LÜHITEATEID 🔹 КРАТКИЕ СООБЩЕНИЯ

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 29. KÖIDE FÜÜSIKA * MATEMAATIKA. 1980, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 29 ФИЗИКА * МАТЕМАТИКА. 1980, № 1

https://doi.org/10.3176/phys.math.1980.1.11

УДК 62.50

И. КЕЙС

СУБОПТИМАЛЬНЫЙ СИНТЕЗ УПРАВЛЕНИЯ МЕТОДОМ ОБРАЩЕНИЯ И ПСЕВДОАВТОНОМНОСТИ

- I. KEIS. JUHTIMISE SUBOPTIMAALNE SÜNTEES PÖÖRD- JA PSEUDOAUTONOOMSUSMEE-TODIL
- I. KEIS. A SYNTHESIS OF SUBOPTIMAL CONTROL VIA INVERSE AND PSEUDOAUTONOMOUS METHODS

(Представлена Н. Алумяэ)

В работе продолжено построение регуляторов сложных систем [1-3]. Уравнения возмущений $x \equiv 0$ стабилизируемой по $x^{!}$, x' системы

$$\begin{aligned} x &= F(t, x, u), \quad 0 \leq t, \quad x \in R = \{ |x^1| \leq h_0 \} = R_0 \cup x' = 0, \\ u &= (u_\sigma)^* \in \Omega = \{ g(u) \leq g_0 \}, \end{aligned}$$
(1.1)

$$x^{1} = (x_{i})^{*}, \quad x' = (x_{j})^{*}, \quad x = (x_{i}, x_{v})^{*} \quad (i = \overline{1, m^{1}}, \quad j = \overline{1, m'}, \quad v = \overline{m^{1} + 1, n},$$

 $\sigma = \overline{1, r}, \quad m' \leq m^{1}$

с целью управления $\{x' = 0\}$, нормой g(u) $(g \in G)$ [1] и критерием

$$I = \int_{t}^{t_{1}} F_{0}(\tau, x, u) d\tau \rightarrow \min_{u} (x' \rightarrow 0, t \rightarrow t_{1} - 0, t_{1} = \min t'_{1}; u, F, F_{0} \in C(R_{0}))$$

рассмотрим в агрегирующих [2] переменных $y = (y_k(t, x, a))^*, z = (z_s)^*$

$$y = Y(t, \xi, u, \alpha), \quad z = Z(t, \xi, u, \alpha), \quad D_0 = \xi(R_0) = D \setminus y' = 0 (\xi = (y_h, z_s)^*),$$
(1.2)

$$I = \int_{t}^{t_{1}} f_{0} d\tau \rightarrow \min_{u}, \quad f_{0} = F|_{x=x(\xi)}, \quad \alpha = (\alpha_{\mu})^{*} = \operatorname{const} \in \Delta_{1}(0, \varrho_{1}) \in E^{m_{1}},$$

$$y' = (y_q)^*, y'' = (y_\beta)^*, z = (z_s)^* (q = \overline{1, l_1}, \beta = \overline{l_1 + 1, l_1}, \mu = \overline{1, m_1}, l \ll n),$$

где $\forall \varepsilon \leq d_0(h_0, \alpha) \exists \delta(t_0, z_0, \alpha, \varepsilon) : |y| < \varepsilon, [t_0, t_1); y' \to 0, t \to t_1, |y_0| \leq \delta.$ Агрегаты y и субоптимальные сгабилизаторы u' системы (1.1) функции t, измеряемых величин $h_k(t, x) (k = 1, l)$ и вектора агрегации a. Из оптимальной y, y'-устойчивости (1.2) в области $P(\alpha) =$ $= \{y' \neq 0, |y| \leq \delta(\alpha)\}$ при всяком $u' \in \{u'\} = U'$ имеем [^{2, 3}] оптимальную x¹, x'-стабилизацию (1.1) на $Q(\alpha) = x(P(\alpha)) \subseteq R_0.$ 1. Способ обращения производящим потенциалом

1. Способ обращения производящим потенциалом $S^+(t, y, a, \gamma)$. Пусть для $S^+ \in C(D')$, $D' = \{D \times \Delta_1 \times \Delta_2\} =$ $= D'_0 \cup y' = 0 \ (\gamma = \gamma_\lambda)^* \in \Delta_2(0, \varrho_2), \quad \lambda = 1, m_2) \ S^+ \equiv 0, \ dS^+/\partial y'' \equiv 0$ $(y'=0); S^+ \in C_1(D'_0)$ существует и является единственной седловая точка z^+, u^+ гамильтониана системы (1.2)

$$H^{+}(z^{+}, u) \ge H^{+}(z^{+}, u^{+}) = \max_{z} \min_{u} H^{+}(z, u) \ge H^{+}(z, u^{+}) (H^{+} = H[S^{+}]),$$
(1.3)

