EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. FOOSIKA * MATEMAATIKA

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * МАТЕМАТИКА PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS

1988, 37, 1

https://doi.org/10.3176/phys.math.1988.1.08

УДК 535.375

О. СИЛЬД

МОДЕЛЬ ВРАЩЕНИЯ ПРИМЕСНОЙ МОЛЕКУЛЫ NO₂ В КРИСТАЛЛЕ КСІ

(Представил К. К. Ребане)

Анализом данных по комбинационному рассеянию на примесных ионах NO₂⁻ в кристалле KCl, а также по поляризованной люминесценции, установлено вращение иона NO₂⁻ вокруг оси, параллельной оси симметрии третьего порядка кристалла.

1. Введение

Спектры поглощения, излучения и комбинационного рассеяния (КР)

молекулярного иона NO₂⁻ в кристалле КС1 интерпретировались, как правило, в рамках модели одномерного вращения иона вокруг молекулярной оси *a*, параллельной линии соединения атомов кислорода [¹⁻⁷]. Но при этом в одних работах ось *a* считалась ориентированной по оси четвертого порядка кристалла ($a \parallel C_4$), а в других — по оси второго порядка кристалла ($a \parallel C_2$).

Последнее, наиболее полное пьезоспектроскопическое исследование поляризованных спектров поглощения NO_2^- в КС1 привело к выводу об ориентации оси $a \parallel C_2$ при одноосном сжатии [⁸]. Вопрос об ориентации оси *а* в кристалле без сжатия остался открытым.

В данной работе проведены модельные расчеты спектроскопических характеристик КР и поляризованной люминесценции для разных ориентаций оси одномерного вращения молекулярного иона NO₂ в кубическом кристалле. Сравнение результатов расчета с имеющимися экспериментальными данными приводит к выводу об ориентации оси а по оси третьего порядка кристалла КС1 (*a*||C₃).

2. Поляризационная характеристика КР

Интенсивность рассеянного примесной молекулой света пропорциональна

$$|\sum_{\alpha\beta} n_{\alpha} R_{\alpha\beta} e_{\beta}|^2, \tag{1}$$

где n_{α} и e_{β} — единичные векторы электрического поля рассеянного и падающего света, а $R_{\alpha\beta}$ — тензор КР. Тензоры КР первого порядка на симметричном или антисимметричном внутримолекулярном колебаниях NO_2^- , записанные в молекулярной системе координат, равны соответственно

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \quad \text{или} \quad \begin{pmatrix} 0 & d & 0 \\ e & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$
(2)

В лабораторной системе тензор

$$R_{\alpha\beta} = \sum_{\gamma\delta} O_{\alpha\gamma} R_{\gamma\delta} \tilde{O_{\delta\beta}}, \qquad (3)$$

Contraction of the second

где $R_{\gamma\delta}$ — тензор в молекулярной системе координат (тензоры (2)), а $O_{\alpha\gamma}$ — матрица вращения молекулы.

Ориентация оси *а* примесной молекулы существенно влияет на поляризационные свойства колебательных линий КР. Поэтому для решения вопроса об ориентации оси *а* следует вычислить коляризационные характеристики для моделей разных ориентаций и затем их сравнить с экспериментальными данными.

В [6] при разных геометриях опыта были определены отношения интенсивностей поляризованных линий $S = I_{\perp}/I_{\parallel}$, где I_{\perp} измерена при $\vec{n} \perp \vec{e}$ и I_{\parallel} — при $\vec{n} \parallel \vec{e}$. Были использованы следующие три геометрии

$$\frac{[100] [001]}{[100] [100]}, \frac{[110] [001]}{[110] [110]} \text{ H } \frac{[1\overline{10}] [110]}{[110] [110]}, \quad (4)$$

где последовательно указаны направления поляризации e и n при измерении I_{\perp} (в числителе) и при измерении I_{\parallel} (в знаменателе). Эти отношения интенсивностей S (степени деполяризации) следует теперь и вычислить для разных ориентаций оси одномерного вращения. Мы рассмотрим следующие три возможные ориентации в кубическом кристалле: $a || C_2, a || C_3$ и $a || C_4$. Обозначим отношения S для трех геометрий опыта (4) соответственно через S_1, S_2 и S_3 . Ограничимся их расчетом для антисимметричного внутримолекулярного колебания, предполагая в соответствующем тензоре КР (см. (2)) e=d, что хорошо оправдано в нерезонансном КР; в результате оставшийся один параметр d в отношения S_1, S_2, S_3 не входит.

