EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. FÜÜSIKA * MATEMAATIKA

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * MATEMATUKA
PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR.
PHYSICS * MATHEMATICS

https://doi.org/10.3176/phys.math.1987.1.05

УДК 62.50

Юлле КОТТА

ЧАСТИЧНАЯ ДЕКОМПОЗИРУЕМОСТЬ МНОГОМЕРНЫХ СИСТЕМ

(Представил Н. Алумяэ)

При проектировании систем автоматического управления многомерными объектами возникает задача выяснения автономных пар входа—выхода. Для линейных систем, описываемых уравнениями состояния, попытка решить эту задачу с помощью безразмерного критерия сделана в $[^{1,2}]$, где получено необходимое (но не достаточное) условие автономности рассматриваемой пары вход—выход от остальных входов и выходов системы. В $[^3]$ метод из $[^{1,2}]$ обобщен для диадических билинейных систем. В настоящей работе показано, что предложенные в $[^{1-3}]$ условия в действительности являются необходимыми и достаточными для частичной (треугольной) автономности данной пары.

1. Линейные системы. Пусть уравнения многомерной линейной системы заданы в виде

$$x(t+1) = Fx(t) + Gu(t),$$

$$y(t) = Hx(t),$$
(1)

где $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^m$, F, G, H — постоянные матрицы подходя-

щей размерности.

Обозначим через $u_j - j$ -й вход, $y_i - i$ -й выход, $\bar{u}_j - (m-1)$ -мерный вектор входов без u_j , $\bar{y}_i - (m-1)$ -мерный вектор выходов без y_i , $g_j - j$ -й столбец матрицы G, $h_i^T - i$ -ю строку матрицы H, G_j — матрицу G без j-го столбца, H_i — матрицу H без i-й строки и положим $M_{ij} = I - G_j (H_i G_j)^{-1} H_i$.

О пределение 1. Пара вход—выход (y_i, u_j) называется автономной от остальной системы тогда и только тогда, когда u_j влияет только на y_i , причем \bar{u}_i на y_i не влияет.

В [1,2] предложен следующий критерий автономности пары (y_i,u_j) :

если относительная переходная функция (п. ф.) этой пары

$$\varphi_{ij}(t) = \sum_{k=1}^{t} h_i^T F^{k-1} g_j / \sum_{k=1}^{t} h_i^T (M_{ij}F)^{k-1} M_{ij} g_j = 1$$
 (2)

при t=1,2..., то пара автономная.

При этом функция $\phi_{ij}(t)$, которая вычисляется по формуле (2), определена следующим образом

$$\varphi_{ij}(t) = p_{ij}(t)/q_{ij}(t),$$

где $p_{ij}(t) = \{y_i(t) \mid x(0) = 0, u_j(t) = 1, \overline{u}_j(t) = 0\}$ — п.ф. разомкнутой системы; $q_{ij}(t) = \{y_i(t) \mid x(0) = 0, u_j(t) = 1, \overline{y}_i(t) = 0\}$ — п.ф. частично замкнутой подсистемы.

Приведем примеры, в которых $\varphi_{ij}(t) = 1, t = 1, 2, \dots$ (это можно проверить, вычисляя $\varphi_{ij}(t)$ по формуле (2)), однако пара (y_i, u_j) не явля-

ется автономной.

Для выделения пары (y_i, u_i) перепишем (1) в виде

$$\begin{bmatrix} x_{1}(t+1) \\ \overline{x}(t+1) \end{bmatrix} = \begin{bmatrix} F_{1} & F_{2} \\ F_{3} & F_{4} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ \overline{x}(t) \end{bmatrix} + \begin{bmatrix} g_{j1} & G_{j1} \\ g_{j2} & G_{j2} \end{bmatrix} \begin{bmatrix} u_{j}(t) \\ \overline{u}_{j}(t) \end{bmatrix},$$

$$\begin{bmatrix} y_{i}(t) \\ \overline{y}_{i}(t) \end{bmatrix} = \begin{bmatrix} h_{i1}^{T} & h_{i2}^{T} \\ H_{i1} & \overline{H}_{i2} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ \overline{x}(t) \end{bmatrix}.$$

