EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 28. KÕIDE FÜÜSIKA * MATEMAATIKA. 1979, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 28 ФИЗИКА * МАТЕМАТИКА. 1979, № 1

https://doi.org/10.3176/phys.math.1979.1.15

Р. АВАРМАА, С. КОЧУБЕЙ, Р. ТАМКИВИ

ВРЕМЕНА ЗАТУХАНИЯ ФЛУОРЕСЦЕНЦИИ ХЛОРОФИЛЛА В ФОТОСИСТЕМАХ 1 И 2 ХЛОРОПЛАСТСВ ПРИ ТЕМПЕРАТУРЕ 4.2 К

R. AVARMAA, S. KOTŠUBEI, R. TAMKIVI. KLOROFÜLLI FLUORESTSENTSI KUSTUMISAJAD KLOROPLASTIDE FOTOSÜSTEEMIDES 1 JA 2 TEMPERATUURIL 4,2 K

R. AVARMAA, S. KOCHUBEY, R. TAMKIVI. FLUORESCENCE DECAY TIMES OF CHLORO-PHYLL IN PHOTOSYSTEMS 1 AND 2 OF CHLOROPLASTS AT T=4,2 K

(Представлена К. К. Ребане)

1. Известно, что время затухания флуоресценции τ_j хлорофилла (Хл) *а* в растворах составляет 6—8 *нсек* (см., напр., [¹]) и не меняется существенно при понижении температуры до 4,2 К [²].

Для Хл, связанного с фотосинтетическими мембранами, τ_f при комнатной температуре оказывается намного короче и лежит в субнаносекундной области, что обусловлено эффективной утилизацией энергии молекулярных возбуждений пигмента в первичных фотохимических реакциях фотосинтеза. Поскольку флуоресценция и фотохимические реакции являются конкурирующими процессами, то квантовый выход φ и время затухания τ_f флуоресценции служат важными источниками информации об эффективности фотохимических реакций в разных пигментных системах. В настоящее время проведен ряд измерений τ_f Хл *a in vivo* методом пикосекундной τ -метрии [³, ⁴]. Изучение температурных зависимостей τ_f [⁵] и φ [⁶] хлоропластов и субхлоропластных частиц обнаружило увеличение τ_f и φ при понижении температуры до 77 К, что указывает на уменьшение скоростей первичных фотохимических реакций.

Чтобы исключить возможное влияние процессов, требующих тепловой активации, в настоящей работе измерены τ_f Хл *a in vivo* при температуре 4,2 К. * Успешное применение флуорометрического метода для наблюдения за переносом энергии в пределах основной полосы флуоресценции Хл *a in vitro* [⁸] стимулировало интерес к изучению этого аспекта также на хлоропластных препаратах.

2. Использованная экспериментальная установка [²] позволяла измерять кривые затухания флуоресценции при регистрации в узких спектральных интервалах (~1 нм), выделяемых монохроматором ДФС-24. Флуоресценция возбуждалась искрой в полосе Соре.

УДК 535.37

^{*} Насколько нам известно — впервые; в [7] получены τ_f для хлоропластов при T = 23 К.

Спектры флуоресценции частиц ФС-1 (1), ФС-2 (2) и хлоропластов (3) прн Т = = 4,2 К. Возбуждение линией 633 нм Не-Nе-лазера. Кривые приведены без поправок на чувствительность регистрирующей системы ДФС-24 и ФЭУ-79.

Хлоропласты выделяли из проростков гороха; субхлоропластные фрагменты (обогащенные фотосистемами ФС-1 или ФС-2) получали по методике, описанной в [⁹]. Для измерений использовали полусухие пленки, структура низкотемпературных спектров которых идентична структуре спектров замороженных суспензий в буферных смесях. Функциональная активность пигментов в пленках сохраняется. Были проведены также некоторые контрольные измерения τ_f на суспензиях.

3. Спектры флуоресценции хлоропластов и их фрагментов при 4,2 К показаны на рисунке. Измерения τ_f проводили около максимумов структурных компонент как коротковолновой, так и длинноволновой полос (результаты см. в таблице). Все кривые затухания аппроксимировались одной экспонентой, поправки на конечную длительность возбуждающих импульсов учитывались так же, как в [^{2, 8}]. Точность определения τ_f составляет $\pm 0,1$ нсек, за исключением самых коротких, для которых ошибка указана в таблице.

Поскольку исследовались образцы с довольно большой концентрацией Хл (оптическая плотность в красном максимуме поглощения $D \simeq 1$), в случае тяжелых фрагментов было проведено сравнение с разбавленным объектом. Как видно из таблицы, в более плотных образцах τ_f слегка увеличены, что объясняется влиянием реабсорбции (ср. [⁸]).

При 4,2 К на всех длинах воли регистрации обнаружены τ_f наносекундной длительности. Не исключено, что присутствовали и более ко-

λ ₁ , нм	Хлоропласты	Легкие фраг- менты, ФС-1	Тяжелые фраг- менты, ФС-2	ФС-2, разбав- ленный образец
$\begin{array}{c} 681\\ 685\\ 687\\ 696\\ 722\\ 724\\ 730\\ 732\\ 734\\ 739\\ 745\\ 750\\ \end{array}$	$ \begin{array}{c} 1,0 \pm 0,3 \\ \underline{2,8} \\ 3,9 \\ \underline{-} \\ 3,1 \\ \underline{-} \\ - \\ \underline{-} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$ \begin{array}{r} 2,8 \\ 3,2 \\ 3,4 \\ - \\ 2,8 \\ 3,1 \\ - \\ 3,2 \\ 3,3 \\ 3,2 \\ 3,1 \\ 3,1 \\ \end{array} $	$1,1 \pm 0,3 \\ 2,3 \\ 4,4 \\ 3,9 \\ - \\ 4,0 \\ - \\ 4,1 \\ - \\ 4,1 \\ - \\ - \\ 4,1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$\begin{array}{c} 0,9 \pm 0,3 \\ 2,2 \\ - \\ 3,9 \\ - \\ - \\ - \\ 3,4 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $

Времена затухания флуоресценции хлоропластов и их фрагментов при 4,2 К, нсек

роткие компоненты, как при более высоких температурах [5, 10], однако возможности нашей установки не позволяли установить их наличие.

