EESTI NSV TEADUSTE AKADEEMIA TÕIMETISED. 32. KÕIDE FUUSIKA * MATEMAATIKA. 1983, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 32 ФИЗИКА * МАТЕМАТИКА. 1983, № 1

УДК 512.4)

О. ПОЛЕВИЦКАЯ

О ЗАДАЧЕ ПОГРУЖЕНИЯ С ПРОИЗВОЛЬНЫМ ЯДРОМ ПОРЯДКА *pⁿ*

(Представил А. Хумал)

Пусть $F = \Gamma(k/k_0)$ — группа Галуа расширения полей k/k_0 , $G \xrightarrow{\Phi} F$ — эпиморфизм группы G на группу F с ядром N и char k не делит ord N.

Пусть p — произвольное простое число и G — p-группа, a ord $N = p^n$, при этом безразлично, абелева группа N или неабелева.

Будем исследовать задачу погружения, связанную с точной последовательностью

$$1 \to N \to G \xrightarrow{\Psi} F \to 1. \tag{1}$$

Необходимое для разрешимости этой задачи условие согласности найдено Д. К. Фаддеевым [1] и переоткрыто Х. Хассе [2]. Приведем две его формулировки.

1. В групповой алгебре kN существует система элементов («система

согласности») $\{l_{\sigma}\}_{\sigma \in G}$ таких, что $l_{\sigma_1}^{\sigma_2} l_{\sigma_2} = l_{\sigma_1 \sigma_2}$ и $l_{\tau} = \tau^{-1}$ при $\tau \in N$. Здесь о действует на элементы поля k как $\varphi(\sigma)$, а на элементы $\tau \in N$ по формуле $\tau^{\sigma} = \sigma^{-1} \tau \sigma$.

2. Скрещенное произведение *A* группы *G* с полем *k* есть алгебра матриц порядка ord *F* над некоторой своей подалгеброй.

На основе этих формулировок условия согласности в статье исследуется второе препятствие для задачи погружения с произвольным ядром порядка p^n .

В более узком случае, когда ядро абелево, из работы вытекает один из известных результатов Дёмушкина—Шафаревича (см. [³], теорема 3), который здесь получается более простым путем. Отметим, что в [³] второе препятствие не вычисляется, тогда как в данной работе, благодаря отказу от когомологической техники, строится элемент, от ечающий за исчезновение второго препятствия.

1. Редукция к задаче погружения с менъшим ядром

Предположим, что поле k содержит группу корней p-й степени из единицы — $\{\zeta_p\}$. Введем в группе характеров группы N, т. е. в группе $N^* = \text{Hom } (N, k^*)$, операторы из группы G по формуле

$$\chi^{\sigma}(a) = [\chi(\sigma a \sigma^{-1})]^{\sigma}$$
, rge $\chi \in N^*$, $\sigma \in G$, $a \in N$.

Пусть χ_1 — центральный характер группы *N*, отличный от единичного, и такой, что $\chi_1^p = 1$, а значит $N_1 = \text{Кег } \chi_1$ имеет в группе *N* индекс *p*. Такой характер существует, так как характеры группы *N* образуют *p*-группу.

Предположим, что для задачи погружения (1) условие согласности выполнено, и рассмотрим задачу погружения

$$1 \to N/N_1 \to G/N_1 \to \Gamma(k/k_0) \to 1.$$
(2)

Решение этой задачи существует и строится следующим образом. Продолжим характер χ_1 на алгебру kN, полагая $\chi_1(x) = x$ для $x \in k$. Введем обозначение $\lambda_{\sigma} = \chi_1(l_{\sigma})$. Имеем $\lambda_{\sigma} \in k$, $\lambda_{\sigma_1}^{\sigma_2} \lambda_{\sigma_2} = \lambda_{\sigma_1 \sigma_2}$ и $\{\overline{\lambda_{\tau}}\}_{\tau \in N} = \{\zeta_p\}$. Тогда по теореме Шпайзера существует $\mu \in k$ такое, что $\mu^{\sigma-1} = \lambda_{\sigma}^p$ ($\mu = \sum_{\sigma \in G} \lambda_{\sigma}^{-p}$), и элемент μ определен однозначно с точностью до множителей из k_0^* . Легко видеть, что поле $k_1 = k(\theta)$, где p = p

 $\theta = \chi \mu$, с системой автоморфизмов $\theta^g = \theta \lambda_g$ решает задачу (2).

