LÜHITEATEID * КРАТКИЕ СООБЩЕНИЯ SHORT COMMUNICATIONS

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. FÜÜSIKA * MATEMAATIKA ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * МАТЕМАТИКА PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS

1986, 35, 1

https://doi.org/10.3176/phys.math.1986.1.13

УДК 62—501.7

И. РАНДВЕЭ

УПРАВЛЕНИЕ МНОГОСВЯЗНОЙ СИСТЕМОЙ НА ОСНОВЕ ПЕРИОДИЧЕСКИ ПОСТУПАЮЩИХ ДАННЫХ

I. RANDVEE. NASH-OPTIMAALNE JUHTIMISALGORITM PERIOODILISELT LAEKUVATE MOOTE-ANDMETE KORRAL

I. RANDVEE. PERIODIC DATA NASH CONTROLS FOR THE LQG SYSTEMS

(Представил Н. Алумяэ)

Приводится алгоритм решения последовательности задач оптимального по Нэшу разомкнутого управления многосвязной системой на отрезках времени между (периодически) поступающими данными о векторе состояния.

1. Динамика полностью управляемого объекта описывается дискретнонепрерывной моделью

$$x_{k+1} = A x_k + B_1 u_{1,k} + B_2 u_{2,k} + \omega_k,$$

$$x_0 \sim N(\bar{x}_0, D_0),$$
(1)

где x_k — *n*-вектор состояния, $u_{i,k}$ — p_i -вектор управдений *i*-го (*i*=1, 2) центра, $\omega_k \sim N(0, W_k)$ — *n*-вектор нормально распределенных шумов, *A*, B_1, B_2 — числовые матрицы, k — индекс времени. Задача *i*-го центра состоит в определении управлений $u^*_{i,k} \in$

Задача *i*-го центра состоит в определении управлений $u^*_{i,k} \in \mathbb{R}^{p_t}$, $k=0, 1, \ldots, N-1$, которые минимизируют локальную функцию цели

$$J_{i} = E\left\{\frac{1}{2}x'_{N}Q_{iN}x_{N} + \frac{1}{2}\sum_{k=0}^{N-1}(x'_{k}Q_{i}x_{k} + u'_{i,k}R_{i}u_{i,k} + u'_{j,k}R_{ij}u_{j,k})\right\}, \quad (2)$$
$$i, j = 1, 2; \quad i \neq j,$$

где $R_{ij} \ge 0$, $Q_i \ge 0$, $R_i \ge 0$ — симметричные матрицы, ε — символ математического ожидания, штрих означает транспонирование.

Система в целом оптимальна по Нэшу, т. е. для каждого $k, k = = 0, 1, \ldots, N - 1$ должны соблюдаться неравенства

$$J_{1}(u_{1,0}^{*}, \ldots, u_{1,k}^{*}, \ldots, u_{1,N-1}^{*}) \leq J_{1}(u_{1,0}^{*}, \ldots, u_{1,k}, u_{1,k+1}^{*}, \ldots, u_{1,N-1}^{*}),$$

$$J_{2}(u_{2,0}^{*}, \ldots, u_{2,k}^{*}, \ldots, u_{2,N-1}^{*}) \leq J_{2}(u_{2,0}^{*}, \ldots, u_{2,k}, u_{2,k+1}^{*}, \ldots, u_{2,N-1}^{*}).$$
(3)

107

По условиям задачи выход системы измеряется периодически, через кратное число тактов k

$$y_{ml} = C x_{ml} + v_{ml}, \tag{4}$$

где $m=0, 1, \ldots, M, l$ — временной интервал такой, что Ml=N, M — число интервалов, y_{ml} — *n*-вектор выхода, $v_{ml} \sim N(0, v_{ml})$ — *n*-вектор шумов, C — известная матрица.

Нетрудно убедиться, что задача в приведенной постановке эквивалентна совокупности из *M* задач определения оптимального по Нэшу разомкнутого управления на интервале длительностью в *l* [¹].

Эти задачи могут быть решены последовательно с использованием классической техники синтеза линейного регулятора [²]. Известно, что при статистически взаимно независимых x_0 , ω_h , v_{ml} вектор состояния описывается средним \bar{x}_k и ковариационной матрицей $D_k : x_k \sim N(\bar{x}_h, D_k)$. При этом D_k зависит только от параметров системы и времени, и управление является функцией оценки вектора состояния в точке последнего измерения: $u_{i,k} = u_{i,k}(\bar{x}_{ml})$ для $ml \leq k < ml + l$, m = 0, $1, \ldots, M - 1$. 2. Оценка вектора состояния \bar{x}_{ml} генерируется фильтром Калмана. При

