EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 27. KÕIDE FÜÜSIKA * MATEMAATIKA. 1978, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 27 ФИЗИКА * МАТЕМАТИКА. 1978, № 1

https://doi.org/10.3176/phys.math.1978.1.15

УДК 535.375

К. ХАЛЛЕР, Любовь РЕБАНЕ, Ю. ВЫСОЧАНСКИЙ, В. СЛИВКА

НИЗКОТЕМПЕРАТУРНЫЕ СПЕКТРЫ КОМБИНАЦИОННОГО РАССЕЯНИЯ ПРУСТИТА

K. HALLER, LIUBOV REBANE, J. VOSSOTŠANSKI, V. SLIVKA. PRUSTIIDI KOMBINATSIOON-HAJUMISSPEKTRID MADALATE TEMPERATUURIDE KORRAL

K. HALLER, LYUBOV REBANE, J. VYSSOTCHANSKI, V. SLIVKA. LOW TEMPERATURE RAMAN SPECTRA OF A PROUSTITE CRYSTAL

Разнообразные физические свойства кристалла прустита (Ag₃AsS₃) делают его ценным материалом для квантовой электроники. По данным [1], в области температур от 4,2 до 300 К прустит имеет два фазовых перехода (ФП): I рода при 24 К и II рода при 56 К. Высокотемфаза (T > 56 K) имеет пространственную группу пературная с двумя структурными единицами в элементарной ячейке $C_{3v}^6 \equiv R3c$ [2] (тригональная сингония). Эта фаза изучена разными физическими методами (см., напр., [3-9]), в том числе и методом комбинационного рассеяния (КР) света [^{10, 11}]. Теоретико-групповой анализ нормальных колебаний тригональной фазы показал 19 активных в КР мод $(6A_1 + 13E)$. Проведенное в [¹⁰] рассмотрение симметричных координат единичной ячейки показало, что нормальные колебания 338 см-1 (А1) и 366 см-1 (А1) включают в основном валентное колебание тетраэдра AsS3-, а нормальное колебание 143 см-1 (A1) включает в основном деформационное колебание тетраэдра.

В настоящей работе приведены первые данные о спектрах КР в двух низкотемпературных фазах.

Спектры КР измерены с помощью двойного монохроматора Spex 1402 и детектированием в режиме счета фотонов с последующим накоплением сигнала в многоканальный анализатор. Описание экспериментальной установки приведено в [¹²]. Кристаллы выращивали методом Бриджмена [¹³]. Образец вырезался из кристалла, ориентированного с помощью рентгеноструктурного анализа при комнатной температуре (фаза C_{3v}^6) таким образом, чтобы полярная ось С была перпендикулярна к одной из граней прямоугольного параллелепипеда и лежала в плоскости другой грани.

Возбуждение осуществлялось лазерными линиями 6328 Å (He—Ne), 6471 и 6764 Å (Kr) с мощностью до 50 *мвт* в линии. Ввиду сильного температурного сдвига края собственного поглощения прустита [⁴] линия 6764 Å использовалась при комнатной температуре, а коротковолновые линии — при низких температурах. Если не считать слабого эффекта реабсорбции, спектр КР не зависел от частоты возбуждения. Измере-

Спектры КР кристалла прустита (при параллельной (a) и перпендикулярной (б) поляризациях) в трех фазах при температурах 5 (1), 36 (2) и 100 К (3) (ширина щели 0,65; 1,2 и 1,2 с m^{-1} соответственно). Интенсивности всех спектров приведены в сравнимом масштабе (для наиболее сильных линий масштаб уменьшен в 10 раз, а масштаб спектра 1, б увеличен в 10 раз).

ния проводились в области температур от 4,2 до 300 К в криостате типа УТРЕКС, где температура поддерживалась с точностью не хуже 0,05 град.

На рисунке показаны спектры КР при температурах 100, 36 и 5 К, что соответствует трем разным фазам. Две геометрии эксперимента $\| [x(zz)y]$ и $\bot [x(zx)y]$ обозначены исходя из тригональной фазы (проявляются A_1 (TO) и E(LO + TO) моды соответственно). В таблице собраны положения всех зарегистрированных максимумов.

Измеренный при 100 К спектр КР тригональной фазы (спектр 3 на рисунке) в основном совпадает с приведенным в [10]. Дополнительно наблюдаются полосы при 21 (E) и $35(E) \ cm^{-1}$ и на месте полосы 275(E) $\ cm^{-1}$ размещается дублет. В результате число наблюдаемых полос ($6A_1 + 16E$) превышает предсказанное на основе теоретико-группового анализа.

Переход к низкотемпературным фазам сопровождается увеличением

T = 5 K	T = 36 K	T = 100 K
1 1 4		
18 сл* 18 сл 21 ср** 21 ср 26 " 26 " — 31 сл	21 cp 27 c	21 c 26 "
35 , 35 , 38 , 38 , 39 , 39 , 47 , 47 cp 49 , 49 ,	38 с 37 сл — 44 " — 50 "	37 c 37 cp
54 сл 54 " 56 " 56 " — 65 " 69 ср 69 " 102 " 102 сл — 107 "	65 сл 64 " 69 " 67 ср 102 " 102 сл	68 "
119 сл 119 " 121 " 121 ср 144 с*** 144 сл 192 " 192 с 221 ср 221 ср	120 " 120 " 142 c 142 " 192 " 192 cp	143 ,, 143 cp 192 ,, 196 ,,
229 сл 229 сл 229 сл 238 " 238 " 269 ср 269 " 273 " 273 " 281 " 281 "	<u>— 226 сл</u> <u>— —</u> — 273 ср 283 " 281 "	232 ,, 282 c 280 ,,
295 ,	340 с 346 ср 350 " 350 сл	
367 " 367 " 376 c 376 "	— 365 с 374 с 374 ср	367 c 367 c - 374 "

Положения линий (± 1) в спектре КР кристалла прустита при температурах 5, 36 и 100 К при параллельной (\parallel) и перпендикулярной (\pm) геометриях эксперимента, см⁻¹

*сл — слабая линия, **ср — средняя линия, ***с — сильная линия.

