EESTI NSV TEADUSTE AKADEEMIA TOIMETISED, 27. KÖIDE FÜÜSIKA * MATEMAATIKA. 1978, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 27 ФИЗИКА * МАТЕМАТИКА. 1978, № 1

https://doi.org/10.3176/phys.math.1978.1.10

УДК 621.314.263.001.5

Тийу САККОС

СТАЦИОНАРНЫЕ ПРОЦЕССЫ В ТРАНСФОРМАТОРНОМ РЕГУЛЯТОРЕ ПЕРЕМЕННОГО ТОКА УДВОЕННОЙ ЧАСТОТЫ

В [^{1, 2}] при анализе трансформаторного регулятора тока на базе двухтактного магнитного удвоителя частоты (ДМУЧ) последовательного типа отмечалось, что его существенным недостатком является относительно большая требуемая мощность цепи подмагничивания. В [³] описывалась схема ДМУЧ с самоподмагничиванием, в которой в идеализированном случае, благодаря включению в выходную цепь вентилей, мощность цепи независимого подмагничивания приближается к нулю и которая служит источником стабилизированного напряжения.

В новой схеме ДМУЧ (рис. 1) [⁴] сочетаются положительные свойства обеих исходных схем: малая мощность цепи независимого подмагничивания и возможность управления уровнем выходного тока, что имеет большое практическое значение. Поэтому в настоящей работе подробно анализируются стационарные процессы в усовершенствованной схеме. Знание этих процессов позволит более рационально проектировать соответствующие устройства.

Рассмотрим новую схему при ее работе на активную нагрузку при двухфазном напряжении питания: $u_{11} = U_{1m} \sin \omega t$ и $u_{12} =$ $= U_{1m} \cos \omega t$, причем $U_{1m} \leq$ $\leqslant 2\Phi_s w_1 \omega$ (Φ_s — магнитный понасыщения сердечников). TOK Дополнительно предположим, что сердечники имеют прямоугольные характеристики намагничивания, вентили в выходной цепи идеальные и индуктивность дросселя L в выходной цепи настолько велика, что гармониками тока, кратными четырем, можно пренебречь.

При таких условиях в работе ДМУЧ в зависимости от величины сопротивления нагрузки при фиксированном значении тока подмагничивания возможны в принципе следующие состояния

Тийу Саккос

				Таола	uya I
r ₂	Интервал		Номера сердечнико		KOB
			II	III	IV
<i>г</i> ₂ ≥ <i>г</i> _{2кр} (Рнс. 2)	$ \begin{array}{c} 0 \leqslant \omega t \leqslant \pi/2 \\ \pi/2 \leqslant \omega t \leqslant \pi \\ \pi \leqslant \omega t \leqslant 3\pi/2 \\ 3\pi/2 \leqslant \omega t \leqslant 2\pi \end{array} $	0 1 1 0	1 0 0 1	1 1 0 0	0 0 1 1
<i>r</i> ′ _{2кр} <i>≤r</i> ₂ <i>≤r</i> _{2кр} (Рис. 3)	$0 \leqslant \omega t \leqslant \beta$ $\beta \leqslant \omega t \leqslant \gamma$ $\gamma \leqslant \omega t \leqslant \pi/2$ $\pi/2 \leqslant \omega t \leqslant \pi/2 + \beta$ $\pi/2 + \beta \leqslant \omega t \leqslant \pi/2 + \gamma$ $\pi/2 + \gamma \leqslant \omega t \leqslant \pi$ $\pi \leqslant \omega t \leqslant \pi + \beta$ $\pi + \beta \leqslant \omega t \leqslant \pi + \gamma$ $\pi + \gamma \leqslant \omega t \leqslant 3\pi/2$ $3\pi/2 + \beta \leqslant \omega t \leqslant 3\pi/2 + \gamma$ $3\pi/2 + \gamma \leqslant \omega t \leqslant 2\pi$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\$	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 1\\ 1\\ 1\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \end{array}$
<i>г</i> ₂п≪ <i>г</i> ₂≪ <i>г′</i> ₂кр (Рис. 4)	$a \leqslant \omega t \leqslant \beta$ $\beta \leqslant \omega t \leqslant \pi/2 + a$ $\pi/2 + a \leqslant \omega t \leqslant \pi/2 + \beta$ $\pi/2 + \beta \leqslant \omega t \leqslant \pi + a$ $\pi + a \leqslant \omega t \leqslant \pi + \beta$ $\pi + \beta \leqslant \omega t \leqslant 3\pi/2 + a$ $3\pi/2 + a \leqslant \omega t \leqslant 2\pi + a$	0 0 1 1 1 1 0 0 0	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \end{array}$
0≪ <i>г</i> ₂≪ <i>г</i> ₂п (Рис. 5)	$a \leqslant \omega t \leqslant \pi/2 + a$ $\pi/2 + a \leqslant \omega t \leqslant \pi + a$ $\pi + a \leqslant \omega t \leqslant 3\pi/2 + a$ $3\pi/2 + a \leqslant \omega t \leqslant 2\pi + a$	0 1 0 0	0 0 0 1	1 0 0	0 0 1 0

