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The method for derivation of massless equations for a vector-bispinor from the massive
ones is presented. There exists a sub-set of equations which, in the massless case, are
invariant under gauge transformations. In the free field case all the massless equations
are equivalent but the corresponding massive equations have different mass spectrum.
Lagrangian and massless propagators are derived. The problem of zero mass limit of
massive amplitude has been solved.

N

I. Introduction

The development of supergravity [*] points out the importance of spin
3 /z particles in particle physics where graviton has a spin 3/2 partner
gravitino. For that reason it is of great interest to investigate the
possible descriptions of spin 3/2 more thoroughly. From all the different
representations, the most suitable for this purpose is the vector-bispinor
representation, since it offers a minimal dimensional theory that can be
derived from the Lagrangian. In [2~4] the full description of all possible
massive equations for a vector-bispinor is given, using the technique of
spin-projection operators. In [2- 3 ] the analysis is given in noncovariant
form, in [4 ] the covariant form is added.

In this paper we present the investigation of massless equations for a
vector-bispinor. It appears that in the massless case the formalism of
spin-projection operators is very useful, since the gauge transformations
and source constraints are expressed with the help of spin-projection ope-
rators. In [ s>6 ] it is stated that in the massless case the principles which
are used in the massive case are not applicable, and one must start from
the analysis of propagation of needed helicity modes. As we shall show
in this paper, the massless equations may be derived from the massive
ones. In certain conditions for free parameters it is possible to obtain
a sub-set of equations which in the m— o case are invariant under gauge
transformations and describe massless states with helicities ±3/2.

From the considerations of gauge theories the massless equations are
more important than the massive ones. Since the massless equations are
derivable from the massive ones and the derivation of massive equations
is not complicated, the investigation of massive equations is very useful.
In the massive case the single-mass equations are mostly derived and
analysed. In the zero mass limit the multi-mass equations are more
important. For that reason one must analyse the general structure of all
possible equations single-mass and multi-mass equations for a
given representation.

In the physical applications the Lagrangian is needed. The derivation
of Lagrangian is the simplest when the wave equation is given. One
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needs only an invariant scalar product which defines the hermitising
matrix. The redefinition of fields proposed in [ s>6 ] is not needed and it
seems rather artificial. It is interesting to note that in the massless case
the knowledge of Lagrangian is not sufficient to derive the wave
equation; one must also give the invariant scalar product.

The derivation of massless propagators is the simplest when we start
directly from the corresponding equation, and use some gauge condition.
In [5- 6 ] the problem of zero mass limit of the amplitude for the exchange
of massive particle is discussed. In this paper we demonstrate that this
procedure is not physically very interesting, because in this limit we do
not obtain massless propagators, and in the case of equations with nil-
potent matrices this limit does not exist.

The paper is planned as follows. Section 2 gives the derivation of
massless equations for a vector-bispinor. In section 3; Lagrangian and
some examples are given. In section 4, massless propagators are calcu-
lated and in section 5, the problem of zero mass limit of massive propa-
gators is treated.

2. Massless equations for a vector-bispinor

The most general massive equation for a vector-bispinor is written as
follows [4]

i iA f CyxdyviJ)*' =tn\j)x. (1)
Depending on the choice of coefficients A, В and C, this equation descri-
bes one spin :3 /2 particle with mass m and two, one or no spin \/2 particles.

In the following we shall show that the general massless equation has
the same form

idty*-\-iAдкуя/фл-+ 1Вук дх^-\- г = 0, (2)
but now A, В and C must satisfy

Л+£+ЗАВ 2C+l =O. (3)
In the case of massive equations the restriction (3) separates a sub-set of equations which, in addition to spin 3/2 particle, describe one or no

spin V 2 particle.
The restriction (3) guarantees that the equation (2) is invariant

under gauge transformations

(д* ду*д)е, (4)
where e is an arbitrary bispinor and

q= (5)
There also exists operator Qz which applied to (2), transforms the lefthand side identically to zero.