Пример 1

$$\begin{bmatrix} x_{1}(t+1) \\ \overline{x}(t+1) \end{bmatrix} = \begin{bmatrix} F_{1} & 0 \\ F_{3} & F_{4} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ \overline{x}(t) \end{bmatrix} + \begin{bmatrix} g_{j1} & 0 \\ g_{j2} & G_{j2} \end{bmatrix} \begin{bmatrix} u_{j}(t) \\ \overline{u}_{j}(t) \end{bmatrix},$$
(3)
$$\begin{bmatrix} y_{i}(t) \\ \overline{y}_{i}(t) \end{bmatrix} = \begin{bmatrix} h_{i1}^{T} & 0 \\ H_{i1} & H_{i2} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ \overline{x}(t) \end{bmatrix}.$$

Пример 2.

$$\begin{bmatrix} x_1(t+1) \\ \overline{x}(t+1) \end{bmatrix} = \begin{bmatrix} F_1 & F_2 \\ 0 & F_4 \end{bmatrix} \begin{bmatrix} x_1(t) \\ \overline{x}(t) \end{bmatrix} + \begin{bmatrix} g_{j1} & G_{j1} \\ g_{j2} & 0 \end{bmatrix} \begin{bmatrix} u_j(t) \\ \overline{u}_j(t) \end{bmatrix}, \tag{4}$$

$$\begin{bmatrix} y_i(t) \\ \overline{y}_i(t) \end{bmatrix} = \begin{bmatrix} 0 & h_{2i}^T \\ H_{i1} & H_{i2} \end{bmatrix} \begin{bmatrix} x_1(t) \\ \overline{x}(t) \end{bmatrix}.$$

Пример 3.

$$\begin{bmatrix} x_1(t+1) \\ \bar{x}(t+1) \end{bmatrix} = \begin{bmatrix} F_1 & F_2 \\ 0 & F_4 \end{bmatrix} \begin{bmatrix} x_1(t) \\ \bar{x}(t) \end{bmatrix} + \begin{bmatrix} g_{j1} & G_{j1} \\ 0 & G_{j2} \end{bmatrix} \begin{bmatrix} u_j(t) \\ \bar{u}_j(t) \end{bmatrix},$$
 (5)

$$\begin{bmatrix} y_i(t) \\ \overline{y}_i(t) \end{bmatrix} = \begin{bmatrix} h_{i1}^T & h_{i2}^T \\ 0 & H_{i2} \end{bmatrix} \begin{bmatrix} x_1(t) \\ \overline{x}(t) \end{bmatrix}.$$

Пример 4.

$$\begin{bmatrix} x_{1}(t+1) \\ \overline{x}(t+1) \end{bmatrix} = \begin{bmatrix} F_{1} & 0 \\ F_{3} & F_{4} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ \overline{x}(t) \end{bmatrix} + \begin{bmatrix} 0 & G_{j1} \\ g_{j2} & G_{j2} \end{bmatrix} \begin{bmatrix} u_{j}(t) \\ \overline{u}_{j}(t) \end{bmatrix},$$
(6)
$$\begin{bmatrix} y_{i}(t) \\ \overline{y}_{i}(t) \end{bmatrix} = \begin{bmatrix} h_{i1}^{T} & h_{i2}^{T} \\ H_{i1} & 0 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ \overline{x}(t) \end{bmatrix}.$$

Очевидно, что в примерах 1 и 2 скалярный вход $u_{j}(t)$ влияет не только на скалярный выход $y_i(t)$, но и на выход $\bar{y}_i(t)$, т. е. пара (y_i,u_j) не является автономной. Причиной равенства $\varphi_{ij}(t) = 1$ является обстоятельство, что на выход $y_i(t)$ влияет только вход $u_i(t)$. Следовательно, не имеет никакого значения равно ли $\bar{u}_i(t)$ нулю или определен с помощью такой обратной связи, которая обеспечивает $\bar{y}_i(t) = 0$ — п. ф. пары (y_i, u_i) остается неизменным.