сердечников: а) один сердечник насыщен, три остальных не насыщены; б) два сердечника насыщены, два не насыщены; в) три сердечника насыщены, один не насыщен; г) все сердечники насыщены; д) все сердечники не насыщены. Последние три режима в этой схеме практически не реализуются [1].

Обозначим насыщенное состояние сердечника цифрой «1» и ненасыщенное — цифрой «0». Тогда в зависимости от величины сопротивления нагрузки r₂ при неизменном токе подмагничивания I₀ состояния сердечников будут чередоваться согласно табл. 1.

Исходные уравнения, записанные на основе законов Кирхгофа и закона полного тока, имеют вид

$$e_{11} - e_{12} = -U_{1m} \sin \omega t,$$

$$e_{13} - e_{14} = -U_{1m} \cos \omega t,$$

$$e_{21} + e_{22} + e'_{21} + e'_{22} - e'_{23} - e'_{24} = i_2 r_2 + 0.5 u_L,$$

$$e_{23} + e_{24} - e'_{21} - e'_{22} + e'_{23} + e'_{24} = -i_2 r_2 + 0.5 u_L,$$

(1)

$$\sum F_{I} = i_{11}w_{1} + I_{0}w_{0} + i_{21}w_{2} + i_{2}w'_{2} = \oint_{l_{I}} H_{I} dl,$$

$$\sum F_{II} = -i_{11}w_{1} + I_{0}w_{0} + i_{21}w_{2} + i_{2}w'_{2} = \oint_{l_{II}} H_{II} dl,$$

$$\sum F_{III} = i_{12}w_{1} + I_{0}w_{0} + i_{22}w_{2} - i_{2}w'_{2} = \oint_{l_{III}} H_{III} dl,$$

$$\sum F_{IV} = -i_{12}w_{1} + I_{0}w_{0} + i_{22}w_{2} - i_{2}w'_{2} = \oint_{l_{IV}} H_{IV} dl,$$

$$\sum F_{L} = i_{21} + i_{22} = \oint_{l} H dl,$$

$$i_{2} = i_{21} - i_{22},$$

причем $e_{21} = K_2 e_{11}$, $e_{22} = K_2 e_{12}$, $e_{23} = K_2 e_{13}$, $e_{24} = K_2 e_{14}$, $e'_{21} = K'_2 e_{41}$, $e'_{22} = K'_2 e_{12}$, $e'_{23} = K'_2 e_{13}$, $e'_{24} = K'_2 e_{14}$ и коэффициенты трансформации $K_2 = w_2/w_1$, $K_2' = w_2'/w_1$ и $K_0 = w_0/w_1$.