Qz
x
=d* —Q'dyx, (6)

where
е '=(l+Я)/2(l+2Я). (7)

Operator Q z gives us the source constraint, If we write (2) jn the
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presence of an external source J in the form зхгр=/, we obtain due to
Qzjt =O, the source constraint Q ZJ~ O, or

{d tt Q
, dyK)JK =o. (8)

In the following we prove the presented results, using the general
formalism of spin-projection operators [4], If we decompose ij) into a
direct sum of representations я|н and ip='ipi © which transform
according to representations 1= (1, V2)© (V2,1) and 2= (V2,0) 0 (0, V2),
we introduce the spin-projection operators IIs and (FT (see Appendix),
which satisfy

n
«

n‘

u=B »^n-,,

The massive equation (1) is written in the form

jyõ рs+трй * *
. (10)

cp£ T 2 T 2
where

a=(6A+3)/2}/3, b={6B+3)J2p, 2с=2Л+2Б+BС— l. (11)
The masses of spin V 2 particles are mjk! and mjk", where k' and k"

are positive nonzero eigenvalues of reduced spin V 2 matrix
V 2 nл ' /I== b c

■

Now we deal with the massless equation

r —- 6 3/2 -j—— fU2 nR 1/2 яlнi y D p 2 1 11 Pl 2 Ф =O, (12)

and derive the restrictions on coefficients a, b and c when equation (12)
is invariant under the spin V 2 gauge transformations.

For the spin V 2 gauge field one must choose a bispinor, i.e. 3=
= (V2,0)0 (0, V 2), since the bispinor representation is linked with both
representations 1 and 2. The general gauge transformation is expressed
with the help of spin-projection operators and j 2̂

, since these are the
only operators which connect representations 1— 3 and 23, and are
linear in derivatives. The general form of gauge transformations is the
following

Я|рl яlн-ИУрР^яlэ3

Яр2 Яр2 +са УП Д^ЯрЗ

where the coefficient a is to be determined.
Using (9), it is easy to verify that (12) is invariant under gauge

transformations (13) if
V2+aa =O, b+ca =O. (14)
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Since a, b and c are nonzero, we obtain and the restriction
ab = cJ2. (15)

The restriction (15) means that detjtv2=O. It appears that the last requi-
rement is a general one and is valid in the case of other massless
equations, too: determinants of the reduced matrices that correspond
to spins connected with gauge transformations, are equal to zero
detjxs=o. The latter condition explains the difficulties in the zero mass
limit of spin 5/г and spin 3 equations obtained in papers [5 - 6 ]. In [ s ] it
is shown that for the description of a single massive spin 5/2 particle, one
must use two representations: symmetrical tensor-bispinor ij^v and bispi-
nor Ф, whereas in the massless case only is needed. The reason for
this lies in the fact that in the massive case one must demand that the
reduced matrices я»/, and я*/2 be nilpotent, whereas in the massless case
det №/2=det Яl/2 =O. The latter conditions are weaker and need less rep-
resentations. The same considerations are valid also in the spin 3 case.

In the massive case the restriction (15) allows the equation to des-
cribe spin ;3 /2 with mass m and one spin V 2 with mass m/А/, where A/=
= |c+ 1/2|. When c= —V 2, we obtain the Rarita-Schwinger equation that
describes single spin 3/2 particle.

In conclusion, we have proved that the equation 6(12) is invariant
under gauge transformations (13) if a, b and c satisfy (15). The coeffi-
cient a is determined from (14)

ct=—l/2a. (16)
Now we shall prove that in the case of gauge invariance there exists

operator Qz with the property Q z ji =O. Indeed, if we consider an operator

Qz =ii□ |pv* де‘£|; (17)

where pis some parameter, we, from Q z n =O, obtain
V2+fcp=o, a+cp =O. (18)

The last relations are valid if and a, b and c satisfy (15). From
(18) we have

P=— l/2b. (19)
Using the expressions of operators (F, (A.3), we, from (13), obtain

the gauge transformation (4), and from (17) operator (6). The restric-
tion (15) gives us (3).

To conclude this section it remains to verify that all equations (2)if A, В and C satisfy (3), are massless. Using the gauge invariance (4),it is always possible to choose the gauge уигlэ*=o. Acting on (2) withoperator yx
, we obtain, in this gauge, and (2) takes a from of

massless equation Similarly, it is possible to verify that equation
(2) describes only helicities ±3/2 .

3. Lagrangian, examples

The invariant scalar product « = that defines the hermitisingmatrix A, is the following [4 ] &

В— A -
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Неге ф х —ф+у°. Scalar product depends on the choice of parameters A
and В in an equation (2). The simplest form фф=—фф is obtained by
the symmetrical choice of coefficients (A — В ).

The Lagrangian is obtained from the equation тсф =0 as follows
А =ф+Ля:ф=фяф. (21)

Using (20) and (2), we have

L =—*фх<3фх ь4ф хд хуяф х 7Лф хухдяф^-1-
(Л 1) {В А) — 2С(2Д+I) ~

t%_j
2{\+2В)

гфхух оуяф\ (22)

Starting from Lagrangian (22), the equation пф= 0 is obtained if
we vary L with respect to the conjugated wave function

=4 žn+2B) < 23>

Usually L is varied with respect to the Dirac conjugated function ф х .