Таким образом, для решения задачи (1) остается решить задачу погружения

$$1 \to N_1 \to G \to F_1 = \Gamma(k_1/k_0) \to 1. \tag{3}$$

2. Вычисление второго препятствия в задаче погружения с произвольным ядром порядка *pⁿ*

Выясним, в чем заключается условие согласности для задачи (3). Как и в случае абелева ядра, назовем это условие вторым препятствием для исходной задачи погружения (см. [³]). Обозначим через $A = G \times k$, $B = G \times k_1$ — скрещенные произведе-

Обозначим через $A = G \times k$, $B = G \times k_1$ — скрещенные произведения группы G с полями k и k_1 , а через Z_A , Z_B — центры алгебр A и B. Второе препятствие состоит в том, что алгебра B должна быть алгеброй матриц порядка p ord F над некоторой своей подалгеброй.

Алгебра *В* содержит алгебру матриц порядка ord *F*. Этой алгеброй является алгебра *C*, порожденная полем *k* и элементами σl_{σ} . (*C* — скрещенное произведение поля *k* со своей группой Галуа при единичных факторах.)

Итак, для вычисления второго препятствия нужно в алгебре *В* найти подалгебру *D*_B, централизатор *C* в *B* и условия, при которых она была бы изоморфна матричной алгебре порядка *p* (см. [⁴], теорема 4.4.2). Обозначим через *D*_A централизатор *C* в *A*. Изучим алгебру *D*_B.

1. Ясно, что $D_A \subset D_B$ и размерность D_B в *p* раз больше размерности D_A .

Для нахождения D_B нам потребуется следующая конструкция: построение элемента, отвечающего за исчезновение второго препятствия.

В алгебре kN рассмотрим автоморфизм ψ . $\psi: a \to a\chi_1(a)$, где $a \in N$. Так как $\theta^a = a^{-1}\theta a = \theta \lambda_a = \theta \chi_1(a^{-1})$, то автоморфизм ψ равносилен трансформации при помощи элемента $\theta: \theta^{-1}a\theta = a\chi_1(a)$.

Введем в рассмотрение элементы $m_{\sigma} = l_{\sigma}^{-1} l_{\sigma}^{\psi} \lambda_{\sigma}^{-1}$. Имеем $m_{\sigma} \in kN$, $m_{a} = 1$ при $a \in N$ и

$$m_{\sigma_{1}}^{\sigma_{2}l}\sigma_{2} m_{\sigma_{2}} = l_{\sigma_{2}}^{-1} l_{\sigma_{1}}^{-1\sigma_{2}} l_{\sigma_{1}}^{\psi\sigma_{2}} \lambda_{\sigma_{1}}^{-1\sigma_{2}} l_{\sigma_{2}} l_{\sigma_{2}}^{-1} l_{\sigma_{2}}^{\psi} \lambda_{\sigma_{2}}^{-1} =$$

$$= l_{\sigma_{2}}^{-1} l_{\sigma_{1}}^{-1\sigma_{2}} l_{\sigma_{1}}^{\psi\sigma_{2}} l_{\sigma_{2}}^{\psi} \lambda_{\sigma_{1}\sigma_{2}}^{-1} = (l_{\sigma_{1}}^{\sigma_{2}} l_{\sigma_{2}})^{-1} l_{\sigma_{1}\sigma_{2}}^{\psi} \lambda_{\sigma_{1}\sigma_{2}}^{-1} = m_{\sigma_{1}\sigma_{2}}.$$

Существует $q \in kN$ такое, что $q^{\sigma l} = m_{\sigma}q$. Действительно, для $q = \sum_{g \in G} m_{g}^{-1}$ это выполнено. Элемент q определен однозначно с точностью

до правых множителей из $D_A \cap kN \supset Z_A$. Покажем, что $u = \theta q$ коммутирует со всеми σl_{σ} .