 $u^{+} = u^{+}(t, y, a, \gamma) \in C(D'_{0}), \quad u^{+} \in \Omega, \quad z^{+} = z^{+}(t, y, a, \gamma) \subset C(D'_{0}), \quad z^{+} \in D'_{0},$ $H[S^{+}] = \partial S^{+}/\partial t + Y \cdot p^{+} + f_{0}, \quad p^{+}_{0} = \partial S^{+}/\partial t, \quad p^{+} = \partial S^{+}/\partial y,$

$$H^+(z^+, u^+) \equiv -h_+(t, y, \alpha, \gamma),$$

где вектор-функция $u^+(t, y, a, \gamma)$ — стабилизатор системы (1.2), т. е. $u^+ \in U'$. Обозначим через $U'' = \{u''\}$ множество стабилизаторов агрегированной (1.2). Из (1.3) следует, что регулятор u^+ — субоптимальный [^{2, 3}] для (1.2), если $U'' \equiv u^+(t, y, a, \gamma)$ — стабилизатор агрегированной из (1.2) системы

$$y_{+} = Y(t, y, z^{+}, u, \alpha), \quad I_{+} = \int f_{+} d\tau \rightarrow \min_{u}, \quad f_{+} = f_{0}|_{z=z^{+}} + h_{+},$$

$$S^{+} = \min_{u} I_{+} = I_{+}(u^{+}) = \int_{t}^{t_{+}} f_{+}^{+} d\tau (f_{+}^{+} \equiv f_{+}|_{u=u^{+}}, h_{+} \equiv -H^{+}(z^{+}, u^{+})).$$

При этом S+, u+[t], z+[t] — решение задачи оптимальной стабилизации

$$y = Y(t, \xi, u, \alpha), \quad S^{+} = \max_{z} \min_{u} l'_{+}, \quad u \in \Omega, \quad z \in D_{0}(l'_{+} = \int_{t}^{r} (f_{0} + h_{+}) d\tau),$$

$$S^{+} \ge \min_{u} l'_{+}(z, u) (z, u \in C[t_{0}, t'), \quad t' : y' \to 0, \quad t \to t' = 0),$$

где наихудшая по I'_+ стратегия z^+ вообще не z[t]-компонента решения (1.2). Интегрируя величину $h_+ + H^+(u^+, z)$ вдоль (1.2) при $u = u^+ \in U' \cap U''$, находим из (1.3) для субоптимальной функции $I(u^+) \equiv I^+(t, \xi, \alpha, \gamma)$ оценки

$$I^{+} = \int_{t}^{t^{*}} (f_{0}|_{u=u^{*}} + h_{+}) d\tau + \int_{t}^{t^{*}} H^{+}(z^{+}, u^{+}) d\tau \leq S^{+} - \int_{t}^{t^{*}} h_{+} d\tau = \int_{t}^{t^{*}} f_{0}(z^{+}, u^{+}) d\tau,$$

$$I^{+} \leq S^{+}(t, y, \alpha, \gamma), \text{ если } H^{+}(z^{+}, u^{+}) \leq 0; t^{+} = \min t^{*} : y' \rightarrow 0, t \rightarrow t^{*};$$

$$H_{+} \equiv H^{+}(z, u) + h_{+}.$$
(1.4)

Оптимальный по I^+ параметр γ^0 определим $\forall t_0, y_0, z_0, \alpha$ условиями [³], введя вектор $a = (a_{\mu}, \gamma_{\lambda})^*$ ($\xi_0 = \xi[t_0], \mu = \overline{1, m_1}, \lambda = \overline{1, m_2}$).