этом уравнения прогноза

$$\overline{x}_{k|k-1} = A\overline{x}_{k-1|k-1} + B_1 u_{1,k-1}^* + B_2 u_{2,k-1}^*,$$

$$D_{k|k-1} = AD_{k-1|k-1}A' + W_{k-1}, \quad k = 1, 2, \dots; N,$$

используются на каждом шаге k для получения $\overline{x}_{k|k-l}$ и $D_{k|k-l}$, а уравнения коррекции только в моменты k = ml; m = 0, 1, ..., M

$$\overline{x}_{k|k} = \overline{x}_{k|k-l} + K_{k} (y_{k} - C\overline{x}_{k|k-l}),$$

$$D_{k|k} = D_{k|k-l} + K_{k} C D_{k|k-l},$$

$$K_{k} = D_{k|k-l} C (C D_{k|k-l} C' + V_{k})^{-1},$$
(5)

где индекс k|k-l означает оценку на текущем такте k, полученном на основе имеющихся в момент k-l данных. Для многоцентровой системы (1)-(2) естественно предположить, что ковариационная матрица ошибки измерений V_k блочно-диагональная с блоками $V_{i,k}$ так, что $y'_k = (y'_{1,k}, y'_{2,k})$ и $y_{ik} = C_i x_k + v_{i,k}$. В этом случае решение (5), требующее обращения $n \times n$ -матрицы, сводится к рекурсивному решению по блокам $V_{i,k}$ [³].

3. В [4] приведен алгоритм синтеза оптимального по Нэшу разомкнутого управления для детерминированной системы в случае M=1. Следуя приведенной в [4] методике, получаем оптимальное управление в интервале $ml \leq k < ml+l, m=0, 1, \ldots, M-1$ в виде линейной функции от оценки состояния \bar{x}_{ml}

$$u_{i,k}^* = -H_{i,k} \Psi_k \bar{\mathbf{x}}_{ml}, \quad i=1,2.$$

Матрица Ψ_k удовлетворяет в интервале $ml \leq k < ml + l$ уравнению

$$\Psi_{ml+t} = A_{ml+t-1}\Psi_{ml+t-1}, \quad \Psi_{ml} = I, \quad t=1, 2, \ldots, l-1,$$

где

$$A_{ml+t-1} = A - B_1 H_{1,ml+t-1} - B_2 H_{2,ml+t-1}$$

Матрицы $H_{i,k}$ связаны с $P_{i,k+1}$ — решением системы (6) нелинейных уравнений типа Риккати:

$$H_{i,k} = (G_{i,k} - E_{i,k}G_{j,k}^{-1}E_{j,k})^{-1}(F_{i,k} - E_{i,k}G_{j,k}^{-1}F_{j,k}),$$

где

$$G_{i,k} = R_i + B'_i P_{i,k+1} B_i,$$

$$F_{i,k} = B'_i P_{i,k+1} A,$$

$$E_{i,k} = B'_i P_{i,k+1} B_j, \quad j, i = 1, 2; i \neq j.$$

Матрицы $P_{i,k+1}$ определяются в интервале $ml \leq k \leq ml+l$ обратно по времени

$$P_{i,ml+t} = Q_i + A' P_{i,ml+t+1} A_{ml+t}^*, \quad t = 0, 1, \dots, l-1; i = 1, 2$$
(6)

при заданных конечных условиях

$$P_{i,ml+l} = S_{i,ml+l}$$

Следуя методике [2], можно показать, что значение критерия качества *i*-го центра — квадратичная функция оценки состояния \bar{x}_k

$$J_{i,k} = \bar{x}'_k S_{i,k} \bar{x}_k + \operatorname{tr} \{\cdot\},$$

где tr {·} отмечает следы матриц, независящих от управлений, а матрица $S_{i,k}$ определяется решением (обратно по времени) уравнения (7)

$$S_{i,k} = Q_i + H'_{i,k} R_i H_{i,k} + H'_{j,k} R_{ij} H_{j,k} + A_k^* S_{i,k+1} A_k^*,$$

 $i, j = 1, 2; \ i \neq j, \ k = 0, \ 1, \ \dots, \ N - 1.$
 $S_{i,N} = Q_{iN}.$
(7)

Матрицы S_{i,k} при k=ml используются как конечные условия при вычислениях P_{i,k}. Видно, что в частном случае M=1 имеем оптимальное по Нэшу разомкнутое управление для полного интервала, причем вычисления S_{i,k} не требуется. Если длительность интервала l один временной такт, то оптимальное по Нэшу разомкнутое управление представляется в форме управления с обратной связью, при этом вычисления $P_{i,k}$ не требуется.

Описанный алгоритм состоятелен также для систем, включающих произвольное число центров управления. В этом случае форма представления уравнений и ход вычислений несколько видоизменяются.

ЛИТЕРАТУРА

Walsh, P. M., Cruz, J. B. Jr. IEEE Trans. Automat. Contr., 23, № 4, 637-642 (1978).
 Kramer, L. C., Athans, M. IEEE Trans. Automat. Contr., 19, № 1, 22-30 (1974).
 Singer, R. A., Sea, R. G. IEEE Trans. Automat. Contr., 16, № 3, 254-256 (1971).
 Hämäläinen, R. P. Int. J. Contr., 27, № 2, 229-237 (1978).

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 8/I 1985