Одномерное вращение молекулы вокруг оси $a \| C_2$ происходит в кубическом кристалле в одном из шести направлений: [110], [110], [011], [011], [101] или [101]. Для первого из них, например, матрица вращения $O_{\alpha\gamma}$ и тензор рассеяния $R_{\alpha\beta}$ на антисимметричном колебании равны

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -\cos\varphi & -\sin\varphi \\ 1 & \cos\varphi & \sin\varphi \\ 0 & -\sqrt{2}\sin\varphi & \sqrt{2}\cos\varphi \end{pmatrix} \qquad \varkappa \quad \frac{d}{\sqrt{2}} \begin{pmatrix} -\sqrt{2}\cos\varphi & 0 & -\sin\varphi \\ 0 & \sqrt{2}\cos\varphi & -\sin\varphi \\ -\sin\varphi & -\sin\varphi & 0 \end{pmatrix}.$$
(5)

Здесь угол вращения φ выбран таким, что при $\varphi = 0$ стационарный дипольный момент молекулы NO₂ направлен по оси C_2 кристалла, а плоскость молекулы перпендикулярна оси C_4 кристалла.

Степени деполяризации S, вычисленные по (1)—(5) в предположении равновероятного заселения всех шести ориентаций оси $a \| C_2$, равны для антисимметричного колебания

$$S_1 = \frac{0.5A}{1-A}; \quad S_2 = \frac{2A}{1+A}; \quad S_3 = \frac{3-3A}{1+A}.$$
 (6)

Здесь $A \equiv \langle \sin^2 \varphi \rangle$ — среднее значение функции $\sin^2 \varphi$; в свободном одномерном вращении оно равно 1/2.

Одномерное вращение вокруг оси а С2 происходит в кристалличе-

53

ском поле симметрии C_{2v} с двумя потенциальными ямами. Представим потенциал этого поля в виде

 $U(\varphi) = U_0 \cos 2\varphi. \tag{7}$

С ростом торможения вращения кристаллическим полем (с ростом U_0) вращение молекулы все больше и больше локализуется в потенциальных ямах; от степени локализации значительно зависит значение A, тем самым и отношения S. Проведен расчет последних в зависимости от степени локализации (от U_0). Результат для антисимметричного колебания представлен на рис. 1, где заселенности вращательных уровней соответствуют температуре 5 K и величине вращательной постоянной B=2 см⁻¹. Из рис. 1 видно, что отношения S качественно различны для $U_0>0$ и $U_0<0$. Объясняется это тем, что в случае $U_0>0$ потенциальные ямы расположены около $\varphi=\pi/2$ и $3\pi/2$, а в случае $U_0<0$ — около $\varphi=0$ и π . Этому соответствует локализация стационарного дипольного момента молекулы NO_2^{-2} или по оси C_4 кристалла (при $U_0>0$), или по оси C_2 (при $U_0<0$).

Рис. 1. Отношения интенсивностей $S=I_{\perp}/I_{\parallel}$ поперечно и параллельно поляризованных линий комбинационного рассеяния на антисимметричном колебании иона NO₂ по трем геометриям опыта (4), вычисленные для моделей $a\|C_2$ и $a\|C_3$ в зависимости от степени торможения вращения. Пунктир — результаты измерения.

Одномерное вращение молекулы вокруг оси $a \| C_3$ происходит в кубическом кристалле в одном из четырех направлений: [111], [111], [111] или [111]. Для первого из них, например, матрица вращения $O_{\alpha\gamma}$ и тензор рассеяния $R_{\alpha\beta}$ равны

$$\frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{2} & -\sqrt{3}\cos\varphi + \sin\varphi & -\sqrt{3}\sin\varphi - \cos\varphi \\ \sqrt{2} & \sqrt{3}\cos\varphi + \sin\varphi & \sqrt{3}\sin\varphi - \cos\varphi \\ \sqrt{2} & \sqrt{3}\cos\varphi + \sin\varphi & \sqrt{3}\sin\varphi - \cos\varphi \end{pmatrix} \overset{H}{} \\ \frac{d}{3\sqrt{2}} \begin{pmatrix} -2\sqrt{3}\cos\varphi + 2\sin\varphi & 2\sin\varphi & -\sqrt{3}\cos\varphi - \sin\varphi \\ 2\sin\varphi & 2\sqrt{3}\cos\varphi + 2\sin\varphi & \sqrt{3}\cos\varphi - \sin\varphi \\ -\sqrt{3}\cos\varphi - \sin\varphi & \sqrt{3}\cos\varphi - \sin\varphi & -4\sin\varphi \end{pmatrix}.$$
(8)