In the massless case it means that the scalar product is automatically
chosen to be фхф х

, and we get the sub-set of equations where A=B.
As we can see in the following, the massless Lagrangian (22) does not
uniquely determine the equation and, in addition to L, we must give
scalar product фф. This nonuniqueness is specifical to the massless case.
The massive Lagrangian contains a mass term тфф, and now the varia-
tion with respect to ф х gives the equation with nondiagonal mass term
which is equivalent to the equation яф=тф we obtain, varying with
respect to ф х. If we vary the massive equation with respect to ф х , we must
remember that the scalar product is not general equal to фхф х

, and the
physical quantities have a from фoф =ф+Аoф. In [ s>6] the Lagrangian
is obtained by a proper redefinition of field variable ф. As we hawe seen,
this procedure is not needed.

In the following we present some examples of massless equations.
1. The Raгita-S chwi n g e r equation

Now the coefficients Л, В and C are the following [7 ]

Л,В= (ЗЛ+2)/3(2Л + 1), C =— (ЗЛ 2 — 1)/6(2Л+ 1), (24)
where АФ —V 2is an arbitrary real parameter.

The corresponding massive equation gives us the well-known Rarita-
Schwinger equation having nilpotent spin V 2 matrices. The massless
equation with coefficients (24) has also nilpotent spin V 2 matrices.

As an example, we write down the equation which in the massive case
is treated in [8 ’ 9 ]: A ——l, B =—C =—*/з

.*. i i л

/с?ф х id* — ух(Злф^-Ь'— 1у х (25)3 3
This equation is invariant with respect to the gauge transformations

фх^фх+дхе (26)
and operator Qz is

Q*x =dx dyK . (27)
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2. The supergravitation Rarita-Schwinger equation
Let us consider a class of equations with A— B. Then ф*фи= —T>>nj) x

, and
q=q'= (I+Л),/2(l+2Л). The corresponding equation is

idtyK-{-iAdxyxty'k -\-iAy‘>l di'[p'k -\—~ (ЗЛ 2+2Л4Н)ух = 0. (28)

The corresponding massive equation describes one spin 3/г particle and
one spin V 2 particle with mass mjX', where X'= | 6Л 2 +бЛ+2| .

The Rarita-Schwinger equation used in the supergravity [*] corres-
ponds to the simplest gauge and source conditions (ö =q'= 0), and
therefore A = 1

id\p x fyx dx^-[-tYx(TyvijA=o. (29)

Usually (29) is written in a more compact form
f8 xX P CT,Y 5 (30)

Now

ф х ->фх-)-д хB, (31)

3. The source constraint Q x=dx
If we want to operate with the simplest source constraint dj*—O, we,
from (6), have q'=o, which gives B=— 1. Then from (3), C— —A and
the corresponding equation is

/<5ф хТ-М<5х 1Лух (32)
The simplest form has a variant Л =0

idty x гу хдяф*'=o, (33)
having gauge invariance

ф х ->ф х+ (d* i-vxž)e. (34)

As we have mentioned above the Lagrangian does not uniquely deter-
mine the equation. Here we note that the Rarita-Schwinger equation and
supergravity Rarita-Schwinger equation are obtained from the same
Lagrangian

L —lфхoфх iAф хд хул,фЛ (35)

— (ЗЛ 2-(-2Л + 1)г1)хухoу?,ф^.

The Rarita-Schwinger equation with coefficients (24) is obtained by
variation with respect to

фх=фя[(ЗЛ2+ЗЛ +I)у*у х rjJJ. (36)
The supergravity Rarita-Schwinger equation (28) is obtained by varying
L with respect to фх=—ф*. The difference between these equations lies
in the algebraic structure of equations in the first case we have nil-
potent s= V 2 matrices, in the second case s=l/2 matrices are not
nilpotent. Both equations are equivalent in the free field case, since they
describe massless particles with helicities +3/2.
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Concluding this section, we demonstrate that the gauge transforma-
tion and source constraint are not independent, as it seems from (4)
and (6), but are related through the scalar product (20). We rewrite
the gauge transformation as where

Qg=d* .Qy*d. (37)

Considering an interaction with an external source /x , we must add to
the Lagrangian (22) an interaction term

(38)
In the gauge transformations the latter term gives

Using the expressions of operators Qg and Qz
, and the scalar product

(20), it is easy to verify that

/xQ x (39)

which indeed guarantees the invariance of Lagrangian in the case of an
interaction.

