ĒĒSTI NŠV TEADUSTE AKADĒĒMIĀ TOIMĒTIŠĒD. FŪŪSIKA * MATEMAATIKA

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * МАТЕМАТИКА PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS

1989, 38, 1

УДК 535.33 : 535.37 https://doi.org/10.3176/phys.math.1989.1.18

В. ХИЖНЯКОВ

ФЛУКТУАЦИИ ПРИМЕСНОГО ПОГЛОЩЕНИЯ И ИЗЛУЧЕНИЯ ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ

V. HIZNIAKOV. LISANDINEELDUMISE JA -KIIRGUSE FLUKTUATSIOONID MADALAL TEM-PERATUURIL

Y. HIZHNYAKOV. FLUCTUATIONS OF IMPURITY ABSORPTION AND EMISSION AT LOW TEMPERATURE

Спектроскопические исследования отдельных атомов и молекул в свободном (газообразном) состоянии ведутся уже ряд лет (см., напр., [1,2]). В этих исследованиях используются атомы и молекулы, разделенные пространственно на значительное расстояние (что и позволяет их наблюдать по отдельности). В твердом теле примесные центры находятся на очень малых расстояниях друг от друга, гораздо меньших дифракционного предела фокусировки света λ (λ — длина волны света). Поэтому может показаться, что оптический эксперимент на отдельном центре (или на небольшом их числе) в кристалле не возможен. В действительности это не так: существование узких бесфононных линий шириной, гораздо меньшей наблюдаемой (неоднородной) ширины, делает такие эксперименты при низкой температуре в принципе возможными. На это ранее указывал К. К. Ребане в связи с обсуждением вопроса о предельно достижимой плотности записи информации в твердых телах. Ниже предлагается один из возможных путей реализации этой идеи.

Рассмотрим кристалл (стекло), оптическая толщина которого (ж) в области бесфононной линии (БФЛ) примесей порядка единицы (ж~1). Понизим температуру кристалла настолько, чтобы однородная ширина БФЛ (ү) определялась скоростью (ү0) распада возбужденного состояния центров (ү \approx ү0) (в кристаллах для этого обычно достаточно использовать температуру ~1 K [³]). Зададим вопрос, сколько примесных центров будет участвовать в поглощении монохроматического луча сечения $S \sim d^2$ (d — диаметр луча; спектральная ширина излучения $\delta < \gamma_0$)? Простая оценка, основанная на формуле

$$\varkappa \sim \gamma_0 p l \lambda^2 / 2\pi \Gamma \tag{1}$$

 $(\gamma_0 = \gamma_0 \exp(-f), \exp(-f)$ — относительная вероятность БФЛ, p — концентрация центров, l — толщина кристалла, Γ — неоднородная ширина БФЛ, $\lambda^2/2\pi$ — сечение резонансного поглощения одного центра) дает для этого числа (n) величину

$$n = p l S_{\nu_0} / \Gamma_\varkappa \sim 2\pi d^2 / \lambda^2. \tag{2}$$

Возбуждающее излучение можно сфокусировать на площадь $d^2 \sim \lambda^2$ (дифракционный предел). В этом случае $n \sim 2\pi$, т. е. возбуждается и тем самым участвует в поглощении только несколько центров.

При таком малом числе поглощающих центров, очевидно, весьма существенны эффекты флуктуации: при изменении частоты возбужде-

ния всего лишь на величину $\sim \gamma_0$ (либо при перефокусировке на расстояние $\sim d$) число поглощающих центров будет нерегулярным (случайным) образом изменяться на величину $\sim n^{1/2}$. Это приведет к изменению коэффициента поглощения на относительную величину $\Delta \varkappa / \varkappa \sim n^{-1/2}$. Поэтому коэффициент поглощения в пределах неоднородной БФЛ будет флуктуировать с относительной амплитудой $\sim n^{-1/2}$ при спектральной «длине» корреляции $\sim \gamma_0$. Если фокусировка излучения на кристалл не полная, а ширина БФЛ отличается от радиационной, то относительная амплитуда флуктуаций коэффициента поглощения уменьшается до величины

$$\frac{\Delta \varkappa}{\varkappa} \sim \frac{\lambda \gamma_0^{1/2}}{d \left(2\pi \left(\gamma + \delta\right)\right)^{1/2}}$$
(3)

при спектральной «длине» корреляции $\sim \gamma + \delta$.

