EESTI NSV TEADUSTE AKADEEMIA TOIMETISED, 27. KÖIDE FÜÜSIKA * MATEMAATIKA. 1978, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 27 ФИЗИКА * МАТЕМАТИКА. 1978. № 1

УДК 62-501.7:517.271

И. РАНДВЕЭ

АЛГОРИТМ УПРАВЛЕНИЯ ВЗАИМОСВЯЗАННЫМИ ПОДСИСТЕМАМИ

Предлагается алгоритм для децентрализованного оптимального управления большой линейной дискретно-непрерывной системой. Алгоритм реализуется с помощью т. н. метода координации на псевдомодели [¹], в котором для коррекции желаемых траекторий подсистем используется простой итерационный процесс.

Постановка задачи, метод решения и предлагаемый алгоритм

Рассмотрим устойчивую, вполне управляемую систему большой размерности, состоящую из *m* подсистем:

$$\begin{vmatrix} x_{1,k} \\ \vdots \\ x_{m,k} \end{vmatrix} = \begin{pmatrix} A_1 & A_{1,m} \\ \vdots \\ A_{m,1} & A_m \end{pmatrix} \begin{vmatrix} x_{1,k-1} \\ \vdots \\ x_{m,k-1} \end{vmatrix} + \begin{vmatrix} u_{1,k-1} \\ \vdots \\ u_{m,k-1} \end{vmatrix},$$
(1)
$$k = 1, 2, ..., N,$$

где $u_{i,k}$ и $x_{i,k}$ — n_i -мерные векторы управления и состояния *i*-й подсистемы в *k*-м интервале времени. Задача управления состоит в выборе векторов $u_{i,k}$ подсистем, минимизирующих при заданном начальном состоянии $x_{i,0}$ функционал

$$J = \frac{1}{2} \sum_{i=1}^{m} \sum_{k=1}^{N} (x'_{i,k-1}C_i x_{i,k-1} + u'_{i,k-1}D_i u_{i,k-1}), \qquad (2)$$

где C_i и D_i — симметричные, положительно определенные матрицы. На управление $u_{i,k}$ никаких ограничений не накладывается.

Метод координации на псевдомодели [¹] позволяет решить задачу (1)—(2) децентрализованно по двухступенчатой схеме: на первой ступени решаются *m* несвязанных между собою задач минимизации (2) при ограничениях, накладываемых на подсистемы:

$$x_{i,k} = A_i x_{i,k-1} + u_{i,k-1} + z_{i,k-1}, \quad i = 1, 2, \dots, m; \ k = 1, 2, \dots, N, \quad (3)$$

$$z_{i,k-1} = \sum_{i,j=1}^{m} A_{ij} x_{j,k-1}^{*}.$$
 (4)

Здесь $z_{i,k}$ фиксировано заданием желаемого движения подсистем $x_{j,k}^*$, начальное состояние $x_{i,0}$ задано. На второй ступени осущест-

И. Рандвеэ

вляется коррекция желаемого движения подсистем $x_{i,k}^*$ ($i = 1, 2, \ldots, m, k = 1, 2, \ldots, N$). Рассмотрим это более подробно на задаче (1)—(2), записав ее в виде задачи обычной минимизации. Найти

$$\min_{u_i} \frac{1}{2} \sum_{i=1}^{m} (x'_i E_i x_i + u'_i H_i u_i)$$
(5)

при

$$x_i = K_i u_i + w_i + z_i, \tag{6}$$

$$z_i = \sum_{\substack{i,j=1\\i\neq j}}^m K_i L_{ij} x_j + w_{ij}.$$
(7)

Здесь $x'_i = |x'_{i,1}| - |x'_{i,N-1}|$, $E_i = I_{N-1} \oplus C_i$, $H_i = I_{N-1} \oplus D_i$, $I_{N-1} - e$ диничная матрица размерности $(N-1) \times (N-1)$, символ \oplus означает прямое произведение матриц. Остальные составные векторы и матрицы постоянны, их вид приведен в [²].

