EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. FUUSIKA * MATEMAATIKA

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * МАТЕМАТИКА PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS

1985, 34, 1

https://doi.org/10.3176/phys.math.1985.1.03

УДК 519.2.24

А. ШМУНДАК, В. ОЛЬМАН

СВОЙСТВА БАЙЕСОВСКИХ ПРОЦЕДУР ОЦЕНИВАНИЯ СРЕДНЕГО НОРМАЛЬНОГО ЗАКОНА ПРИ ОГРАНИЧЕНИЯХ НА КЛАСС АПРИОРНЫХ РАСПРЕДЕЛЕНИЙ

(Представил Н. Алумяэ)

Рассмотрим задачу байесовского оценивания среднего нормального закона при условии, что априорное распределение принадлежит фиксированному классу распределений. Аналогичная задача рассматривалась в [1] для оценивания случайного параметра схемы Бернулли. Сформулируем рассматриваемую задачу. Пусть x_1, x_2, \ldots, x_n — независимые реализации случайной величины X, распределенной по нормальному закону $N(\theta, \sigma^2)$, причем θ — независимая от X случайная величина, не меняющаяся в ряду наблюдений, а σ^2 — известный коэффициент. Относительно распределения F величины θ известно лишь, что

1)
$$F(t) + F(-t+0) = 1, t > 0;$$

2)
$$F(a) = 1, \quad 0 < a < \infty;$$

3)
$$F(t)$$
 вогнута при $t > 0$.

Класс таких распределений для заданного a обозначим через $\mathcal{F}(a)$. Качество оценочной процедуры $\delta(x_1, x_2, ..., x_n)$, используемой при оценивании θ , определим в виде

$$m(\delta, a) = \sup_{-a \leqslant \theta \leqslant a} E_{\theta}(\delta(x_1, x_2, \ldots, x_n) - \theta)^2.$$

Ограничимся рассмотрением оценочных процедур $\delta(x_1, x_2, ..., x_n)$, образующих множество B(a) всех байесовских оценок параметра θ относительно распределений класса $\mathcal{F}(a)$.

Нами исследованы некоторые свойства процедур из класса B(a), используемые при построении $\mathcal{F}(a)$ -минимаксной оценки δ_0 , т. е. удовлетворяющей равенству

$$\inf_{\delta \in B(a)} m(\delta, a) = m(\delta_0; a).$$
(1)

Так как $\sum_{i=1}^{n} x_i$ достаточная статистика, то можно считать, не умаляя общности, что мы имеем дело с одним наблюдением, распределенным по нормальному закону с плотностью $1/\sqrt{2\pi} \exp\left(-\frac{(x-\theta)^2}{2}\right)$. Для квадратичного риска байесовская оценка относительно распределения *F* имеет вид [³]

$$\delta_F(x) = \frac{\int_{-\infty}^{\infty} \theta g(x - \theta) dF(\theta)}{\int_{-\infty}^{\infty} g(x - \theta) dF(\theta)}$$

а в случае если $F \in \mathcal{F}(a)$, это можно записать в виде

$$\delta_F(x) = \frac{\int\limits_{0}^{\theta} \theta[g(x-\theta) - g(x+\theta)] dF(\theta)}{\int\limits_{0}^{a} [g(x-\theta) + g(x+\theta)] dF(\theta)},$$
(2)

где g(x-0) плотность распределения наблюдения.

Следующие далее леммы 1—5 справедливы для любой строгоодновершинной (с. о. в.) [²] четной плотности f(x), т. е. такой, что $\ln f(x)$ четная, вогнутая при x > 0 функция. Очевидно, что таковой является и нормальная плотность.

Лемма 1. Пусть s > t > 0. Тогда для x > 0 и с. о. в. $f(\cdot)$

$$s \frac{f(s-x)-f(s+x)}{f(s-x)+f(s+x)} \ge t \frac{f(t-x)-f(t+x)}{f(t-x)+f(t+x)}.$$

Доказательство. В силу вогнутости $\ln f(x)$ для s > t > 0 $\frac{f(s+x)}{f(s-x)} \leq \frac{f(t+x)}{f(t-x)}$, и следовательно, справедливо неравенство

$$s \frac{f(x-s) - f(x+s)}{f(x-s) + f(x+s)} = s \frac{1 - \frac{f(x+s)}{f(x-s)}}{1 + \frac{f(x+s)}{f(x-s)}} \ge t \frac{1 - \frac{f(t+s)}{f(t-s)}}{1 + \frac{f(t+s)}{f(t-s)}} = t \frac{f(x-t) - f(x+t)}{f(x-t) + f(x+t)},$$

что и требовалось доказать.