Условия оптимальности γ^0 упрощаются, если вместо точечной минимизации по критериям близости I^+ к I_{opt} [^{2,3}] найти γ^0 из требования локального минимума нормы $f_0(z^+, u^+)$ или $S^+(t, y, \alpha, \gamma)$ на $t \ge 0$, $|y| \le \delta \le d_0$, $\forall \alpha \in \Delta_1$ в мажорантах (1.4). Выберем γ^0 . Тогда оптимизация по а субоптимального регулятора $u^+(t, y, \alpha, \gamma^0)$, заданного в (1.3) потенциалом S^+ при условиях (1.3), проводится согласно схеме [³] из условий теоремы Болтянского. Наилучший субоптимальный стабилизатор u_0^+ системы (1.1) находим из u^+ подстановкой $y = y(t, x, \alpha^0, \gamma^0)$, где $\alpha^0 = \alpha_{opt} = \alpha^0(t, \xi, \gamma^0)$. 2. Способ псевдоавтономности по у в агрегировании по функционалу. Предположим, что функции Y, fo представимы на D₀ в виде $Y = Y_{1}^{0}(t, y, \alpha) + A_{1}(t, y, \alpha) u + Y_{2}^{0}(t, \xi, \alpha) + A_{2}(t, \xi, \alpha) u + Y_{2}(t, \xi, u, \alpha),$ (2.1) $f_0 = f_1^0(t, y, \alpha) + a_1(t, y, \alpha) \cdot u + f_2^0(t, \xi, \alpha) + a_2(t, \xi, \alpha) \cdot u + f_2(t, \xi, u, \alpha),$ $y_2^0|_{z=0} \equiv 0, \quad f_2^0|_{z=0} \equiv 0, \quad A_2|_{z=0} \equiv 0, \quad a_2|_{z=0} \equiv 0,$ $Y_2 = |u| E_2(\cdot |u), \quad f_2 = |u| \varepsilon_2(\cdot |u),$ $b = A_{*}^{*} p + a_{1} \neq 0, \quad E_{2} \rightarrow 0, \quad |u| \rightarrow 0, \quad \varepsilon_{2} \rightarrow 0, \quad |u| \rightarrow 0 \quad (p_{0} = \partial S' / \partial t, \quad p = \partial S' / \partial y),$ $A_1 = \|a_{b\sigma}^1\|, A_2 = \|a_{b\sigma}^{(2)}\|, a_1 = (a_{\sigma}^1)^*, a_2 = (a_{\sigma}^{(2)})^* \quad (k = \overline{1, l} \ll n, \sigma = \overline{1, r}),$

где все элементы разложения (2.1) имеют необходимую гладкость. Агрегируя лишь по функционалу (1.2), заменим f₀ на новое ядро $f'_{0} = f_{0} + h'$

$$I' = \int_{t}^{t'_{1}} f'_{0} d\tau \left(-h'(t,\xi,u,\alpha) \equiv f_{2}^{0} + p \cdot Y_{2}^{0} + (a_{2} + A_{2}^{*}p) \cdot u + p \cdot Y_{2} + f_{2}\right).$$
(2.2)

Гамильтониан системы (1.2), (2.1), (2.2) с функционалом I' t, y-автономная, линейная по и функция H'(t, y, po, p, u, a) вида

$$H' = H[S'] = \partial S' / \partial t + f_1^0 + p \cdot Y_1^0 + b \cdot u (y \in D_0, \ u \in \Omega, \ b = A_1^* p + a_1 \neq 0)$$

 достигает абсолютного минимума H' = 0 на экстремальном регуляторе

$$u' = -g_0 \partial g' / \partial b, g'(u) = \max_{g(v)=1} (v \cdot u) \quad (g > 0, v \neq 0, g' > 0, u \neq 0,$$

$$g(u) = g(-u)),$$

$$g' \in G(u) : g'(\lambda u) = |\lambda| g'(u), g'(u_2) - g'(u_1) > \nabla g'(u_1) \cdot (u_2 - u_1),$$

$$|u_1| |u_2| > |(u_1 \cdot u_2)|,$$

где функция S' определена уравнением порядка $l \ll n$ и условиями $\partial S'/\partial t + f_4^0(t, y, \alpha) + p \cdot Y_4^0(t, y, \alpha) - g_0 g'(A_4^* p + a_4) = 0; \quad S' \equiv 0, \quad \partial S'/\partial y'' \equiv 0$

$$(y'=0).$$
 (2.4)

Пусть (2.3) — стабилизатор системы (1.2). Тогда $u'(t, y, \alpha)$ — субоп-тимальный регулятор (1.2), так как $u' \in U' \cap U''$. Вид функции u' в (2.3) устанавливается решением (2.4). Минимизацию субоптимальной функции I(u') по вектору агрегации α с целью поиска наилучшего α^0 можно проводить аналогично [3].

ЛИТЕРАТУРА

- 1. Кейс И., Изв. АН ЭССР, Физ. Матем., 26, № 1, 37—47 (1977). 2. Кейс И., Изв. АН ЭССР, Физ. Матем., 27, № 3, 274—288 (1978). 3. Кейс И., Изв. АН ЭССР, Физ. Матем., 28, № 2, 107—114 (1979).

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 2/VII 1979