Модифицируем задачу (5)—(7) согласно методу [1]:

$$\min_{u_i, x_i^*} \frac{1}{2} \sum_{i=1}^m \left(x'_i E_i x_i + u'_i H_i u_i + (x_i - x_i^*)' c E_i (x_i - x_i^*) \right)$$
(8)

при ограничении (6) и фиксированном $z_i(x_1^*, \ldots, x_{i-1}^*, x_{i+1}^*, \ldots, x_m)$. Переменные u_i и x_i^* свободные, $c \gg 1$. Следуя методу [¹], на первой ступени решим задачу минимизации (8) по u_i при ограничении (6) и фиксированных z_i и x_i^* . Это осуществляется полностью децентрализованно. В результате получим оптимальное x_i , зависящее от x_i^* и z_i , т. е. $x_i(x_1^*, \ldots, x_m^*)$, $i = 1, 2, \ldots, m$. Учитывая это, запишем необходимое условие минимума (8) по x_i^* в виде системы линейных уравнений

$$x_i(x_1^*, \ldots, x_m^*) - x_i^* = 0, \quad i = 1, 2, \ldots, m,$$
 (9)

решение которой определит $x_{i,h}^*$, равное оптимальной траектории задачи (6)—(8).

В сущности задача коррекции $x_{i,k}^*$ есть задача решения линейной системы (9). Различные методы решения (9) дают различные схемы коррекции. Например, метод сопряженных градиентов приводит к централизованной схеме коррекции $x_{i,k}^*$ [³]. Мы выбрали метод простой итерации, который позволяет решить задачу коррекции $x_{i,k}^*$, а тем самым и всю задачу управления полностью децентрализованно. В этом случае алгоритм предельно прост:

1. Всем подсистемам задается желаемая траектория движения $x_{i,k}^*$ (i = 1, 2, ..., m, k = 1, 2, ..., N).

2. Определяются оптимальное управление и оптимальная траектория подсистемы при заданных $x_{i,k}^*$ и $z_{i,k}$.

3. Эта траектория сообщается всем подсистемам и воспринимается как уточненное значение $x_{i,k}^*$.

У задач данного типа (квадратичный критерий при линейных ограничениях) повторение 2-го и 3-го действий приводит к решению исходной задачи (6)—(8). Отметим, что при решении конкретных задач управления начальная траектория $x_{i,k}^*$ может быть задана довольно точно, поскольку ее физическое содержание известно заранее. Определение же оптимального управления подсистемами можно осуществить известными методами, например методом динамического программирования или методом дискретного принципа максимума.

Решение задачи управления подсистемой

Модифицируем функционал (2) и перепишем (опуская индекс) составляющую *i*-й подсистемы в виде

$$\bar{J} = \frac{1}{2} \sum_{k=1}^{N} \left\{ \left(x_{k-1} - \frac{c}{1+c} x_{k-1}^{*} \right)' (1+c) C \left(x_{k-1} - \frac{c}{1+c} x_{k-1}^{*} \right) + u'_{k-1} D u_{k-1} + x_{k-1}^{*\prime} \left(c - \frac{c^{2}}{1+c} \right) C x_{k-1}^{*} \right\}$$

или, обозначив $y_k = \frac{c}{1+c} x_k^*$, Q = (1+c)C и опустив независящие от u_k члены, в виде

$$\bar{J} = \frac{1}{2} \sum_{k=1}^{N} \{ (x_{k-1} - y_{k-1})' Q (x_{k-1} - y_{k-1}) + u'_{k-1} D u_{k-1} \}.$$
(10)

Уравнение подсистемы запишется как

$$x_{k} = A x_{k-1} + u_{k-1} + z_{k-1}, \quad k = 1, 2, \dots, N.$$
(11)

Начальное состояние x_0 , а также y_h и z_h заданы, управление u_h . свободно.

Определим управление $u_k (k = 0, 1, ..., N-1)$, минимизирующее функционал (10) при ограничении (11), методом дискретного принципа максимума. Решение, при данных условиях, принимает вид

$$u_{k} = -D^{-1}G_{k+1}(S_{k+1}(Ax_{k}+z_{k})+g_{k+1}), \quad k = 0, 1, \dots, N-1.$$
(12)

Матрица S_k определяется из решения уравнения

$$S_k = A'G_{k+1}S_{k+1}A + Q, \quad k = 0, 1, \dots, N-1,$$

при условии $S_N = 0$, где

$$G_{k+1} = (I + S_{k+1}D^{-1})^{-1}$$
.