Степени деполяризации, вычисленные по (1)—(4) и (8) в предположении равновероятного заселения всех четырех ориентаций оси $a \| C_3$, равны

$$S_1 = \frac{9 - 2A}{36 - 8A}; \quad S_2 = \frac{9 - 2A}{12 + 8A}; \quad S_3 = \frac{15 - 6A}{6 + 4A}.$$
 (9)

Так как среднее значение $A \equiv \langle \sin^2 \varphi \rangle$ от формы кристаллического поля симметрии C_{3v} не зависит и равно 1/2, степени деполяризации S_1, S_2 и S_3 здесь равны соответственно 0,25, 0,5 и 1,5.

Аналогичный расчет степеней деполяризации для ориентаций $a \| C_4$ приведет к значениям $S_1 \rightarrow \infty$, $S_2 = 1$ и $S_3 = 0$.

По измерениям КР на антисимметричном колебании NO₂ в KCl S_1, S_2 и S_3 равны соответственно 0,31, 0,52 и 1,59 [⁶]. Сравнение экспериментальных данных с результатами модельных расчетов (см. рис. 1) свидетельствует о согласии между ними в двух случаях — или в модели $a \| C_3$ или в модели $a \| C_2$, если в последнем случае выбрать модельный потенциал (7) с отрицательной постоянной U_0 величины порядка $\sim 2B$. Так как затормаживающий потенциал с $U_0 < 0$ имеет ямы при $\varphi = 0$ и π , стационарный дипольный момент молекулы NO₂ в кристалле KCl следует считать в модели $a \| C_2$ локализованным в направлении оси C_2 кубического кристалла. Упомянутое согласие можно считать удовлетворительным с учетом пределов точности экспериментальных данных (модель также приближенная — одномерная!); совершенно непригодна модель $a \| C_4$.

3. Поляризованная люминесценция

Классическим методом определения ориентаций анизотропных центров в кристаллах является изучение угловых зависимостей поляризованной люминесценции [⁹]. В этом методе измеряется степень поляризации $P_{\Phi} = (I_{\parallel} - I_{\perp})/(I_{\parallel} + I_{\perp})$ зависимости от угла Ф между вектором поляризации возбуждающего света и осью C_4 в случае кубического кристалла $(I_{\parallel} \ u \ I_{\perp} - u$ нтенсивности люминесценции, поляризованной параллельно и перпендикулярно вектору поляризации возбуждающего света). Разным ориентациям дипольного момента поглощательного (излучательного) перехода относительно осей кристалла C_2 , C_3 или C_4 соответствует своя характерная угловая зависимость P_{Φ} .

У молекулярного центра NO_2^- измеряется поглощательный (излучательный) переход ${}^1A_1 \leftrightarrow {}^1B_2$, дипольный момент которого направлен перпендикулярно плоскости молекулы [10]. Так как NO_2^- в кристалле KCl совершает одномерное вращение вокруг оси *a*, дипольный момент перехода ${}^1A_1 \leftrightarrow {}^1B_2$ не ориентирован относительно кристаллических

осей, а вращается в плоскости, перпендикулярной оси a. Для самой оси a следует рассмотреть три ориентации $a || C_2$, $a || C_3$ или $a || C_4$.

Для решения вопроса об ориентации оси a нужно теперь вычислить угловые зависимости P_{Φ} в рамках модели одномерного вращения NO₂ вокруг оси a для трех разных ориентаций оси a и затем их сравнить с измеренной P_{Φ} .

Интенсивности поляризованной люминесценции I_{\parallel} и I_{\perp} считаются в модельных расчетах пропорциональными 1) квадрату проекции дипольного момента излучательного перехода на соответствующий вектор поляризации излучаемого света и 2) вероятности возбуждения молекулы. Последняя пропорциональна квадрату проекции дипольного момента поглощательного перехода данной молекулы на вектор поляризации возбуждающего света. Предполагается, что за время акта поглощения-излучения света молекулой не происходит переориентации оси *а*. Все ориентации оси *а* считаются равновероятно заселенными.