В примерах 3 и 4 на скалярный выход $y_i(t)$ влияет кроме скалярного входа $u_j(t)$ и вход $\bar{u}_j(t)$, т. е. пара (y_i, u_j) не является автономной. Причиной равенства $\varphi_{ij}(t) = 1$ является обстоятельство, что на выход $\bar{y}_i(t)$ влияет только вход $\bar{u}_{j}(t)$. Следовательно, $\bar{u}_{j}(t)$, который обеспечивает $\bar{y}_i(t) = 0$ (при x(0) = 0), равно тождественно нулю. Следовательно, п. ф.

разомкнутой и частично замкнутой системы совпадают.

Эти контрапримеры показывают, что условие (2) не является достаточным для автономности пары. Однако выясняется, что оно необходимо и достаточно для частичной (треугольной) автономности данной пары.

Определение 2. Пара вход—выход (y_i, u_j) называется частично (треугольно) автономной от остальной системы тогда и только тогда. когда либо вход \bar{u}_i влияет только на выход \hat{y}_i (случай а), либо вход u_i

влияет только на выход y_i (случай б).

Отметим, что примеры 1 и 2 соответствуют случаю а), а примеры 3 и 4 случаю б). Также очевидно, что примеры 1 и 2 охватывают случай а), а примеры 3 и 4 случай б). Следовательно, условие $\varphi_{ij}(t) = 1$, t ==1, 2, ... необходимо для частичной автономности.

Покажем теперь, что оно является и достаточным для частичной (треугольной) автономности данной пары, т. е. предположим, что $\varphi_{ij}(t) = 1, t = 1, 2, \dots$ и покажем, что это приводит к системам данных в примерах 1-4.

Условие (2) эквивалентно следующему условию

$$h_i^T F^{k-1} g_j = h_i^T (M_{ij} F)^{k-1} M_{ij} g_j, \quad k = 1, 2, \dots$$
 (7)

При k=1 из (7) получим SPR=0, где

$$S = h_{i1}^{T} G_{j1} + h_{i2}^{T} G_{j2},$$

$$P = (H_{i1} G_{j1} + H_{i2} G_{j2})^{-1},$$

$$R = H_{i1} G_{j1} + H_{i2} G_{j2}.$$

Отсюда следует, что либо S, либо R, либо S и R оба равны нулю. S равен нулю тогда и только тогда, когда выполнено либо условие (8), либо условие (9) (заметим, что G_{j1} и G_{j2} не могут быть одновременно равными нулю, так как тогда матрица $H_{i1}G_{j1} + H_{i2}G_{j2}$ необратима):

$$G_{i1}=0, \quad h_{i2}^{T}=0, \tag{8}$$

$$G_{j2}=0, \quad h_{i1}^{\mathbf{T}}=0.$$
 (9)

R равен нулю тогда и только тогда, когда выполнено либо условие (10), либо условие (11):

$$g_{j2}=0, \quad H_{i1}=0,$$
 (10)
 $g_{ji}=0, \quad H_{i2}=0.$ (11)

$$g_{ji} = 0, \quad H_{i2} = 0.$$
 (11)

При k=2 из (7) получим

$$-SP[H_{i1}(F_{4}g_{j1}+F_{2}g_{j2})+H_{i2}(F_{3}g_{j1}+F_{4}g_{j2})] - -[h_{i1}^{T}(F_{4}G_{j1}+F_{2}G_{j2})+h_{i2}^{T}(F_{3}G_{j1}+F_{4}G_{j2})]PR + +SP[H_{i1}(F_{4}G_{i1}+F_{2}G_{i2})+H_{i2}(F_{3}G_{i1}+F_{4}G_{i2})]PR = 0.$$
(12)

При выполнении условий (8) и (11), ((9) и (10)) из (12) получим дополнительно F_2 =0 (F_3 =0). При k=3, 4, ... из (7) дополнительных условий больше не получим.