4. Начнем обсуждение с ФС-2, которая, согласно современным представлениям о механизме фотосинтеза, совершает цикл фотохимического разложения воды.

У тяжелых фрагментов (которые обогащены ФС-2, но содержат также малое количество неотделимых от них частиц ФС-1) наблюдается сильное различие в т_f при регистрации на коротковолновой и длинноволновой полосах излучения (таблица и рисунок). Сравнительно короткое время $\tau_f = 2,3$ нсек на главном максимуме флуоресценции $\Phi C-2$ 685 нм, который приписывается светособирающему Хл [11], можно объяснить переносом энергии от светособирающего Хл к реакционным центрам. При 681 нм, где в спектре видна слабая ступенька, т еще более сокращается. Следовательно, в пигментной системе светособирающего Хл существуют разные формы Хл а, причем энергия возбуждения эффективно мигрирует от коротковолновых (F 681) к длинноволновым (F 685) формам.

Обращает на себя внимание тот факт, что в области 696 нм в спектре частиц ФС-2 наблюдается наибольшее из зарегистрированных значений τ_f. Мнения о том, принадлежит ли это свечение реакционным центрам или их ближайшему окружению, расходятся, но, учитывая большую вероятность рекомбинационных процессов при столь низкой температуре, можно предполагать, что указанное время затухания принадлежит рекомбинационному свечению в реакционных центрах ФС-2.

В пределах основной полосы спектра излучения легких фрагментов (являющихся в основном носителями ФС-1) с максимумом около 735 нм τ_f практически не зависит от длины волны регистрации λ_f и составляет в среднем 3,2 нсек. Эта величина близка к величине одной из компонент для частиц Φ C-1 при 23 K (2,8 *нсек* [⁷]) и согласуется с $\tau_f = 0,1$ и 0,6 нсек соответственно при 280 и 90 К для длинноволновой полосы хлоропластов [5], если учитывать значительное увеличение выхода флуоресценции ФС-1 с понижением температуры [6]. Относительное постоянство т, в пределах длинноволновой полосы ФС-1 указывает на то, что хотя эта полоса, по-видимому, неоднородна, между разными спектральными компонентами нет заметной индуктивно-резонансной передачи энергии, по крайней мере при низкой температуре. В [8] было показано, что такая миграция непременно приводит к зависимости τ_f от λ_f .

Значения τ_f в коротковолновой полосе спектра флуоресценции легких фрагментов близки к таковым для полосы 735 нм и значительно превышают т_f для ФС-2 и хлоропластов при той же длине волны. Поэтому слабую коротковолновую полосу легких фрагментов нельзя полностью приписывать примеси светособирающего Хл ФС-2, присутствие которой возможно из-за неполного разделения фрагментов. По-видимому, увеличенные т_f для легких фрагментов при 681 и 687 нм свидетельствуют о наличии собственной светособирающей системы пигментов у ФС-1.

Итак, измерения τ_f Хл a in vivo при температуре жидкого гелия позволили изучить затухание возбужденных состояний в условиях, когда процессы дезактивации, требующие теплового возбуждения, подавлены.

Авторы благодарны К. Ребане за поддержку и интерес к работе.

ЛИТЕРАТУРА

Goedheer, J. C., Annu. Rev. Plant Physiol., 23, 87—112 (1972).
 Avarmaa, R., Soovik, T., Tamkivi, R., Tõnissoo, V., Stud. biophys., 65, № 3, 213—218 (1977).

- Paschenko, V. Z., Protasov, S. P., Rubin, A. B., Timofeev, K. N., Zamazova, L. M., Rubin, L. B., Biochim. et biophys. acta, 408, № 1, 143-153 (1975).
- Harris, L., Porter, G., Synowiec, J. A., Tredwell, C. J., Barber, J., Biochim. et biophys. acta, 449, № 2, 329—339 (1976). Yu, W., Pellegrino, F., Alfano, R. R., Biochim. et biophys. acta, 460, № 1, 4.
- 5. 171—181 (1977). Кочубей С. М., Самохвал Е. Г., Мюллер И., Stud. biophys., **54**, № 3, 217—
- 6. 224 (1976).
- 7. Hervo, G., Paillotin, G., Thiery, J., Breuze, G., J. Chim. Phys., 72, № 6, 761-766 (1975).
- Тамкиви Р. П., Авармаа Р. А., Изв. АН СССР, Сер. физ., 42, № 3, 568-572 8. (1978).
- Островская Л. К., Кочубей С. М., Рейнгард Т. А., Биофизика, 14, № 3, 9 265-275 (1969).
- Sauer, K., Brewington, G. T., In: Proc. of the IV Intern. Congr. on Photo-synthesis, Ed. by the Biochemical Society, London, 1978, p. 409-421.
 Butler, W. L., In: Encyclopedia of Plant Physiology, New Ser., 5, Photosynthesis I, Springer-Verlag, Berlin-Heidelberg, 1977, p. 149-167.

Институт физики Академии наук Эстонской ССР

Институт физиологии растений Академии наук Украинской ССР