LÜHIUURIMUSI * КРАТКИЕ СООБЩЕНИЯ

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED, 26. KÕIDE FÜÜSIKA * MATEMAATIKA. 1977, NR. 1

> ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 26 ФИЗИКА * МАТЕМАТИКА. 1977, № 1

> > УДК 519.217

Галина ПРИСТАВКО

ОПТИМАЛЬНАЯ ОСТАНОВКА МАРКОВСКИХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ С ВЫБОРОМ МОМЕНТОВ НАБЛЮДЕНИЙ

GALINA PRISTAVKO.MARKOVI JADADE OPTIMAALSEST PEATAMISEST VAATLUSMOMENTIDE
VALIKU ALUSELGALINA PRISTAVKO.ON OPTIMAL STOPPING OF MARKOV SEQUENCES WITH CHOOSING
OBSERVATION MOMENTS

На фиксированном измеримом пространстве (Ω, \mathfrak{F}) рассматривается однородная марковская цепь $X = (x_n, \mathfrak{F}_n, \mathbf{P}_x), n = 0, 1, \ldots, N$, со значениями в фазовом пространстве (E, \mathfrak{B}) . Пусть \mathfrak{M}_N — класс марковских моментов τ (относительно семейства $\{\mathfrak{F}_n\}$) со значениями во множестве $\{0, 1, \ldots, N\}$ и g = g(x) — борелевская функция, $-\infty < g(x) \leq +\infty$, удовлетворяющая условиям $\mathbf{M}_x |g(x_n)| < \infty$, $n \leq N, x \in E$. С каждой такой функцией g(x) и марковским моментом τ свяжем функцию $g(x_\tau)$ (полагая по определению $g(x_\tau)$ равным $g(x_n)$ на множестве $\{\tau = n\}$), которую будем интерпретировать как выигрыш, получаемый в состоянии x_τ при остановке наблюдений в момент τ . Естественно тогда $\mathbf{M}_x g(x_\tau)$ назвать средним выигрышем, соответствующим начальному состоянию x и выбранному моменту τ .

В теории оптимальных правил остановки [1] подробно изучен вопрос о структуре «цены» $s_N(x) = \sup_{\tau \in \mathfrak{M}_N} M_x g(x_\tau)$ и способах отыска-

ния оптимальных моментов τ_N . Существенно при этом, что наблюдения (до момента остановки) осуществляются «подряд» и это отражено в требовании «марковости» момента τ (т. е. событие { $\tau = n$ } $\in \mathfrak{F}_n$ при всех $n \leq N$).

В настоящей работе рассмотрено обобщение этой задачи, состоящее в том, что наблюдать цепь X разрешается не во все моменты времени, а лишь в K моментах ($K \leq N$), выбор которых принадлежит наблюдателю.

Пусть τ_l^h — момент *l*-го наблюдения и τ^h — момент остановки $(\tau_0^h = 0, \tau_1^k \leq \tau_2^h \leq \ldots \leq \tau_l^k \leq \tau^h \leq N)$. Будем предполагать, что момент τ_l^h измерим относительно о-алгебры $\sigma(x_1^k, \ldots, x_{\tau_{l-1}^k})$, а момент τ^h — относительно $\sigma(x_{\tau_1^k}, \ldots, x_{\tau_l^k})$.

Иначе говоря, выбор момента для последующего наблюдения и остановки определяется лишь значениями наблюдений в предшествующие моменты.

Пусть $s_N^k(x) = \sup M_x g(x_{\tau^k})$, где супремум берется по всем последовательностям ($\tau_1^k, \ldots, \tau_k^k, \tau^k$), $\sigma_l^k = \tau_l^k - \tau_{l-1}^k$, $\sigma_l^k = \tau^k - \tau_k^k, \sigma_0^k = 0$. Теорема 1. (1) Имеют место следующие рекуррентные соотношения:

 $s_{N}^{k}(x) = \max_{0 \leqslant n \leqslant N} \mathbf{M}_{x}^{k-1}(x), k = 1, 2, \dots, K, \ e \partial e \ s_{N}^{0}(x) = \max_{0 \leqslant n \leqslant N} \mathbf{M}_{x}g(x_{n}).$ (2) Оптимальные моменты $\sigma_{1}^{k}, \dots, \sigma_{k}^{k}$ и $\sigma^{k} = \sigma_{k+1}^{k}$ определяются из соотношений

$$\sum_{l=1}^{k} = \min\{\sigma_{l-1}^{k} \leqslant n \leqslant N : \mathbf{M}_{x_{\sigma_{l-1}^{k}}} s_{N-n}^{k-l}(x_{n}) = s_{N-\sigma_{l-1}^{k}}^{k-(l-1)}(x_{\sigma_{l-1}^{k}})\}, \\ l = 1, 2, \dots, k.$$

 $npu \text{ этом } \sigma^0 = \min \{ 0 \leq n \leq N : \mathbf{M}_x g(x_n) = s_N^0(x) \}.$

Наряду с ценами $s_N^k(x)$ введем цены $s^k(x) = \sup M_x g(x_{\tau}^k)$, где супремум берется по всем последовательностям $(\tau_1^k, \ldots, \tau_k^k, \tau^k)$ таким, что $\tau_l^k(\omega) < \infty$, $\tau^k(\omega) < \infty$.

Теорема 2. Пусть $M_x [\sup |g(x_n)|] < \infty$, $x \in E$. Тогда

$$\lim_{N\to\infty} s_N^h(x) = s^h(x) \quad u \quad \lim_{h\to\infty} s^h(x) = s(x).$$

Если множество *Е* — конечно, можно дать оценку скорости сходимости. Именно, имеет место следующая

Теорема 3. Пусть множество Е конечно, $|g(x)| < \infty$. Тогда существует $0 \le \lambda < 1$ такое, что для достаточно больших $k |s^k(x) - s(x)| \le \lambda^k$.

ЛИТЕРАТУРА

1. Ширяев А. Н., Статистический последовательный анализ, М., 1969.

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 16/IV 1976