Составляющая g_k определяется из решения уравнения

$$g_{k} = A'G_{k+1}(g_{k+1}+S_{k+1}z_{k}) - Qy_{k}$$

при $g_N = 0$. Подставив u_k из соотношения (12) в уравнение движения (11), получим оптимальную траекторию подсистемы, которая сообщается остальным подсистемам для вычисления по формуле (4) уточненного значения z_k .

Численный пример

Решим задачу (1)—(2), взяв dim x = 10, для различных значений матриц A в $(\hat{1})$. Затем определим по изложенному алгоритму число

11

12

И. Рандвеэ

коррекций $x_{i,h}^*$, приняв dim $x_i = 1$, до совпадения с заданной точностью $x_{i,h}^*$ и оптимальной траектории при нескольких начальных $x_{i,h}^*$.

В качестве иллюстрации результатов расчета на рис. 1 приведено число коррекций S начиная с приближений L1 — L4 до совпадения $x^*_{i,k}$ с оптимальной траекторией. Точность — два знака после запятой. Сравниваются две системы: несвязанная (числа в скобках) и сильносвязанная [4], имеющие примерно одинаковые оптимальные траектории. Данные расчета: $a_i = 0.14$ (0.99); $a_{ij} = 0.09$ (0.00); $x_{i,0} =$ $= 80; d_i = 2,0; c_i = 0,5;$ $d_{ij} = c_{ij} = 0$ (*i*, *j* = 1, 2, ..., 10; $i \neq j$; c = 3, N = 26.

Рис. 2 иллюстрирует уменьшение среднеквадратичного рассогласования траекторий сильносвязанной подсистемы в зависимости от числа коррекций S = 1, 2, Кривая А характеризует приближение X начиная с L4 к оптимальной траектории задачи (1)-(2). Кривая В показывает уменьшение рассогласования между оптимальной траекторией и траек. торией, полученной реализацией на системе (1) управления, определенного по предложенному алгоритму с точностью до одной, двух и болсе итераций.

Заключение

Главное достоинство предложенного алгоритма состоит в том, что при его использовании не требуется централизованной обработки ин-

формации. Задача оптимального управления системой большой размерности решается по частям, а частные задачи определяются известными методами на ЭВМ, установленных в подсистемах.

Число итераций, необходимое для достижения заданной точности, возрастает по мере того, как взаимосвязь подсистем становится сильнее, а точность задания начальной траектории движения — слабее (рис. 1). Несмотря на сильную взаимосвязь подсистем, итерационный процесс коррекции х* сходится весьма быстро (рис. 2, кривая А). Реализация управления на объекте приводит к траектории движения, почти неотличимой от оптимальной (рис. 2, кривая В).

Управление большой взаимосвязанной системой можно организовать и в реальном времени. В этом случае необходимая точность зададолжна обеспечиваться знанием физического содержания НИЯ траектории движения подсистем.

ЛИТЕРАТУРА

Optimization methods for large scale systems, New York, 1971, pp. 164—167.
 Рандвеэ И., Изв. АН ЭССР, Физ. Матем., 12, 54 (1972).
 Singh, M. G., Preprints of IFAC-IFORS symp. on optimization methods applied aspects, Varna, Oct. 1974, pp. 145—154.
 Milne, R., Internat. J. Control., 2, No. 4, 171 (1965).

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 15/XII 1976

I. RANDVEE

SEOSTATUD ALAMSÜSTEEMIDE DETSENTRALISEERITUD JUHTIMISE ALGORITM

Esitatud lineaarse, ajas diskreetse süsteemi detsentraliseeritud juhtimise algoritm põhineb I. D. Pearsoni optimeerimismeetodil, milles alamsüsteemide soovitud trajektoori korrigeerimiseks on kasutatud lihtsat iteratsiooniprotsessi.

I. RANDVEE

CONTROL ALGORITHM FOR INTERCONNECTED SUBSYSTEMS

A simple algorithm for decentralized linear quadratic control of interconnected timediscrete subsystems is suggested. The approach is the pseudo-model coordination method of I. D. Pearson with desired trajectory, equal to the subsystem solution in previous iteration.