Следует отметить, что флуктуации коэффициента поглощения отмеченной величины будут наблюдаться только в том случае, когда центр после поглощения одного фотона возбуждения успевает высветиться и вернуться в основное состояние еще до прихода следующего фотона. Это дает следующее ограничение на интенсивность возбуждения сверху:

$$I < (2\pi\gamma_0(\gamma + \delta))^{1/2} d/\lambda.$$
⁽⁴⁾

В системах с фотовыжиганием спектрального провала помимо отмеченного ограничения на интенсивность возникают также ограничения на дозу N (полное число фотонов) и квантовый выход фотовыжигания α :

$$N = It < 2\pi d^2 (\gamma + \delta)^{\frac{1}{2}} \sqrt{\gamma_{\perp}^{\frac{1}{2}}} a \lambda^2,$$
(5)

$$\alpha \ll 1$$
 (6)

(*t* — время).

Проведем оценку. Если $\gamma + \delta \sim \gamma_0 \sim 5 \cdot 10^7$ сек⁻¹, $d \sim 10^{-3}$ см, $\lambda \sim 5 \cdot 10^{-5}$ см, $\alpha \sim 10^{-5}$, то $I < 10^9$ сек⁻⁹, $N < 10^8$. В этом случае относительная амплитуда полезного сигнала (флуктуаций коэффициента поглощения) порядка нескольких процентов ($\Delta \varkappa / \varkappa < 10^{-2}$), т. е. существенно превышает уровень квантового шума регистрации $\sim N^{-1/2} \sim 10^{-4}$.

Рассмотренный выше достаточно очевидный эффект флуктуаций числа поглощающих центров, возникающих при фокусировке слабого монохроматического излучения, может быть использован для изучения различных релаксационных процессов в твердых телах при низкой температуре. В частности, таким методом можно изучать процессы спектральной диффузии в стеклах. При этом может быть зафиксирован отдельный квантовый переход в ближайшей к одному из поглощающих центров двухуровневой системе: такой переход приводит к выводу центра из резонанса, т. е. к скачкообразному изменению числа поглощающих центров на единицу. Это уменьшает коэффициент поглощения на относительную величину $\sim \lambda^2 \gamma_0 / 2\pi (\gamma + \delta) d^2$. Отметим также, что предлагаемым методом можно наблюдать индивидуальные процессы фотовыжигания провала (если α≪1): каждый акт фотопревращения также приводит к скачку (уменьшению) поглощения на относительную величину $\sim \lambda^2 \overline{\gamma_0}/2\pi (\gamma + \delta) d^2$, который может быть зафиксирован.

Рассмотренные выше флуктуационные эффекты могут наблюдаться не только в поглощении, но и в резонансной флуоресценции, возбуждаемой сфокусированным монохроматическим светом ограниченной интенсивности. При этом величина флуктуаций может быть в ж^{-1/2} раз усилена по сравнению с поглощением, если использовать кристалл с малой оптической толщиной к. Например, если к $\sim 10^{-2}$, $d \sim 5\mu$, то возбуждаются и излучают одиночные центры и амплитуда флуктуаций регистрируемого излучения $\Delta I \sim I$.

Еще одна возможность усиления флуктуаций примесных центров состоит в использовании двойной фокусировки — как возбуждения, так и регистрации. В этом случае число центров, излучение которых регистрируется, равно

$$n \sim p(\gamma + \delta) d^2 d_1^2 / \Gamma(d + d_1) \tag{7}$$

 $(d_1 - диаметр фокусировки при регистрации). Принимая <math>(\gamma + \delta)/\Gamma \sim$ $\sim 10^{-6}$, $p \sim 10^{16}$ см⁻³, $d \sim d_1 \sim 5\mu$, получаем $n \sim 1$, т. е. будет регистрироваться излучение одиночных центров. При этом снова относительная амплитуда флуктуаций будет порядка единицы. Отметим также, что в рассматриваемых экспериментах по резонансной флуоресценции примесей могут наблюдаться корпускулярные флуктуации не только в веществе, но и в поле излучения, например, антигруппировка фотонов [4].

В заключение отметим, что предлагаемый флуктуационный метод реализует спектроскопию небольшого числа примесных центров кристаллов при низкой температуре.

Автор признателен К. К. Ребане за обсуждение.

ЛИТЕРАТУРА

Демтредер В. Лазерная спектроскопня. М., Наука, 1985, 537—561.
 Летохов В. С. Применение лазеров в атомной, молекулярной и ядерной физике. Тр. Всесоюзн. школы. М., Наука, 1979.
 Хижняков В. В. // Тр. ИФ АН ЭССР, 1986, № 59, 55—74, Тарту.
 Смирнов Д. Е., Трошин А. С. // УФН, 1987, 153, 233—271.

ходной ток I(t) = I = const. На упомянутом рисунке сплошной линией показан импулю входного тика, перисстроенной по хоку <math>OB, пунктирной лицией — импульс тока VB с пойншейным на ΔI значением я

Институт физики Академии наук Эстонской ССР 13/V 1988