d\tau' \, F^{1}(\tau, \tau') \, \exp \left[i\omega \left(\tau' - \tau\right)\right]. \quad (\Pi \, 5)$$

В случае стационарного ФСП в промежутке времени (0, t) $(t \gg \gamma^{-1})$ вероятность выжигания следующая:

$$P_{\text{ct}}^{1}(\Omega_{0i}, t) = \alpha t \int d\omega \, \tilde{S}(\omega) \int_{0}^{\infty} d\tau \, d\tau' \, F^{1}(\tau, \tau') \, \exp \left[i\omega (\tau' - \tau)\right]. \tag{\Pi 6}$$

Автор признателен К. К. Ребане, В. Хижнякову и Я. Кикасу за обсуждение работы.

ЛИТЕРАТУРА

- 1. Kharlamov, B. M., Personov, R. I., Bykovskaja, L. A. // Opt. Commun., 1974, 12,

- № 2, 191—193.

 2. Гороховский А. А., Каарли Р. К., Ребане Л. А. // Письма в ЖЭТФ, 1974, 20, вып. 7, 474—479: Опт. Соттип... 1976, 16, № 2, 282—284.

 3. Rebane, L. A., Gorokhovskii, A. A., Kikas, J. V. // Appl. Phys. B, 1982, 29, 235—250.

 4. Friedrich, J., Haarer, D., Silbey, R. // Chem. Phys. Lett., 1983, 95, № 2, 119—123.

 5. Ребане А. К., Каарли Р. К., Саари П. М. // Опт. и спектр., 1983, 55, вып. 3, 405—407; Saari, Р., Kaarli, R., Rebane, А. // J. Opt. Soc. Amer. B, 1986, 3, № 4, 527—533.
- Winnacker, A., Shelby, R. M., Macfarlane, R. M. // Opt. Lett., 1985, 10, 350.
 Lee, H. W., Gehrtz, M., Marinero, E., Moerner, W. E. // Chem. Phys. Lett., 1985, 118, № 6, 611—616.
- 118, № 6, 611—616.
 8. Lenth, W., Moerner, W. E. // Opt. Commun., 1986, 58, № 4, 249—254.
 9. Хижняков В., Ребане И. // Изв. АН ЭССР. Физ. Матем., 1986, 35, № 4, 406—415; ЖЭТФ, 1978, 74, вып. 3, 885—896; Ребане И. К., Туул А. Л., Хижняков В. В. // ЖЭТФ, 1979, 77, вып. 4, 1302—1312.
 10. Ребане И. // Изв. АН ЭССР. Физ. Матем., 1986, 35, № 3, 296—301.
 11. Rebane, I. // Рhys. status solidi (b), 1988, 145, 749—757.
 12. Ребане И. // Изв. АН ЭССР. Физ. Матем., 1988, 37, № 4, 428—431.
 13. Ребане И. // Изв. АН ЭССР. Физ. Матем., 1987, 36, № 2, 204—207.
 14. Ребане И. // Изв. АН ЭССР. Физ. Матем., 1985, 34, № 4, 438—440.

Институт физики Академии наук Эстонской ССР Поступила в редакцию 21/IV 1988

Inna REBANE

PIIRKITSASTE SPEKTRAALSÄLKUDE KAHEASTMELISE IMPULSSVALGUSPÕLETAMISE TEOORIA

On vaadeldud kaheastmelist spektraalsälkamist, kus esimese astme selektiivne ergastus «fikseeritakse» fotokeemilise muundumisega teisel ergastusastmel. Spektraalsälk puhtelektronjoone sageduse mittehomogeenses jaotusfunktsioonis (MJF) kitseneb monotoonselt viivise T kasvades selektiivse ja fikseeriva impulsi vahel piirlaiuseni $\Gamma+|\gamma_1-\Delta|$ juhul, kui selektiivseks impulsiks on koherentne eksponentsiaalselt kustuv impulss ja fikseerivaks δ -impulss (γ_1 ja Γ on esimese ergastatud nivoo energeetilise ja faasilise relaksatsiooni konstandid, Δ — selektiivse impulsi spektraalne laius). On võimalik muuta spektraalsälku MJF-s veelgi kitsamaks, kui kasutada selektiivse impulsi interferentsi täiendava δ -impulsiga esimesel ergastuse astmel. Spektraalsälgu piirlaiuseks on $|\gamma_1+\Gamma-\Delta|$ juhul, kui $\tau_1\to-\infty$, ja $|\gamma_1-\Gamma-\Delta|$ juhul, kui $\tau_1\geqslant 0$ ja $T\to\infty$ (τ_1 on viivis täiendava δ -impulsi ja selektiivse impulsi vahel).

Inna REBANE

THEORY OF TWO-STEP PULSED PHOTOBURNING OF LIMITING NARROW SPECTRAL HOLES

A two-step spectral hole burning is considered where the selective excitation of the first step is fixed by a photochemical transformation through the second excitation step. If the selective pulse is coherent and exponential on one side, then in the case of an extremely short fixing pulse (δ -pulse), on the increase of a time delay T between the selective and fixing pulses, a monotonous narrowing of the spectral hole in the inhomogeneous distribution function (IDF) of the frequency of the pure-electronic line takes place up to the limit width $\Gamma + |\gamma_1 - \Delta|$ (γ_1 and Γ are the constants of energetic and phase relaxation of the first excited level, Δ is the spectral width of the selective pulse). It is shown that the spectral hole in IDF can further be narrowed up to $|\gamma_1 + \Gamma - \Delta|$ at $\tau_1 \to -\infty$, or $|\gamma_1 - \Gamma - \Delta|$ at $\tau_1 \to 0$, and $T \to \infty$ if the interference of the selective pulse with an additional δ -pulse at the first burning step is used (τ_1 — a time delay between the additional δ-pulse and the selective pulse).