Действительно,

$$\theta q \sigma l_{\sigma} = \theta \sigma l_{\sigma} q^{\sigma l_{\sigma}} = \sigma \theta \lambda_{\sigma} l_{\sigma} m_{\sigma} q = \sigma \lambda_{\sigma} l_{\sigma}^{\psi^{-1}} l_{\sigma}^{-1\psi^{-1}} l_{\sigma} \lambda_{\sigma}^{-1} \theta q = \sigma l_{\sigma} \theta q.$$

Значит, $D_B := D_A(u)$, а для всякого $z \in Z_A \subset D_A$ имеем $u^{-1}zu = z^{\psi}$. Положим $v = u^p$; $v = q^{1+\psi+\dots+\psi^{p^{-1}}\mu}$. Нетрудно видеть, что $v \in Z_B$, а при изменении θ v меняется на множитель c, пробегающий k_0^* .

2. Обратимся теперь к строению алгебр Z_A, Z_B.

Пусть X_j — минимальный левый идеал простой компоненты $(kN)_j$ алгебры kN. Тогда $(kN)_j = (kN)e_{\chi_j}$ для некоторого идемпотента e_{χ_j} центра и, согласно [⁵] (с. 225),

$$e_{\chi_j} = (x_j/[N:1]) \sum_{a \in N} a \chi_j(a^{-1}),$$

где χ_j — характер группы N, соответствующий идеалу X_j , $x_j = (X_j : k)$, причем элементы e_{χ_j} образуют k-базис центра Z_{kN} алгебры kN.

Обозначим через M множество всех χ_j . Так как $Z_A \subset Z_{kN}$, то $Z_A = \{\sum_{\chi \in M} x_{\chi} e_{\chi} | , x_{\chi} \in k, \sum x_{\chi} ^{g} e_{\chi} ^{g} = \sum x_{\chi} e_{\chi} \}$. Нетрудно проверить, что $e_{\chi} ^{g}$ снова является идемпотентом из множества $\{e_{\chi}\}$. Если положить по определению $\chi^{g}(a) = \chi (gag^{-1})^{g}$ для $a \in N$, то видим, что $e_{\chi} ^{g} = e_{\chi} ^{g}$. Таким образом, если $\chi \in M$, то $\chi^{g} \in M$.

Итак, $Z_A = \{\sum_{\chi \in M} x_{\chi} e_{\chi} \mid x_{\chi} g = x_{\chi} e_{\chi}\}$, т. е. Z_A распадается в прямую

сумму идеалов, натянутых на e_{χ} и сопряженных так, что прямая сумма таких идеалов, натянутых на идемпотенты, сопряженные с e_{χ} , изоморфна полю k_{χ} , и каждое такое прямое слагаемое находится в естественном взаимно однозначном соответствии с классами сопряженных характе-

ров. Здесь $k_{\chi} = k^{G_{\chi}}, G_{\chi} = \{ \sigma \in G \mid \chi^{\sigma} = \chi \}, \chi \in M.$

Найдем вид произвольного элемента z из алгебры Z_B . Легко видеть, что $Z_B = \{z \in Z_A \mid z\theta = \theta z\} = \{z \in Z_A, z = \sum x_{\chi}e_{\chi} \mid x_{\chi} = x_{\chi} \cdot \chi_1^*, k = 0, 1, ...$

..., p-1}. Иначе говоря, Z_B изоморфна прямой сумме полей k_{χ} и каждое такое прямое слагаемое находится в естественном взаимно однозначном соответствии с классом характеров $\{\chi^{\sigma}\chi_1^k\}_{\substack{\sigma \in G, \\ k=0, 1, ..., p-1}}$, т. е.