4. Massless propagator

In this section we consider the calculation of propagator (Green function)
in the case of massless equation

idty‘*-\-iAdxy\ty}b -\-ißy' ><‘d\ty'k -\-iCy>idy)ij 'ty‘K =/x
, (40)

where /* is some external source satisfying QZ J —O. In the case of an
equation mj) / operator л is singular and, for that reason; it is not
possible to invert it without the use of some gauge condition. In the
following, we demonstrate two possibilities for deriving propagators.
In the first case we start from equation (40) and use gauge freedom,
in the second tase we use the spin-projection technique and show that
it gives the same result.

As we have already shown, equation (40) is invariant with respect
to gauge transformations (4). Using the gauge freedom, it is possible to
choose the gauge

(41)
Applying yx to (40), we in this gauge obtain

2(l+ (42)

The latter expression tells us that in the case of general source / x which
satisfies Qz/= 0 we have yx++o, and, from (42), also lt means
that equation (40) describes also helicities ±V2. Only in that case when
we hawe spin s/2 source which in addition to Q z/=0 satisfies
we get +i+=o, and the helicities +V2 are absent.

Using (42) and gauge (41), equation (40) is written as

Щ*= [+*
2(1+25) Y*Y*] /X ’ (43 )

and the massless propagator G 0 satisfying ty~G0 J is



50

(б.)«х=-Л[ дц*ь+-щ~щ у*ду, -J—d-у» ]. (44)

In the case of supergravity Rarita-Schwinger equation (29) B= 1
and we get

(Go) x
*= i^qxx+|—-’‘YxSyx д хуя). (45)

Taking into account that G 0 acts to Jl
, and satisfies d),Jx —o, the last

propagator can be expressed in the following frequently used form [lo ]

(О0 )хл=-^-уяoу х
. (46)

In the following we show that in a given gauge (41) we had obtained
the general form of massless propagator which is applicable in the case
of all previously treated massless equations.

Now we consider the derivation of G 0 in the formalism of spin-
projection operators |3S

. In [s>6] it is stated that one must invert the
maximal nonsingular spin-blocks. As we shall see, we must again use
the gauge condition in order to invert л. The propagator so obtained is
not unique, but if we apply source constraint, this nonuniqueness dis-
appears. We search for such an operator л' where л'л within the limits of
gauge freedom can be treated as a unit operator. The general structure
of л' is the same as for л, and we therefore take

Pii +aPi! XPI2
* ч» 1-

where a, x, p, v are coefficients that are to be determined. Using the
relations (9), we calculate л'л

П% + (ст/2+xö ) П* (aa+xc) П\
я'л= □ ..

(48)
(av-fpc)ll£ 1

Due to the singularity of л, (49) is not equal to unit matrix; if we,
for example demand that nondiagonal terms vanish, we get л'л ~ П*/*.
Therefore we must again use some gauge condition. Let us choose the
gauge Taking into account the expressions of operators П l/*
(A. 1), we have = = 0 in that gauge. Since in our gauge ij)2=o,
it is sufficient to have the unit operator in the aj)i space Ш2

. We
therefore must take a/2+xb= l and v/2+p6 =O, which gives the follow-
ing general form of л'

__

P xö)(s‘/2 xp£
я'=чи-w. (49)

where x and p are arbitrary. From (49) л' is not unique. Taking into
account that in the gauge (41) acts on as a unit operator.
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1the propagator of an equation лд|) =/ is equal to — —я/. we now use

the expressions of operators (3s.. (A. 2) and source constraint dxJl =
A

= [(1+B) /2{\-\-2B)]dyxJl
, we receive the previously obtained propaga-

tor Go. Since the final result does not depend on the choice of parameters
x and in (49), we may choose without the loss of generality x=jx= 0
and, on that account; п'=гУ □ (p +2(3'^). This completes the proof that
in the gauge ух^х=o propagator is presented in the form (44).