При решении исходной системы уравнений для отдельных состояний ДМУЧ имеем в виду, что в силу принятых предположений вентили B_1 и B_2 на рис. 1 входят в контур, содержащий только источники э.д.с. и индуктивность дросселя *L*. Согласно определению [⁵], они относятся к вентилям первой группы, которые по отношению к переменной составляющей тока можно заменить проводниками, поскольку при обходе этого контура все вентили имеют одинаковое направление. При этом работа получившейся схемы будет отличаться от работы исходной схемы лишь появлением в контуре в установившемся режиме постоянной составляющей тока, равной максимальному значению тока в контуре при закороченных вентилях. Это вытекает из анализа процесса включения rL-цепи, содержащей идеальный вентиль, на периодическое напряжение при $r \rightarrow 0$.

Таким образом,

 $i_{21} = i_{21-} + i_{21}$ (2)

 $i_{22} = i_{22-} + i_{22},$ (3)

где i_{21-} и i_{22-} — постоянные составляющие токов в выходных цепях первого и второго элементарных МУЧ (рис. 1); i_{21-} и i_{22-} — переменные составляющие соответствующих токов.

Согласно вышесказанному и выбранному направлению вентилей,

$$i_{21} = i_{22} = \frac{1}{2} I_{21m} = \frac{1}{2} I_{22m},$$
 (4)

где I_{21m} и I_{22m} — максимальные значения переменных составляющих тока в параллельных ветвях выходной цепи.

Для переменных составляющих по первому закону Кирхгофа имеем

$$i_{21\sim} = -i_{22\sim} = \frac{1}{2}i_2.$$
 (5)

И

_	A State of the second	The second s
	1	Состояние
Вели	0110	1010
e11	$-U_{1m}\sin\omega t$	0
e ₁₂	0	$U_{im}\sin\omega t$
e ₁₃	0	0
e ₁₄	$U_{im} \cos \omega t$	$U_{im} \cos \omega t$
u _L	$\sqrt{2}U_{1m}K_2\cos\left(\omega t+\frac{\pi}{4}\right)$	$\sqrt{2}U_{1m}K_2\sin\left(\omega t+\frac{\pi}{4}\right)$
i11	$-\frac{\sqrt{2}}{4}\frac{U_{1m}}{r_2}K\left[K_2-K\sin\left(\omega t+\frac{\pi}{4}\right)\right]-K_0I_0$	$\frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K \left[K_2 - K \cos\left(\omega t + \frac{\pi}{4}\right) \right] + K_0 I$
i ₁₂	$\frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K \left[K_2 + K \sin\left(\omega t + \frac{\pi}{4}\right) \right] + K_0 I_0$	$\frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K \left[K_2 + K \cos\left(\omega t + \frac{\pi}{4}\right) \right] + K_0 I$
i ₂₁	$\frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K \left[1 - \sin\left(\omega t + \frac{\pi}{4}\right) \right]$	$\frac{\sqrt{2}}{4}\frac{U_{1m}}{r_2}K\left[1-\cos\left(\omega t+\frac{\pi}{4}\right)\right]$
i ₂₂	$\frac{\sqrt{2}}{4} \frac{U_{4m}}{r_2} K \left[1 + \sin\left(\omega t + \frac{\pi}{4}\right) \right]$	$\frac{\sqrt{2}}{4}\frac{U_{4m}}{r_2}K\left[1+\cos\left(\omega t+\frac{\pi}{4}\right)\right]$
i_2	$-\frac{\sqrt{2}}{2}\frac{U_{1m}}{r_2}K\sin\left(\omega t+\frac{\pi}{4}\right)$	$-\frac{\sqrt{2}}{2}\frac{U_{1m}}{r_2}K\cos\left(\omega t+\frac{\pi}{4}\right)$

Учитывая, что для ненасыщенного сердечника $\sum F = \oint_{l} H dl = 0$ и для насыщенного $e = -d\Psi/dt = 0$, и принимая $K = K_2 + 2K_2'$, из решения системы уравнений (1) с учетом табл. 1 получим приведенные в табл. 2 и 3 уравнения напряжений, э. д. с. и токов для различных состояний ДМУЧ.

На основе полученных выражений на рис. 2—5 показаны кривые э. д. с., напряжений и токов, а также кривые изменения магнитной индукции в сердечниках ДМУЧ.