Следовательно, мы показали *, что условие (7) выполнено тогда и

только тогда, когда выполнено одно из следующих условий

$$F_2 = 0, \quad G_{ji} = 0; \quad h_{i2}^T = 0,$$
 (13)

$$F_3=0, \quad G_{j2}=0, \quad h_{i1}^T=0,$$
 (14)

$$F_3=0, \quad g_{j2}=0, \quad H_{i1}=0,$$
 (15)

$$F_2=0, \quad g_{j1}=0, \quad H_{i2}=0.$$
 (16)

^{*} Уравнивание S и R нулю приводит к частным случаям условий (13)—(16).

Эти условия как раз соответствуют системам, данным в примерах 1—4; достаточность доказана.

Сформулируем теорему.

Теорема 1. Пара (y_i, u_j) линейной системы (1) является частично (треугольно) автономной от остальной системы тогда и только тогда, когда относительная переходная функция этой пары $\phi_{ij}(t) = 1$ при $t = 1, 2, \ldots$

2. **Диадические билинейные системы.** Пусть уравнения билинейной системы заданы в виде

$$x(t+1) = Fx(t) + \sum_{j=1}^{m} N_{j}x(t)u_{j}(t) + Gu(t),$$

$$y(t) = Hx(t),$$
(17)

где $x \in R^n$, $u = [u_1 \dots u_m] \in R^m$, $y \in R^m$, F, G, H, N_j , $j = 1, \dots, m$ — постоянные матрицы. Билинейные системы (17), которые удовлетворяют условию

$$pahr [N_j g_j] = 1, \qquad j = 1, ..., m,$$
 (18)

называются диадическими билинейными.

В [3] предложен следующий критерий автономности пары (y_i, u_j) : если относительная переходная функция этой пары

$$\Psi_{ij}(t) = \sum_{k=1}^{t} h_i^T (F + N_j)^{k-1} g_j / \sum_{k=1}^{t} h_i^T [M_{ij}(F + N_j)]^{k-1} M_{ij} g_j = 1$$
 (19)

и относительная переходная функция $\varphi_{ij}(t)$ (определенная равенством (2)) линейной части (1) этой системы равна единице при $t\!=\!1,\,2,\,\ldots$, то пара автономная.

Приведем примеры, в которых $\phi_{ij}(t) = 1$, $\psi_{ij}(t) = 1$, t = 1, 2, ...,

однако пара (y_i, u_j) не является автономной.

Пример 5.

$$\begin{bmatrix} x_{1}(t+1) \\ \overline{x}(t+1) \end{bmatrix} = \begin{bmatrix} F_{1} & 0 \\ F_{3} & F_{4} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ \overline{x}(t) \end{bmatrix} + \begin{bmatrix} g_{j1} & 0 \\ g_{j2} & G_{j2} \end{bmatrix} \begin{bmatrix} u_{j}(t) \\ \overline{u}_{j}(t) \end{bmatrix} + \\ + \begin{bmatrix} N_{1}^{j} & 0 \\ N_{3}^{j} & 0 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ \overline{x}(t) \end{bmatrix} u_{j}(t) + \sum_{\substack{k=1 \\ k \neq j}}^{m} \begin{bmatrix} 0 & 0 \\ N_{3}^{k} & N_{4}^{k} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ \overline{x}(t) \end{bmatrix} u_{k}(t),$$
(20)

$$\begin{bmatrix} y_i(t) \\ \overline{y}_i(t) \end{bmatrix} = \begin{bmatrix} h_{i1}^T & 0 \\ H_{i1} & H_{i2} \end{bmatrix} \begin{bmatrix} x_1(t) \\ \overline{x}(t) \end{bmatrix}.$$