5. Zero mass limit of massive propagators

In this section we clarify the problem of zero mass limit of massive pro-
pagators analysed in papers [5 - 6 ]. Let us have a massive equation

(it
The propagator (Green function) is expressed from the relation

i|)=(jt —m-1/ G{m)J. (51)
We consider the amplitude for the exchange of a massive particle

between two external sources {m)J. The first problem is if there
exists a zero mass limit

lim JG (0)/, (52)
m->-0

and the second problem is whether the limit /G(0)/ coincides in the case
of massless source with the massless amplitude /Go/. If /G(0)/ =/G 0/,
the massless propagators may be obtained from the massive ones, since
in that case Go=G(0). In [6 ] it is stated that in the case of spins 3/г
and 2, the limit /G(0)/ exists but differs from JGOJ, but for spins 5/г and
higher the limit JG{O)J does not exist.

In the following we shall analyse the above two problems in the spin
3lz case. We shall clarify in which conditions the limit /G(0)/ does exist
and shall demonstrate why it differs from JGO J. It appears that the limit
(52) exists for all massive equations which lead to massless equations
except for the Rarita-Schwinger equation with nilpotent s=V2 matrices.
This result is a general one and is also valid for higher spins, too. The
fact that the limit (52) does not exist for equations with nilpotent
matrices was already proved in [6 ]. The existence of zero mass limit in
the spin 3/2 case obtained in [6], is explained as follows —as we have
explained in Section 3, Lagrangian does not determine the equation
uniquely, and in the above cited paper the zero mass limit was analysed
for the supergravity Rarita-Schwinger equation and not for the single
particle Rarita-Schwinger equation; in the spin 5/г and spin 3 cases, the
limit is analysed for the single particle equations having nilpotent matri-
ces. The difference between the amplitudes /G(0)/ and JG0J is easily
explained if we take into consideration the fact that G(0) is not massless
propagator because G(o)jt is not a unit operator in the
space. Now we shall prove the statements given above.

To begin with, we shall consider the zero mass limit (52). We shall
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treat the case when the eigenvalue of reduced matrix я</2 A satisfies ХФ Õ
and Ъф 1 (the other eigenvalue of я«/, is due to (15) equal to zero).
In the case of massive equations, the propagator G(m) is calculated
with the help of Klein-Gordon divisor d, which satisfies [и > 12]

d(я—m) = (□ +m2) (□ +m2/A2). (53)

The propagator G(m) equals to

G(m)= (D+m2 ) (□ -f т2/А2Г '

Klein-Gordon divisor d is expressed as a polynomial
+с^2+азя3+«ця4

, since я satisfies
я(яг+ □) (я2 +A2D)=O. (55)

Using (53) and (55), we obtain d in the following form
rn? m 2 tnd=~¥+1? ("2+ D(1 ]+

4~я(я2+ □(1 +Я.2 ) ) +—■ (я2+ □) (JX 2+VD). (56)

As we can see from (56), there is no direct m-*~O limit due to the sin-
gular m-1 term. Since we treat the expression JG{m)J, we may assume
that G {m) and d act on /, and in the m-> 0 case / is a massless source
which satisfies Q Z J=O. If we now use the expression of я, the direct
calculation gives that in the case of an arbitrary gauge (я2 +П)Х
X(n2+A2 D) ~ Q gQz and then in the m-> 0 limit the last term in (56)
may be omitted, and only the fourth term survives. For G(0) we there-
fore obtain the following expression

0(0)=——-я(я®+а ( 1+Я*) )
> (57)

where A=|c+V2|. Decomposing я=|я3/2-}-я 1/2
, we have

G(0)= —-^|(я 3 /2+~-л'/2 ) . (58)

The direct calculation shows that the last expression of G(0) is also
valid in the A=l case. This concludes the proof that lim JG{m)J exists
for all A except for A=o.

In the case of supergravity, Rarita-Schwinger equation (29) A=2 and
(59) gives, using the source constraint d^Jx

— o,

[ G (0) ] *x= ~i t( y*dyX L д*уь ) . (59)

Comparing it with the massless propagator (45), we obtain that G(0)ф
Ф Go. The difference between G(0) and G 0 will be explained later.

Now we shall prove that in the Rarita-Schwinger case (A=o) the
limit (52) does not exist.

я satisfies the minimal polynomial
я2 (я2+П) =0, (60)
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and the Klein-Gordon divisor satisfies d{я — m) —— (□ -fm2 ). It gives
the following expression for d

m+jt+'-i (□ +jt2 ) я(□+л2 ) . (61)

In the m->- 0 case there are two singular terms that cannot be elimi-
nated with the help of source constraint, as in the previous case, because
□ +я2 is not expressed as QQZ

. Due to the nilpotency of я'/2 : (jx'/2 ) 2 =o
we have я2= (я3/2 ) 2 and jt2 +D ~П'1

/2 -f-IT^2
, which is not expressable

with the help of any source constraint. For that reason the limit m-> 0
does not exist.