с классом элементов, сопряженных с $\chi \in \hat{M} = M/\{\chi_1\}$. Здесь $\hat{k}_{\chi} = k^{G_{\chi}},$ $\hat{G}_{\chi} = \{g \in G \mid e_{\chi}^{g} = e_{\chi\chi_{\chi}^{g}}, k = 0, 1, ..., p - 1\}.$

3. Имеем $D_B = D_A(u) \supset Z_A(u)$. Будем искать необходимые и достаточные условия того, чтобы алгебра $D_A(u)$ была алгеброй матриц порядка p.

Есть две возможности.

1) D_A — матричная алгебра порядка *p*. Этот случай не интересен, так как приводит к тому, что уже алгебра *A* становится матричной алгеброй порядка ord *Fp*.

2) D_A не является матричной алгеброй порядка *p*. Тогда при изоморфизме $D_A(u) \approx (\mathfrak{M})_p D_A$ вкладывается в \mathfrak{M} , что влечет за собой изоморфизм

$$Z_A(u) \approx (\mathfrak{N})_p$$
, где $\mathfrak{N} \subset \mathfrak{M}$.

Итак, нам необходимо и достаточно найти условия, при которых алгебра $Z_A(u)$ становится матричной алгеброй порядка *p*.

4. Найдем эти условия. Разложим и на компоненты как элемент алгебры Z_B . $v = \sum v_{\hat{\chi}} e_{\hat{\chi}}$, где $v_{\hat{\chi}} \in \hat{k}_{\chi}$, $e_{\hat{\chi}} = \sum_{h=0}^{p-1} e_{\chi\chi_1^k}$.

Как действует на компонентах алгебры Z_A автоморфизм ψ, индуцированный элементом 0? В соответствии со строением Z_A для любого $z \in Z_A$ имеем $z = \sum x_{\chi} e_{\chi}$, где $x_{\chi} \in k_{\chi} = \hat{k}_{\chi} (\sqrt[p]{a_{\hat{\chi}}})$. Запишем x_{χ} в виде $x_{\chi} = \sum_{i=1}^{p-1} x_{\chi,i} \sqrt[p]{a_{\chi}^{-i}}$, где $x_{\chi,i} \in \hat{k}_{\chi}$. Так как $x_{\chi}^{\sigma} = x_{\chi^{\sigma}}$, то при $\sigma \in \hat{G}_{\chi}/G_{\chi}$, i=0 т. е. при таком о, что $\chi^{\sigma} = \chi^{\psi^{k}} = \chi \cdot \chi_{1}^{k}$, будет выполнено равенство $x_{\chi\sigma} = \sum x_{\chi,i} (\sqrt[p]{a_{\chi}} \zeta_p^k)^i$, где ζ_p — первообразный корень *p*-й степени из 1.

Значит, автоморфизм у на компоненте Z_A, изоморфной полю $k_{\chi}(\gamma a_{\hat{\chi}})$, производит действие

$$\sqrt[p]{a_{\hat{\chi}}} \longrightarrow \sqrt[p]{a_{\hat{\chi}}} \zeta_p.$$

Поэтому в соответствии с разложением В в прямую сумму простых подалгебр с центрами, являющимися прямыми слагаемыми Z_B , $Z_A(u) \subset B$ разложится в прямую сумму подалгебр, являющихся обобщенными алгебрами кватернионов:

$$Z_A(u) \approx \bigoplus \sum k_{\chi}[a_{\hat{\chi}}, v_{\hat{\chi}}].$$

Таким образом, для того чтобы при каком-то выборе θ алгебра $Z_A(u)$, а значит и алгебра D_B, была изоморфна алгебре матриц порядка р над некоторой своей подалгеброй, необходимо и достаточно, чтобы существовало такое с ∈ k₀, что

$$v_{\hat{\chi}}^{c} \in Nm\hat{k}_{\chi}(\sqrt[p]{a_{\hat{\chi}}})/\hat{k}_{\chi},$$

причем достаточно брать по одному представителю х из каждого класса сопряженности М/{х1} относительно G.