При r₂ ≥ r_{2кр} ДМУЧ работает в режиме б, причем состояния сердечников меняются через каждый полупериод напряжения питания (рис. 2). В этом режиме постоянные составляющие токов параллельных ветвей имеют вид

$$i_{21} = i_{22} = \frac{1}{2} |I_{2m}| = \frac{\sqrt{2}}{4} K \frac{U_{1m}}{r_2}, \qquad (6)$$

88

Таблица 2

сердечников	commentary channel and channel when
1001	0101
0	$-U_{1m}\sin\omega t$
$U_{im}\sin\omega t$	0
$-U_{1m}\cos\omega t$	$-U_{1m}\cos\omega t$
0	0
$-\sqrt{2}U_{1m}K_2\cos\left(\omega t+\frac{\pi}{4}\right)$	$-\sqrt{2}U_{1m}K_2\sin\left(\omega t+\frac{\pi}{4}\right)$
$\frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K \left[K_2 + K \sin\left(\omega t + \frac{\pi}{4}\right) \right] + K_0 I_0$	$-\frac{\sqrt{2}}{4}\frac{U_{1m}}{r_2}K\left[K_2+K\cos\left(\omega t+\frac{\pi}{4}\right)\right]-K_0I_0$
$-\frac{\sqrt{2}}{4}\frac{U_{1m}}{r_2}K\left[K_2-K\sin\left(\omega t+\frac{\pi}{4}\right)\right]-K_0I_0$	$-\frac{\sqrt{2}}{4}\frac{U_{1m}}{r_2}K\left[K_2-K\cos\left(\omega t+\frac{\pi}{4}\right)\right]-K_0I_0$
$\frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K \left[1 + \sin\left(\omega t + \frac{\pi}{4}\right) \right]$	$\frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K \left[1 + \cos\left(\omega t + \frac{\pi}{4}\right) \right]$
$\frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K \left[1 - \sin\left(\omega t + \frac{\pi}{4}\right) \right]$	$\frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K \left[1 - \cos\left(\omega t + \frac{\pi}{4}\right) \right]$
$\frac{\sqrt{2}}{2} \frac{U_{1m}}{r} K \sin\left(\omega t + \frac{\pi}{4}\right)$	$\frac{\sqrt{2}}{2}\frac{U_{1m}}{r_2}K\cos\left(\omega t+\frac{\pi}{4}\right)$

где I_{2m} — максимальное значение выходного тока. Для токов первичных цепей i_{11} и i_{12} , а также для параллельных ветвей i_{21} и i_{22} в этом режиме справедливы формулы в табл. 2.

Если же $r_2 < r_{2 \text{кр}}$, то в работе ДМУЧ наряду с режимом б возникает и режим *a* (рис. 3), причем длительность обоих режимов при неизменном токе подмагничивания зависит от величины сопротивления нагрузки r_2 . Так как в режиме *a*, согласно соотношению (4) и табл. 3,

$$i_{21-} = i_{22-} = \frac{K_0}{2K_2'} I_0,$$
 (7)

то выражения токов параллельных ветвей и первичного тока для режима б несколько меняются и принимают вид, показанный в табл. 4.

Для определения граничных значений r_2 , соответствующих переходам от одного режима к другому, рассмотрим работу ДМУЧ при $r'_{2 \mathrm{KP}} \leqslant r_2 \leqslant r_{2 \mathrm{KP}}$. В этом случае режим *а* существует в интервале

Рис. 2.

Рис. 3.

 $\beta \leq \omega t \leq \gamma$ (рис. 3). Зависимость угла β , соответствующего моменту обращения тока i_{11} в нуль, от параметров схемы определяется из уравнения для i_{11} в состоянии 0110 в табл. 4 подстановкой $\omega t = \beta$:

$$3 = \arcsin \frac{\sqrt{2} K_0}{KK'_2} \frac{I_0 r_2}{U_{4m}} - \frac{\pi}{4}.$$
 (8)