At the end of this Section we shall discuss the difference between
G(0) and GO . The general structure of massless propagator G 0 (49) is
different from that of G(0) given by (58). Deriving G 0 in Section 4, we
have demanded that in the space Go я acts in fixed gauge as a unit
operator. It is easy to verify that there are no such gauge in which
С(0)я acts as a unit operator. For that reason G(0) is different from the
massless propagator Go, and /G(0)/, consequently, differs from JGof.
It appears that G 0 may be calculated from G(0) : if we write G{o)jtty
='ф+агl), use the gauge Yx4)*=o, and in <x\p change the сЬдIА terms from
(42) to the у*,/*• terms, it is possible to verify after some’ lengthy compu-
tation that if we add the so obtained terms to G(0), we shall achieve the
massless propagator GO .

Here we shall illustrate the above described procedure only in the
supergravity Rarita-Schwinger case when a b— —УЗ/2, c=3/2,

At first we shall find G(O)jnJ). Using (59), (29) and gauge уч4)*=o,
we obtain

[G (0) лт-ф ] = гр х

i
Taking into account (42) we have

[ G (0) яг]?] x =\J? X -“j
iAdding to G(0) the above derived term we get the true mass-

less propagator Go.
In this section we have solved the problems connected with the zero

mass limit of massive propagators. It appears that the quantity /G(0)/
has no direct physical meaning, since G(0) is not the massless propa-
gator. As we have shown, the true massless propagator G 0 may be calcu-
lated from G(0), but that procedure is quite troublesome and is therefore
not suitable. Moreover, we have shown that G(0) does not in general
exist.

APPENDIX

Spin-projection operators

We denote the representations in the following way: гр = 0 \p2 , where
1 = {1; V2) © (V2,1), 2= (V2,0)0(0, V2), гр 3 is a bispinqr 3—(V2, 0)0
0(0, V2).
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(ГГ" ) i- v*v* '>г),-+'зП' .

(Шд) *Ь=>~ ,

(П* )»,,=,-i- (A1)

1 1 л

(Ш* )\= :tYxyH— &дуь
12 4 уз уза

1 1
(№ )*х= ■ yk У*ддк.

21 4 уз уз □

{уп рь ) *я=дц\ J д*ух —Д- у*дх+-у У*дуь ——J дд*дх,

(У □"р 1/2 ) У*дуь Y д*ух yу*дх+~дд*дх,

(уа p'4) xx=^y (а - 2 )

1 1
(У □ В'/2 )\ д*ух ухдух,

12 уз 4 УЗ
1 ,

1 -

(уа RV2 )\=>——-у*дх “——YX^Y^- "

21 уз 4 УЗ

21
N □ в 'h )*=.(—— д* - ■—— у*д,

13 уз 2 УЗ

(Уs’р'*)»=l \*д; (А- 3)

21
(У □ р'/2 )х =l—г дх -—гг дух,

31 уз 2 УЗ

(уа P^)x=i-2^-
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R.-K. LOIDE. А. POLT

NULLMASSI PIIRJUHT SPINNIGA 3/г LAINEVORRANDITELE
Artiklis on antud meetod nullmassiga võrrandite tuletamiseks vektor-bispiinori jaoks
massiga võrranditest. On näidatud, et massiga võrrandite hulgas leidub alamhulk
võrrandeid, mis nullmassi juhul on kalibratsioonivariantsed. Vaba välja korral on kõik
nullmassiga võrrandid ekvivalentsed, kuid vastavad massiga võrrandid on erineva
massispektriga. Töös on antud lagranžiaan ja nullmassi propagaator ning lahendatud
massiivse üleminekuamplituudi nullmassi piirjuhu probleem.

P.-К. ЛОЙДЕ, А. ПОЛЕТ
ПРЕДЕЛ НУЛЕВОЙ МАССЫ ДЛЯ ВОЛНОВЫХ УРАВНЕНИЙ СПИНА Va

Дан метод вывода безмассовых уравнений для вектор-биспинора из массивных урав-
нений. Показано, что среди массивных уравнений существует подмножество уравне-
ний, которые в безмассовом случае калибровочно инвариантны. В случае свободного
поля все безмассовые уравнения эквивалентны, а соответствующие массивные уравне-
ния имеют различный спектр масс. Найдены лагранжиан и безмассовый пропагатор.
Решена проблема безмассового предела массивной амплитуды перехода.
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