Лемма 2. Если $F \in \mathcal{F}(a)$, то для $x \ge 0$ и с. о. в. f(x)

$$\delta_F(x) \leq a \frac{f(x-a) - f(x+a)}{f(x-a) + f(x+a)}.$$

Доказательство. Используя представление (2), получаем

$$\delta_{F}(x) = \frac{\int_{0}^{a} [f(x-\theta) + f(x+\theta)] \frac{\theta[f(x-\theta) - f(x+\theta)]}{f(x-\theta) + f(x+\theta)} dF(\theta)}{\int_{0}^{a} [f(x-\theta) + f(x+\theta)] dF(\theta)} \leqslant \max_{0 \le \theta \le a} \theta \frac{f(x-\theta) - f(x+\theta)}{f(x-\theta) + f(x+\theta)} = a \frac{f(x-a) - f(x+a)}{f(x-a) + f(x+a)}$$

где последнее равенство следует из леммы 1.

Лемма З. Пусть $\delta_1, \, \delta_2 \in B(a)$. Если при всех $x \ge 0 \, \delta_1(x) \ge \delta_2(x)$, то $R(\delta_1, a) \le R(\delta_2, a)$, где $R(\delta, \theta) = E\theta(\delta(x) - \theta)^2$. Доказательство. С учетом нечетности $\delta(x)$, очевидной из (2), имеем

$$R(\delta, a) = \int_{0}^{\infty} \left[(\delta(x) - a)^{2} f(x - a) + (\delta(x) + a)^{2} f(x + a) \right] dx.$$

В силу леммы 2 при х≥0

$$\frac{\delta_1(x)+\delta_2(x)}{2} \leq a \frac{f(x-a)-f(x+a)}{f(x-a)+f(x+a)},$$

откуда простыми преобразованиями получаем:

$$f(x-a) [\delta_1(x) + \delta_2(x) - 2a] \leq -f(x+a) [\delta_1(x) + \delta_2(x) + 2a].$$

Домножая на $\delta_1(x) - \delta_2(x) \ge 0$, имеем

$$\begin{bmatrix} \delta_1(x) - \delta_2(x) \end{bmatrix} \begin{bmatrix} \delta_1(x) + \delta_2(x) - 2a \end{bmatrix} f(x-a) \leq \\ \leq \begin{bmatrix} \delta_2(x) - \delta_1(x) \end{bmatrix} \begin{bmatrix} \delta_1(x) + \delta_2(x) + 2a \end{bmatrix} f(x+a)$$

или

$$f(x-a) \left[\delta_{1}^{2}(x) - 2a\delta_{1}(x) \right] + f(x+a) \left[\delta_{1}^{2}(x) + 2a\delta_{1}(x) \right] \leq \\ \leq f(x-a) \left[\delta_{2}^{2}(x) - 2a\delta_{2}(x) \right] + f(x+a) \left[\delta_{2}^{2}(x) + 2a\delta_{2}(x) \right].$$

Прибавляя к обеим частям $a^2[f(x-a)|+f(x+a)]$ и интегрируя по x, получаем требуемое неравенство.

Пусть P и Q — распределения из $\mathcal{F}(a)$, $\Delta = \{\theta, \eta\} : 0 \leq \theta \leq \eta \leq a\}$. Будем говорить, что Q-распределение равномернее P-распределения (P < Q), если для любой положительной на Δ и измеримой функции $\omega(\theta, \eta)$ имеет место неравенство

$$\int_{\Lambda} \int \omega(\theta; \eta) \left[dP(\theta) dQ(\eta) - dP(\eta) dQ(\theta) \right] \ge 0.$$
(3)

Замечание. Если распределения P и Q обладают плотностями pи q соответственно, то отношение $P \prec Q$ эквивалентно монотонному убыванию функции $\frac{p(s)}{q(s)}$ при s > 0. Лемма 4. Если $P \prec Q$, то при $x \ge 0$ и с. о. в. f(x)

 $\delta_P(x) \leq \delta_Q(x)$.

Доказательство. Введем обозначения $U_x(s) = s[f(x-s) - f(x+s)], V_x(s) = s[f(x-s) + f(x+s)]$. В соответствии с представлением (2)

$$\delta_P(x) = \frac{\int\limits_0^a U_x(\theta) dP(\theta)}{\int\limits_0^a V_x(\theta) dP(\theta)}, \quad \delta_Q(x) = \frac{\int\limits_0^a U_x(\eta) dQ(\eta)}{\int\limits_0^a V_x(\eta) dQ(\eta)}$$