Пример 6.

$$\begin{bmatrix} x_{1}(t+1) \\ \overline{x}(t+1) \end{bmatrix} = \begin{bmatrix} F_{1} & F_{2} \\ 0 & F_{4} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ \overline{x}(t) \end{bmatrix} + \begin{bmatrix} g_{j1} & G_{j1} \\ g_{j2} & 0 \end{bmatrix} \begin{bmatrix} u_{j}(t) \\ \overline{u}_{j}(t) \end{bmatrix} + \\ + \begin{bmatrix} 0 & N_{2}^{j} \\ 0 & N_{4}^{j} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ \overline{x}(t) \end{bmatrix} u_{j}(t) + \sum_{\substack{k=1 \ k \neq j}}^{m} \begin{bmatrix} N_{1}^{k} & N_{2}^{k} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ \overline{x}(t) \end{bmatrix} u_{k}(t),$$
(21)

$$\begin{bmatrix} y_i(t) \\ \overline{y}_i(t) \end{bmatrix} = \begin{bmatrix} 0 & h_{i2} \\ H_{i1} & H_{i2} \end{bmatrix} \begin{bmatrix} x_1(t) \\ \overline{x}(t) \end{bmatrix}.$$

Пример 7.

$$\begin{bmatrix} x_1(t+1) \\ \bar{x}(t+1) \end{bmatrix} = \begin{bmatrix} F_1 & F_2 \\ 0 & F_4 \end{bmatrix} \begin{bmatrix} x_1(t) \\ \bar{x}(t) \end{bmatrix} + \begin{bmatrix} g_{j1} & G_{j1} \\ 0 & G_{j2} \end{bmatrix} \begin{bmatrix} u_j(t) \\ \bar{u}_j(t) \end{bmatrix} +$$

$$+ \begin{bmatrix} N_1^j & N_2^j \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ \overline{x}(t) \end{bmatrix} u_j(t) + \sum_{\substack{k=1 \\ k \neq j}}^m N_k \begin{bmatrix} x_1(t) \\ \overline{x}(t) \end{bmatrix} u_k(t), \tag{22}$$

$$\begin{bmatrix} y_i(t) \\ \overline{y}_i(t) \end{bmatrix} = \begin{bmatrix} h_{i1}^T & h_{i2} \\ 0 & H_{i2} \end{bmatrix} \begin{bmatrix} x_1(t) \\ \overline{x}(t) \end{bmatrix}.$$

Пример 8.

$$\begin{bmatrix} x_{1}(t+1) \\ \overline{x}(t+1) \end{bmatrix} = \begin{bmatrix} F_{1} & 0 \\ F_{3} & F_{4} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ \overline{x}(t) \end{bmatrix} + \begin{bmatrix} 0 & G_{j1} \\ g_{j2} & G_{j2} \end{bmatrix} \begin{bmatrix} u_{j}(t) \\ \overline{u}_{j}(t) \end{bmatrix} + \\ + \begin{bmatrix} 0 & 0 \\ N_{3}^{j} & N_{4}^{j} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ \overline{x}(t) \end{bmatrix} u_{j}(t) + \sum_{\substack{k=1 \\ k \neq j}}^{m} N_{k} \begin{bmatrix} x_{1}(t) \\ \overline{x}(t) \end{bmatrix} u_{k}(t),$$
(23)

$$\begin{bmatrix} y_i(t) \\ \overline{y}_i(t) \end{bmatrix} = \begin{bmatrix} h_{i1}^T & h_{i2}^T \\ H_{i1} & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ \overline{x}(t) \end{bmatrix}.$$

Как и в случае линейных систем первые два примера (5 и 6) отвечают случаю а) (и охватывают его), а последние два примера (7 и 8)

отвечают случаю б) (и охватывают его).