Мы рассматриваем задачу погружения полей, поэтому, если мы хотим получить в качестве решения поле, а не алгебру Галуа, необходимо дополнить полученные условия следующим: µс ∉ k^p.

ЛИТЕРАТУРА

- 1. Делоне Б. Н., Фаддеев Д. К. Матем. сб., 17, № 1, 243—284 (1944).
- Наѕе, Н., Math. Nachr., 1, № 1, 40—61 (1948).
 Дёмушкин С. П., Шафаревич И. Р. Изв. АН СССР, сер. матем., 23, № 6, 823—840 (1959).
- 4. Херстейн И. Некоммутативные кольца. М., «Мир», 1969.
- 5. Кэртис Ч., Райнер И. Теория представлений конечных групп и ассоциативных алгебр. М., «Наука», 1969.

Всесоюзное аэрологическое научно-производственное объединение «Аэрогеология» Министерства геологии СССР

Поступила в редакцию 29 июня 1981

После переработки 18 мая 1982

SUVALISE pⁿ-JÄRKU TUUMAGA SISESTUSÜLESANDEST

On käsitletud suvalise p^n -järku tuumaga N sisestusülesannet, mis on seotud täpse järgnevusega

$$1 \longrightarrow N \longrightarrow G \xrightarrow{\varphi} F = \Gamma(k/k_0) \longrightarrow 1$$

ja mille kohta kehtib kooskõlalisuse tingimus. On vaadeldud elementi v ja leitud, et selle sisestusülesande teise takistuse kadumise jaoks on tarvilik ja piisav sellise $c \in k_0$ eksisteerimine, mille puhul

$$v_{\chi}c \in Nm k_{\chi}/k_{\chi},$$

kus v_{\uparrow} on elemendi v komponendid ja k_{χ} , k_{χ} välja k alamväljad.

O. POLEVITSKAYA

ON THE EMBEDDING PROBLEM WITH AN ARBITRARY KERNEL OF ORDER p^n

In this paper a field embedding problem associated with an exact sequence

$$1 \longrightarrow N \longrightarrow G \longrightarrow F = \Gamma(k/k_0) \longrightarrow 1 \tag{1}$$

is considered.

Let N be a group of order p^n , and it is of no importance whether N is an abelian group or non-abelian. Suppose that k contains a primitive p-th root of unity, let char k does not divide ord N.

Suppose, also, that a condition of concordance $([^{1,2}])$ is fulfilled for our problem. Then the problem (1) can be reduced to a problem with a lesser kernel

$$1 \longrightarrow N_{|1} \longrightarrow G \longrightarrow F_1 = \Gamma(k_1/k_0) \longrightarrow 1,$$
(2)

where N_1 is a subgroup of the group N, $(N:N_1) = p$, $k_1 = k(\overline{\gamma \mu c})$, c — an arbitrary member of k_0^* .

A condition of concordance for the problem (2) is called a second obstacle for the problem (1).

It is shown in this paper that for disappearance of the second obstacle of the problem (1), it is necessary and sufficient that there is such an element $c \in k_0$ that

$$v_{\chi} c \in Nm k_{\chi}/\hat{k}_{\chi},$$

where $v_{\hat{\chi}}$ are the components of v from some algebra; k_{χ} , \hat{k}_{χ} are the subfields of the

field k. On the basis of non-cohomological wordings of the condition of concordance, v is calculated.

In the more narrow case, when the kernel is abelian, one of the well-known results of Demushkin-Shafarevitch ([³], Theorem 3) can be obtained more simply according to this paper.