Угловая зависимость степени поляризации в модели $a \| C_2$ следующая

 $P_{\Phi} = \left[4 - \frac{12A + 9A^2 + \sin^2 2\Phi \left(-4 + \frac{12A - 7A^2}{4}\right)}{4 - \frac{4A + 3A^2}{4}}\right], \quad (10)$

где $A \equiv \langle \sin^2 \varphi \rangle$ — среднее значение $\sin^2 \varphi$, весьма значительно зависящее от формы кристаллического поля C_{2v} -симметрии, например, от параметра U_0 модельного потенциала (7). В свободном одномерном

Рис. 2. Степени поляризации люминесценции примесного иона NO₂, вычисленные для моделей а∥С₂, С₃ и С₄ при углах Ф=0° и 45° между вектором поляризации возбуждения и осью С₄ кристалла в зависимости от степени торможения вращения. Пунктир — результаты измерения.

вращении A = 1/2 и $P_{\Phi} = (1 + \sin^2 2\Phi)/11$, т. е. $P_0 \approx 0.09$ и $P_{45} \approx 0.18$ (угол Φ — в градусах). На рис. 2 приведена зависимость P_0 и P_{45} от параметра U_0 поля (7).

Степень поляризации в модели а Сз

$$P_{\Phi} = \sin^2 2\Phi/4 \tag{11}$$

от формы кристаллического поля C_{3v} -симметрии не зависит. Ее частные значения $P_0 = 0$ и $P_{45} = 0,25$.

В модели а С4 угловая зависимость

$$P_{\Phi} = \cos^2 2\Phi/3, \tag{12}$$

частные значения которой Ро≈0,33 и Р45=0.

Измеренная степень поляризации люминесценции молекулы $NO_2^$ в КСl равна при $\Phi=0$ и $\Phi=45$ соответственно 0,01 и 0,18 [¹¹]. С учетом точности измерений, а также приближенного характера модели, можно говорить об удовлетворительном согласии между данными измерения и результатами модельных расчетов (см. рис. 2) в двух случаях — или в модели $a \| C_3$ или в модели $a \| C_2$, если в последнем случае выбрать модельный потенциал (7) с положительным параметром U_0 величины порядка ~ В. Отметим, что такой потенциал локализует

стационарный дипольный момент молекулы NO_2^- в направлении оси C_4 кубического кристалла. Явно непригодна модель $a \| C_4$.

4. Выводы

Сравнивая результаты расчета поляризованных характеристик люминесценции и КР для трех моделей ориентации оси *а* молекулы NO₂ в KCl, с одной стороны, и соответствующие экспериментальные данные, с другой, приходим к выводу, что ось *а* ориентирована по оси *C*₃ кубического кристалла.

Отметим, что измеренные поляризационные характеристики КР можно также согласовать с рассчитанными в рамках модели $a||C_2$, если локализовать стационарный дипольный момент молекулы NO₂ в направлении оси C_2 кристалла. Однако измеренные поляризационные характеристики люминесценции согласуются с рассчитанными по модели $a||C_2$ только тогда, когда стационарный дипольный момент локализовать в направлении оси C_4 . Поэтому модель $a||C_2$ следует отклонить.

Близость поляризационных характеристик (см. рис. 1 и 2), рассчитанных по моделям $a \| C_2$ и $a \| C_3$, связана со следующим. Угловое распределение тензора рассеяния или дипольного момента электронного перехода в модели $a \| C_3$ эффективно равносильно угловому распределению в модели $a \| C_2$, если в последней торможением вращения локализовать тензор рассеяния (или момент электронного перехода) в направлении оси C_2 кристалла. Рассматриваемый тензор рассеяния (второй из тензоров (2)) имеет компонент, параллельный стационарному дипольному моменту молекулы, но рассматриваемый электронный переход ${}^{1}A_{1} \leftrightarrow {}^{1}B_{2}$ имеет момент, перпендикулярный стационарному дипольному моменту. Это и является причиной тому, что поляризационная характеристика модели $a \| C_2$ согласуется с КР-измерениями при локализации стационарного дипольного момента по C_2 , а согласие с люминесцентными измерениями получается при локализации этого момента по C_4 .

Одномерное вращение в моделях $a \| C_2$ и $a \| C_3$ происходит в кристаллических полях C_{2v} - и C_{3v} -симметрии соответственно. C_{2v} -поле расщепляет первый возбужденный уровень одномерного вращения К=1, Сзи-поле — нет. Величина расщепления полем (7) равна ≈ U0. Таким образом, наличие или отсутствие расщепления вращательных спектральных линий, связанных с K=1, также помогает сделать выбор между моделями а || C2 и а || C3. Такое расщепление в действительности наблюдается [4], но имеет величину, гораздо меньшую, чем величины U₀, нужные для упомянутых выше локализаций. В работе [4] оно связывается с диполь-дипольным взаимодействием между примесными молекулами в силу его зависимости от концентрации примесных молекул. Отсутствие расщепления у единичной примесной молекулы соответствует модели $a \| C_3$.