Покажем теперь, что условие (2), (19) является достаточным для частичной (треугольной) автономности данной пары, т. е. предположим, что $\psi_{ij}(t) = \varphi_{ij}(t) = 1, t = 1, 2, \dots$ и покажем, что это приводит к системам данных в примерах 5—8.

Как мы уже показали в случае линейных систем, условие (2) выполнено тогда и только тогда, когда выполнено одно из условий (13) —

(16).

Условие (19) эквивалентно следующему условию

$$h_i^T (F+N_j)^{k-1} g_j = h_i^T [M_{ij}(F+N_j)]^{k-1} M_{ij} g_j, k=1, 2, \dots$$
 (24)

При k=1 дополнительных условий не получим. Так как $N_j = g_j d_j^T$, n-мерный вектор, то при k=2 из (24) получим

$$-SPR d_i^T g_j - h_i^T g_j d_i^T G_j PR + SPR d_i^T G_j PR = 0.$$

При выполнении условия (13) получим дополнительно $d_{j2}^{T} = 0$, при выполнении условия (14) — d_{j1}^T =0, а при выполнении условий (15) и (16) дополнительных условий больше не получим. При $k \geqslant 3$ из (24) дополнительных условий больше не получим.

Следовательно, мы показали, что условия (2), (19) выполнены тогда

и только тогда, когда выполнено одно из следующих условий:

$$F_2 = 0$$
, $G_{j1} = 0$, $h_{i2}^T = 0$, $d_{j2}^T = 0$, (25)

$$F_3 = 0$$
, $G_{j2} = 0$, $h_{i1}^T = 0$, $d_{j1}^T = 0$, (26)

$$F_3 = 0$$
, $g_{j2} = 0$, $H_{i1} = 0$, (27)
 $F_2 = 0$, $g_{j1} = 0$, $H_{i2} = 0$. (28)

$$F_2 = 0, \quad g_{ii} = 0, \quad H_{i2} = 0.$$
 (28)

Эти условия как раз соответствуют системам данных в примерах 5-8,

так как $G_{i1} = 0$ влечет за собой $N_1{}^k = 0$, $N_2{}^k = 0$ и $G_{i2} = 0$ влечет за собой $N_3^k = 0, N_4^k = 0.$ Достаточность доказана.

Сформулируем теорему.

Tеорема 2. Пара (y_i, u_j) диадической билинейной системы (17), (18) является частично (треугольно) автономной от остальной системы тогда и только тогда, когда относительная переходная функция этой пары $\psi_{ij}(t)=1$ при $t=1,\ 2,\ \dots$ и относительная переходная функция пары (y_i, u_j) линейной части этой системы $\varphi_{ij}(t) = 1$ при t = 1, 2, ...

ЛИТЕРАТУРА

- 1. Яаксоо Ю. И. В кн.: Исследования по теории многосвязных систем. М., «Наука», 1982, 61—65. 2. Яаксоо Ю. И. Изв. АН СССР. Техн. киб., № 4, 193—202 (1983).
- 3. Котта Ю. Изв. АН ЭССР. Физ. Матем., 34, № 2, 133—140 (1985).

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 11/III 1986

Ulle KOTTA

MITMEMÕÕTMELISTE SÜSTEEMIDE OSALINE DEKOMPONEERITAVUS

Töödes [1-3] on esitatud tarvilik (aga mitte piisav) tingimus mingi sisend—väljund-paari autonoomsuseks ülejäänud süsteemist lineaarsete ja diaadiliste bilineaarsete mude-lite korral. Näidatakse, et nimetatud tingimused on tegelikult tarvilikud ja piisavad antud paari osaliseks (kolmnurkseks) autonoomsuseks.

Ülle KOTTA

PARTIAL DECOMPOSABILITY OF MULTIVARIABLE SYSTEMS

In $[^{1-3}]$ for linear and dyadic bilinear systems the necessary (but not sufficient) condition is presented for autonomity of some input-output pair from the rest of the system. It is shown in this paper that the condition is in fact necessary and sufficient for partial (triangular) autonomity of this input-output pair.