Зависимость угла ү, соответствующего моменту окончания режима а, от параметров схемы следует из условия, что среднее за период значение э. д. с. одного сердечника должно равняться нулю. Например, для первого сердечника

$$\frac{1}{2\pi} \int_{\beta}^{2\pi+\beta} e_{11} d\omega t = 0, \qquad (9)$$

откуда

$$\cos\left(\gamma + \frac{\pi}{4}\right) - \cos\left(\beta + \frac{\pi}{4}\right) = (\beta - \gamma)\sin\left(\beta + \frac{\pi}{4}\right). \tag{10}$$

С увеличением r_2 продолжительность режима *a* сокращается и начиная с $r_{2 \text{кр}}$ режим *a* в работе ДМУЧ перестает существовать. Если $r_2 = r_{2 \text{кр}}$, то $\beta = \gamma = \pi/4$ (рис. 2) и, согласно выражению (8),

$$r_{2\rm kp} = \frac{\sqrt{2}}{2} \frac{KK'_2}{K_0} \frac{U_{1m}}{I_0}.$$
 (11)

С уменьшением r_2 угол γ увеличивается и при некотором значении $r_2 = r'_{2\kappa p}$ будет $\gamma = \pi/2$ и $\beta = \beta'$. Подстановкой этих значений в формулу (10) получим трансцендентное уравнение для определения β' :

$$\frac{\sqrt{2}}{2} + \cos\left(\beta' + \frac{\pi}{4}\right) = \left(\frac{\pi}{2} - \beta'\right)\sin\left(\beta' + \frac{\pi}{4}\right), \quad (12)$$

откуда $\beta' = 22^{\circ}41'$. Соответствующее граничное сопротивление нагрузки вытекает из (8):

$$r'_{2kp} = \frac{\sqrt{2}}{2} \frac{KK'_2}{K_0} \frac{U_{1m}}{I_0} \sin\left(\beta' + \frac{\pi}{4}\right).$$
(13)

Для случая $r'_{2\kappa p} \leqslant r_{2\kappa p} \leqslant r_{2\pi}$ чередование состояний сердечников определяется углами α н β (рис. 4), причем зависимость $\alpha = f(\beta)$ получается так же, как и зависимость угла γ :

$$\cos\left(\alpha + \frac{\pi}{4}\right) + \cos\left(\beta + \frac{\pi}{4}\right) = \left(\frac{\pi}{2} + \alpha - \beta\right)\sin\left(\beta + \frac{\pi}{4}\right). \tag{14}$$

С уменьшением r_2 угол а увеличивается и угол β уменьшается так, что при некотором значении $r_2 = r_{2\pi} \ \alpha = \beta = \alpha_{\pi}$ и ток нагрузки принимает прямоугольную форму (рнс. 5). Подставив $\alpha = \beta = \alpha_{\pi}$ в формулу (14), получим трансцендентное уравнение для определения граничного угла α_{π} :

$$a_{\pi} = \operatorname{arctg} \frac{4}{\pi} - \frac{\pi}{4} = 6^{\circ} 51'.$$
 (15)

Соответствующее сопротивление нагрузки:

$$r_{2\pi} = \frac{\gamma_2}{2} \frac{KK'_2}{K_0} \frac{U_{1m}}{I_0} \sin\left(\alpha_{\pi} + \frac{\pi}{4}\right).$$
(16)

Тийу Саккос

Ma d.	твующего моленту окончания режи	Зевленновть укан у, соответс
Denn	Constant and an and an and an and an	Состояние
Вели- чина	0010	1000
(0)	(indiateed)	
e _{ii}	$\frac{\sqrt{2}}{2}U_{1m}\cos\left(\omega t + \frac{\pi}{4}\right) - \frac{K_0}{KK'_2}I_0r_2$	0
e ₁₂	$\frac{\sqrt{2}}{2}U_{1m}\sin\left(\omega t+\frac{\pi}{4}\right)-\frac{K_0}{KK'_2}I_0r_2$	$U_{1m}\sin\omega t$
e ₁₃	0	$-\frac{\sqrt{2}}{2} U_{1m} \cos\left(\omega t + \frac{\pi}{4}\right) - \frac{K_0}{KK'_2} I_0 r_2$
e ₁₄	$U_{im} \cos \omega t$	$\frac{\sqrt{2}}{2}U_{1m}\sin\left(\omega t+\frac{\pi}{4}\right)-\frac{K_0}{KK'_2}I_0r_2$
u_L	$2K_2U_{1m}\cos\omega t - 2 \frac{K_2K_0}{KK'_2}I_0r_2$	$2K_2U_{1m}\sin\omega t - 2\cdot\frac{K_2K_0}{KK'_2}I_0r_2$
i11	0	$\frac{KK_0}{K'_2}I_0$
i ₁₂	$\frac{KK_0}{K'_2}I_0$	0
i ₂₁	0	$\frac{K_0}{K'_2}I_0$
i ₂₂	$\frac{K_0}{K'_2}I_0$	0
i_2	$-\frac{K_0}{K_2'}I_0$	$\frac{K_0}{K'_2}I_0$