Пусть $\omega_x(\theta, \eta) = U_x(\eta) V_x(\theta), \quad M = \{(\theta, \eta) : 0 \leq \theta, \eta \leq a\}, \quad \Delta' = M \setminus \Delta.$ Тогда имеем

$$\int_{M} \int V_{x}(\theta) V_{x}(\eta) dP(\theta) dQ(\eta) \left[\delta_{P}(x) - \delta_{Q}(x) \right] =$$

$$= \int_{M} \int \omega_{x}(\eta, \theta) dP(\theta) dQ(\eta) - \int_{M} \int \omega_{x}(\theta, \eta) dP(\theta) dQ(\eta) =$$

$$= \int_{\Delta} \int \left[\omega_{x}(\eta, \theta) - \omega_{x}(\theta, \eta) \right] dP(\theta) dQ(\eta) +$$

$$+ \int_{\Delta} \int \left[\omega_{x}(\eta, \theta) - \omega_{x}(\theta, \eta) \right] dP(\theta) dQ(\eta).$$
(4)

Интегрирование по Δ' меняем на интегрирование по Δ заменой переменных $\theta = \eta$ и $\eta = \theta$, после чего правая часть в (4) превращается в

$$\iint_{\Delta} \left[\omega_{\mathbf{x}}(\eta, \theta) - \omega_{\mathbf{x}}(\theta, \eta) \right] \left[dP(\theta) dQ(\eta) - dP(\eta) dQ(\theta) \right].$$
(5)

Ho

$$\omega_{\mathbf{x}}(\eta,\theta) - \omega_{\mathbf{x}}(\theta,\eta) = V_{\mathbf{x}}(\theta) V_{\mathbf{x}}(\eta) \left[\frac{U_{\mathbf{x}}(\eta)}{V_{\mathbf{x}}(\eta)} - \frac{U_{\mathbf{x}}(\theta)}{V_{\mathbf{x}}(\theta)} \right] \ge 0,$$

в силу леммы 1 и того, что $\eta \ge \theta \ge 0$, так как интегрирование ведется по Δ . Кроме того, по условию $P \prec Q$, а следовательно, выражение (5) неотрицательно, что и доказывает лемму.

Лемма 5. Если $P \in \mathcal{F}(a)$, то $P \prec P_a \in \mathcal{F}(a)$, где $P_a - равномерное$ на [-a, a] распределение.

Доказательство. Очевидно, что достаточно доказать справедливость неравенства (3) в случае, когда ω — характеристическая функция произвольного прямоугольника [θ , θ + h_1] [η , η + h_2], принадлежащего области Δ . В этом случае получаем

$$\int_{\Delta} f \omega(\theta, \eta) \left[dP(\theta) dQ(\eta) - dP(\eta) dQ(\theta) \right] =$$

= $h_2 \left[P(\theta + h_1) - P(\theta) \right] - h_1 \left[P(\eta + h_2) - P(\eta) \right] =$
= $h_1 h_2 \left[\frac{P(\theta + h_1) - P(\theta)}{h_1} - \frac{P(\eta + h_2) - P(\eta)}{h} \right] \ge 0 \quad \forall h_1, h_2 > 0,$

так как P(t) — вогнутая функция и $\theta \leq \theta + h_1 \leq \eta \leq \eta + h_2$.

В следующей лемме используется конкретный вид строгоодновершинной плотности.

Лемма 6. Пусть
$$f(x) = 1/\sqrt{2\pi} e^{-\frac{x^2}{2}}$$
, тогда
$$\max_{-a \leqslant \theta \leqslant a} R(\delta_{P_a}, \theta) = R(\delta_{P_a}, a),$$

где σ_{P_a} — байесовская оценка, соответствующая равномерному на [—a, a] распределению.

Доказательство. Так как
$$\delta_{P_a}(x) = \frac{\int_{-a}^{a} \theta f(x-\theta) d\theta}{\int_{-a}^{a} f(x-\theta) d\theta}$$
, запише

 $R(\delta_{P_a}, s)$ в виде

$$R(\delta_{P_a}, s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[\frac{f_1(x-s) \int_{-a}^{a} (s-\theta) f_1(x-\theta) d\theta}{\left(\int_{-a}^{a} f_1(x-\theta) d\theta\right)^2} \times \right]$$

$$\times \int_{-a}^{a} (s-\theta) f_1(x-\theta) dx, \qquad (6)$$

где $f_1(x) = \sqrt{2\pi} f(x)$. Нетрудно убедиться в равенстве

M

$$\frac{d}{dx}\left(\frac{f_1(x-s)}{\int\limits_{-a}^{a}f_1(x-\theta)\,d\theta}\right) = f_1(x-s)\frac{\int\limits_{-a}^{a}(s-\theta)f_1(x-\theta)\,d\theta}{\left(\int\limits_{-a}^{a}f_1(x-\theta)\,d\theta\right)^2},\qquad(7)$$

используя которое, получаем из (6) интегрированием по частям следующее равенство

$$R(\delta_{P_a}, s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[\frac{f_1(x-s)}{\int_{-a}^{a} f_1(x-\theta) d\theta} \left(\int_{-a}^{a} f_1(x-\theta) (s-\theta) (x-\theta) d\theta \right) \right] dx$$