числа линий и уменьшением интенсивности линий перпендикулярной поляризации. При переходе в самую низкотемпературную фазу интенсивность спектра перпендикулярной поляризации, за исключением области 330—380 см⁻¹ валентных колебаний AsS³⁻₃, падает на порядок

(ср. спектры а и б) без заметного перераспределения интенсивности. ФП II рода сопровождается изменениями в спектре КР (ср. спектры 2 и 3, а и б). В спектре параллельной поляризации вместо полосы 338 см⁻¹ появился дублет 340 и 350 см⁻¹. В результате сужения интенсивной полосы 38 см⁻¹ стали видны две слабые полосы 64 и 67 см⁻¹. Интенсивная полоса 282 см⁻¹ не испытала сужения и приняла сложный неэлементарный контур. Полосы 102 и 120 см⁻¹ приобрели слабую параллельную составляющую, которая в низкотемпературной фазе еще усиливается. В перпендикулярной поляризации помимо общего ослабления интенсивности сильно ослабляется полоса 50 см⁻¹.

При ФП I рода в низкотемпературной фазе (спектры 1, а и б) появляются 8 новых полос и 7 полос испытывают дублетное расщепление (см. таблицу). Следует отметить, что в низкотемпературной фазе большинство колебаний проявляются как в параллельной, так и в перпендикулярной составляющих. «Чисто» перпендикулярную поляризацию имеют только три полосы 31, 65 и 107 см⁻¹.

Интересно проследить за изменением полос, которым в высокотемпературной фазе соответствуют внутренние колебания тетраэдра AsS3-.

Полосы 143 и 376 см⁻¹, обусловленные, соответственно, полносимметричным валентным и деформационным колебаниями, не претерпевают изменений при двух ФП, а испытывают лишь нормальное температурное сужение и сдвиг. Полосы 344 и 351 см-1 в высокотемпературной фазе, в которые дают вклад валентные Е-колебания тетраэдра, мало изменяются в промежуточной фазе и подвергаются в низкотемпературной фазе расщеплению на 4 см-1. Поведение полос внутренних колебаний показывает, что ФП мало искажают группу тетраэдра, а также не увеличивают числа групп Ag₃AsS₃ в элементарной ячейке. Резкое увеличение числа линий в низкотемпературной фазе может быть обусловлено снятием вырождения колебаний, а также появлением ранее неактивных колебаний А2, вызванное понижением симметрии решетки.

ЛИТЕРАТУРА

- 1. Байса Д. Ф., Бондарь А. В., Рез И. С., Абезгауз А. И., УФЖ, 18, № 9, 1550 (1973).
- 2. Harker, D., J. Chem. Phys., 9, 381 (1936).
- Беляев А. Д., Байса Д. Ф., Бондарь А. В., Мачулин В. Ф., Мисе-люк Е. Г., УФЖ, 20, № 10, 1744 (1975).
- 4. Довгий Я. О., Мороз Е. Г., Коралышин В. Н., Буцко Н. Н., УФЖ, 17, № 5, 766 (1972).
- 17, № 5, № 6 (19/2).
 Warker, J., J. Phys. D, ser. 2, 1, № 7, 949 (1968).
 Гурзан М. И., Головей М. И., Пуга Г. Д., Борец А. Н., Туряница И. Д., Чепур Д. В., Бондар М. П., УФЖ, 18, № 2, 274 (1973).
 Новик В. К., Дрождин С. Н., Попова Т. В., Копцик В. А., Гаври-лова Н. Д., ФТТ, 17, № 12, 3499 (1975).
 Наппа, D. С., Тигпег, А. J., Opt. and Quant. Electronics, 8, 213 (1976).
 Бредихин В. И., Генкин В. Н., Соустов Л. В., Квант. электроника, 3, № 4, 751 (1976).

- № 4, 751 (1976).
- 10. Byer, H. H., Bobb, L. C., Lefkowitz, I., Deaver, B. S., Ferroelectrics, 5, 207 (1973).
- 11. Riccius, H. D., Carey, P. R., Siimann, O., phys. stat. sol. (b) 72, K99 (1975).
- Ребане Л. А., Хальдре Т. Ю., Новик А. Е., Гороховский А. А., ФТТ, 15, № 11, 3188 (1973).
- Holovey, M. I., Olexeyk, I. D., Curzan, M. I., Rez, I. S., Panyko, V. V., Vorochilov, Yu. V., Rigan, M. Yu., Canegev, I. G., Bogdano-va, A. V., Kristall und Technik, 6, N 5, 631 (1971).

Институт физики Академии наук Эстонской ССР Поступила в редакцию 20/X 1977