-04 (1) (1)	са атомнойные казаци. (1 .:	Состояние
вели- чина	0110	1010
чина	0110	1010

$$i_{11} \quad \frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K^2 \sin\left(\omega t + \frac{\pi}{4}\right) - \frac{K_0 K}{2K'_2} I_0 \qquad -\frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K^2 \cos\left(\omega t + \frac{\pi}{4}\right) + \frac{K_0 K}{2K'_2} I_0$$

$$i_{12} \quad \frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K^2 \sin\left(\omega t + \frac{\pi}{4}\right) + \frac{K_0 K}{2K'_2} I_0 \qquad \frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K^2 \cos\left(\omega t + \frac{\pi}{4}\right) + \frac{K_0 K}{2K'_2} I_0$$

$$i_{21} \quad -\frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K \sin\left(\omega t + \frac{\pi}{4}\right) + \frac{K_0}{2K'_2} I_0 \qquad -\frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K \cos\left(\omega t + \frac{\pi}{4}\right) + \frac{K_0}{2K'_2} I_0$$

$$i_{22} \quad \frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K \sin\left(\omega t + \frac{\pi}{4}\right) + \frac{K_0}{2K'_2} I_0 \qquad \frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K \cos\left(\omega t + \frac{\pi}{4}\right) + \frac{K_0}{2K'_2} I_0$$

93

	Таблица 3
сердечников	1.6° (660° 0×620 U U, 100
0001	.0100
HATPHONE HORE A DEALASTA HETER	passing personal particular and personal
$-\frac{\sqrt{2}}{2}U_{1m}\sin\left(\omega t+\frac{\pi}{4}\right)-\frac{K_0}{KK'_2}I_0r_2$	$-U_{1m}\sin\omega t$
$-\frac{\sqrt{2}}{2}U_{1m}\cos\left(\omega t+\frac{\pi}{4}\right)-\frac{K_0}{KK'_2}I_0r_2$	0
$-U_{1m}\cos\omega t$	$-\frac{\sqrt{2}}{2}U_{4m}\sin\left(\omega t+\frac{\pi}{4}\right)-\frac{K_0}{KK'_2}I_0r_2$
0	$\frac{\sqrt{2}}{2}U_{1m}\cos\left(\omega t+\frac{\pi}{4}\right)-\frac{K_0}{KK'_2}I_0r_2$
$-2K_2 U_{1m} \cos \omega t - 2 \frac{K_2 K_0}{K K'_2} I_0 r_2$	$-2K_2U_{1m}\sin\omega t - 2\cdot\frac{K_2K_0}{KK'_2}I_0r_2$
0	$-\frac{KK_0}{K'_2}I_0$
$-\frac{KK_0}{K'_2}I_0$	0
0	$\frac{K_0}{K_0'}I_0$
$\frac{K_0}{K_0}I_0$	0
Ko Ko	$\frac{K_0}{K_0}I_0$
$-\frac{1}{K_2}I_0$	<u>K'2</u>
	Таблица 4
сердечников	
1001	0101
STATICAL PRANSES IN TANSFO	RMERCOUPYT AV ORNATIVE CORRENT
$\frac{\sqrt{2}}{4}\frac{U_{1m}}{r_2}K^2\sin\left(\omega t+\frac{\pi}{4}\right)+\frac{K_0K}{2K'_2}I_0$	$-\frac{\sqrt{2}}{4}\frac{U_{1m}}{r_2}K^2\cos\left(\omega t+\frac{\pi}{4}\right)-\frac{K_0K}{2K'_2}I_0$
$\frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K^2 \sin\left(\omega t + \frac{\pi}{4}\right) - \frac{K_0 K}{2K'_2} I_0$	$\frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K^2 \cos\left(\omega t + \frac{\pi}{4}\right) - \frac{K_0 K}{2K'_2} I_0$
$\frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K \sin\left(\omega t + \frac{\pi}{4}\right) + \frac{K_0}{2K'} I_0$	$\frac{\sqrt{2}}{4} \frac{U_{1m}}{r_2} K \cos\left(\omega t + \frac{\pi}{4}\right) + \frac{K_0}{2K'} I_0$
$-\frac{\sqrt{2}}{4}\frac{U_{1m}}{r_2}K\sin\left(\omega t+\frac{\pi}{4}\right)+\frac{K_0}{2K'_2}I_0$	$-\frac{\sqrt{2}}{4}\frac{U_{1m}}{r_2}K\cos\left(\omega t+\frac{\pi}{4}\right)+\frac{K_0}{2K'_2}I_0$