Вновь интегрируя по частям, имеем

$$R\left(\delta_{P_{a}},s\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{f_{1}(x-s)}{\int_{-a}^{a} f_{1}(x-\theta) d\theta} \left[(s-\theta)f_{1}(x-\theta) \Big|_{-a}^{a} + \int_{-a}^{a} f_{1}(x-\theta) \right] dx =$$

$$=1+\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\frac{(s-a)f_{1}(x-a)-(s+a)f_{1}(x+a)}{\int_{-a}^{a}f_{1}(x-\theta)d\theta}f_{1}(x-s)dx,$$

откуда путем простых преобразований получаем

$$R(\delta_{P_a}, s) = 1 - \frac{1}{\sqrt{2\pi}} f_1(a) f_1(s) \times$$

$$\times \int_{0}^{\infty} \frac{(a-s) \operatorname{ch} \frac{a+s}{2} x + (a+s) \operatorname{ch} \frac{a-s}{2} x}{\int_{0}^{a} f_1(\theta) \operatorname{ch} \frac{\theta x}{2} d\theta} f_1(x) dx.$$

Но $f(a) \leq f(s)$ для $s \leq a$ и ch $t \geq 1 \forall t$. Следовательно,

$$R(\delta_{P_a},s) \leq 1 - \frac{1}{\sqrt{2\pi}} 2af_1^2(a) \int_0^a \frac{f(x) dx}{\int\limits_0^a f(\theta) \operatorname{ch} \frac{\theta x}{2} d\theta},$$

а последнее выражение есть $R(\delta_{P_a}, a)$, что и доказывает лемму 6. Теорема. Оценка δ_{P_a} является $\mathcal{F}(a)$ -минимаксной, т. е. удовлетворяющей равенству (1).

Доказательство. В силу лемм 4 и 5 при $x \ge 0$ $\delta_F(x) \le \delta_{P_a}(x)$, откуда по лемме 3

$$\max_{\substack{-a \leq \theta \leq a}} R(\delta_F, \theta) \geqslant R(\delta_F, a) \geqslant R(\delta_{P_a}, a),$$

а использование леммы 6 завершает доказательство теоремы.

ЛИТЕРАТУРА

- 1. Ольман В. Изв. АН ЭССР. Физ. Матем., 33, № 3, 285-290 (1984).
- Феллер В. Введение в теорию вероятностей и ее приложения. М., «Мир», 1967.
 Вальд А. Статистические решающие функции. В кн.: Позиционные игры. М., «Наука», 1967.

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 1/XII 1983

A. ŠMUNDAK, V. OLMAN

NORMAALJAOTUSE KESKVÄÄRTUSE BAYESI TÜÜPI HINNANGUD KITSENDUSTEGA APRIOORJAOTUSTE KLASSI KORRAL

On vaadeldud normaaljaotuse keskväärtuse Bayesi tüüpi hinnanguid. Aprioorjaotuste klass koosneb fikseeritud lõplikul lõigul [-a, a] määratud sümmeetrilistest ja lõigul [-a, 0] kumeratest jaotustest. On otsitud hinnangut, mis minimiseeriks ruutkeskmise riski maksimumi lõigul [-a, a], ja tõestatud, et selleks on Bayesi hinnang δ_a , mis vastab ühtlasele aprioorjaotusele. On näidatud, et hinnang δ_a majoreerib poolsirgel $[0, \infty]$ kõiki teisi vaadeldava klassi hinnanguid ja δ_a korral on ruutkeskmise riski väärtus puhktides -a ja a minimaalne.

A. SHMUNDAK, V. OLMAN

PROPERTIES OF BAYES ESTIMATORS OF THE MEAN NORMAL DISTRIBUTION UNDER RESTRICTIONS ON THE CLASS OF A PRIORI DISTRIBUTIONS

The problem of Bayes estimation of the mean value of normal distribution is considered. It is assumed that the a priori distribution $F(\theta) \in \mathcal{F}(a)$, i.e. $F(\theta)$ is 1) symmetrical, 2) concentrated on the interval [-a, a] for fixed a > 0, 3) convex on the [-a, 0]. The problem is to find the Bayes estimator δ which corresponds to the a priori distribution from the

described class and minimizes the $a \leq \theta \leq a \quad E_{\theta}(\delta(x) - \theta)^2$, $x \sim N(\theta, 1)$. It is shown that the δ_a corresponding to the uniform distribution on the [-a, a], is the optimal decision. In addition, it is shown that δ_a dominates any other Bayes estimator from this class on the interval $[0, \infty]$, and that the mean square risk at points -a and ais the smallest in case of δ_a .