Вывод данной работы об ориентации оси а С3 отличается от вывода работы [8] об ориентации а || C2 при одноосном сжатии. Отметим, что в работе [8] спектры измерялись при весьма немалых напряженностях одноосного сжатия (>1 кГ/мм²). Поэтому следует заключить, что в области напряженностей сжатия до 1 кГ/мм² произошла переориентация оси a молекулы NO₂ с направления оси C_3 на направление оси С₂ кубического кристалла КСІ. Представляет интерес в дальнейшем подробнее исследовать процессы переориентации под одноосным сжатием, в том числе в зависимости от направления сжатия.

ЛИТЕРАТУРА

- 1. Narayanamurti, V., Seward, W. D., Pohl, R. O. Phys. Rev., 148, № 1, 481-494 (1966).

- 2. Авармаа Р., Ребане Л. Изв. АН ЭССР. Физ. Матем., 18, № 1, 117—120 (1969). 3. Avarmaa, R., Rebane, L. Phys. status solidi., 35, № 1, 107—117 (1969). 4. Авармаа Р. А. Опт. и спектр., 29, вып. 4, 715—720 (1970). 5. Rebane, L. A., Zavt, G. S., Haller, K. E. Phys. status solidi (b), 81, № 1, 57—68 (1977).
- 6. Хальдре Т., Ребане Л., Сильд О., Ярвекюльг Э. Изв. АН ЭССР. Физ. Матем., 24, № 4, 417—427 (1975). 7. Трещалов А. Изв. АН ЭССР. Физ. Матем., 28, № 3, 233—242 (1979). 8. Долиндо И., Сильд О., Сильдос И. Изв. АН ЭССР. Физ. Матем., 36, № 4, 364—
- 372 (1987)
- 9. Феофилов П. П. Поляризованная люминесценция атомов, молекул и кристаллов. М., «Физматгиз», 1959.
- 10. МсЕwen, К. L. J. Chem. Phys., 34, № 2, 547—555 (1960). 11. Трещалов А. Б. Канд. дис. Тарту, 1977.

Инститит физики Академии наук Эстонской ССР

9/II 1987 Поступила в Переработанный вариант 11/VI 1987

O. SILD

NO2 LISANDIMOLEKULI PÖÖRLEMISE MUDEL KCI KRISTALLIS

 NO_2 lisandimolekuli kombinatsioonhajumise, samuti polariseeritud luminestsentsi spektrite analüüs näitab, et lisandimolekuli ühemöötmeline pöörlemine KCl kristallis toimub kristalli kolmandat järku telje ümber.

O. SILD

THE MODEL OF ROTATION OF NO. IMPURITY MOLECULE IN KCI CRYSTAL

The absorption, luminescence and Raman spectra of NO₂ impurity molecules in KCl crystal have been interpreted in the model of one-dimensional rotation of the NO₂ mole-cule around the molecular axis a, parallel to the O—O line [¹⁻⁷]. But in different papers, different orientations of the axis a in the crystal were proposed.

In this paper, an analysis of the data available on the Raman scattering and luminescence spectra of the NO₂⁻ impurity molecule is carried out in order to determine the orientation of the axis *a* in KCl crystal. In Part 2, the depolarization degrees $S=I_{\perp}/I_{\parallel}$ of the Raman line of asymmetric

molecular vibration have been calculated, the axis a of one-dimensional rotation being alternatively directed to the crystal axes C_2 , C_3 or C_4 . In Fig. 1, the resulting S_1 , S_2 and S_3 for three Raman geometries (4) are presented. In the model $a \parallel C_2$ they strongly depend on the parameter U_0 of hindering potential (7). In Part 3, the degrees of polarized luminescence $P_{\Phi} = (I_{\parallel} - I_{\perp})/(I_{\parallel} + I_{\perp})$ depend-

ing on the angle Φ between the excitation polarization and crystal axis C_4 have been calculated, the axis *a* being alternatively directed to the crystal axes C_2 , C_3 or C_4 . In Fig. 2, the P_0 and P_{45} are presented, while in the model $a \parallel C_2$ they strongly depend on the parameter U_0 .

A comparison of the calculated depolarization degrees (Raman scattering) and the degrees of polarized luminescence with experimental data suggests that a model of onedimensional rotation of the NO2 molecule around the crystal axis of three-fold symmetry should be preferred.