При дальнейшем уменьшении r_2 в диапазоне $r_{2\pi} \leqslant r_2 \leqslant 0$ прямоугольная форма тока нагрузки сохраняется. Согласно условию, что среднее за период значение э. д. с. одного сердечника должно равняться нулю, зависимость угла α от параметров схемы описывается выражением

$$a = \arccos \cdot \frac{\sqrt{2}\pi}{4} \frac{K_0}{KK'_2} \frac{I_0 r_2}{U_{1m}} - \frac{\pi}{4}.$$
 (17)

В граничном случае при $r_2 = 0$ имеем $\alpha = \pi/4$.

Таким образом, в ДМУЧ в зависимости от величины сопротивления нагрузки можно выделить четыре разных режима работы, отличающиеся наличием и чередованием во времени насыщенных и ненасыщенных состояний сердечников. Выведенные для этих режимов уравнения служат основой для расчета внешних характеристик и характеристик управления ДМУЧ.

ЛИТЕРАТУРА

1. Саккос Т., Изв. АН ЭССР, Физ. Матем., 24, 63 (1975).

- Саккос Т. Ю., В сб.: Цепи преобразования параметров электроэнергии, Тал-2. лин, 1975, с. 113.
- 3. Сарв В., Оявээр М., Саккос Т., Хунт Ю., В сб.: Магнитные преобразова-
- тели электроэрергии с удвоением частоты, Таллин, 1972, с. 368. 4. Лаусмаа Т. М., Пярн Р. Я., Саккос Т. Ю., Сарв В. В., Регулируемый удвоитель частоты, Авт. свид. СССР № 524293, Бюл. изобр., 1976, № 29. 5. Данилов Л. В., Электричество, № 5, 91 (1967).

Институт термофизики и электрофизики Академии наук Эстонской ССР

Поступила в редакцию 31/V 1976

Tiiu SAKKOS

STATSIONAARSED PROTSESSID TRANSFORMATOORSES KAHEKORDISTATUD SAGEDUSEGA VAHELDUVVOOLUREGULAATORIS

Artiklis on analüüsitud täiustatud transformatoorse vahelduvvooluregulaatori tööd eeldusel, et südamike magneetimiskõver on täisnurkne. On tuletatud valemid üksikute ahelate emj., voolude ja pingete arvutamiseks. Teoreetilised tulemused on kooskõlas katseandmetega.

Tiiu SAKKOS

STATIONARY PROCESSES IN TRANSFORMER-COUPLED ALTERNATIVE CURRENT REGULATOR

The author analyzes the operation of the improved transformer-coupled ac regulator in the case of rectangular magnetization curve of the cores. Expressions of electromotive forces, currents and voltages of single circuits are derived.