ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 23 ФИЗИКА * МАТЕМАТИКА. 1974, № 1

https://doi.org/10.3176/phys.math.1974.1.02

УДК 517.946

Элеонора ЯРВ

СВОЙСТВА ФУНКЦИОНАЛА С ЧЕБЫШЕВСКОЙ УСТОЙЧИВОСТЬЮ

В работе изучаются следующие свойства функционала $F = (u_i)_0^{\infty}$, обладающего чебышевской устойчивостью: 1) асимптотическое поведение u_n ; 2) последовательность $(u_i)_0^{\infty}$ является последовательностью с минимальной длиной чебышевского критического интервала для каждого частичного отрезка $(u_i)_0^n$ начиная с n = 2.

Линейный функционал F_n в пространстве алгебраических полиномов $\{P_n(x)\}$ степени не выше *n* с равномерной метрикой будем задавать в форме $F_n = (u_k)_0^n$, положив $F_n(x^k) = u_k$ (k = 0, ..., n).

в форме F_n = (µ_k)ⁿ₀, положив F_n(x^k) = µ_k (k = 0, ..., n).
Заданный в такой форме функционал будем называть (согласно [¹],
с. 24) отрезком-функционалом и иногда отрезком, а числа µ_k (k = 0, ..., n) его параметрами.

Полином $Q_n(x)$ ($||Q_n|| = 1$) будем называть экстремальным или обслуживающим функционал F_n , если $F_n(Q_n) = +N_n$, где N_n — норма F_n , а точки $0 \le \sigma_i \le 1$ (i = 1, ..., s), в которых $|Q_n(\sigma_i)| = 1$, его узлами.

Паспортом полинома $Q_n(x)$ ($||Q_n|| = 1$) назовем ([1], с. 74) тройку чисел [*n*, *s*, *p*], где *n* — степень $Q_n(x)$, *s* — число его узлов, *p* — число повторений на [0, 1], причем повторением называем факт, когда двум соседним узлам σ_i соответствуют одинаковые знаки отклонений.

Если отрезок-функционал $(\mu_k)_0^n$ ([1], с. 26 и 38) имеет экстремальный полином $Q_n(x)$ степени $n \ge 1$, то $\mu_k = \sum_{i=1}^s \delta_i \sigma_i^k$ (k = 0, ..., n),

где $(\sigma_i)_1^s$ есть узлы полинома $Q_n(x)$. Такую структуру назовем узловой, а числа $(\delta_i)_1^s$ — нагрузками узлов полинома $Q_n(x)$. Средн чисел $(\delta_i)_1^s$ могут сказаться и нули. Те из узлов σ_i , у которых $\sigma_i \neq 0$, назовем нагруженными.

Паспортом отрезка (µ_i)₀ⁿ ([¹], с. 74) назовем тройку чисел [n, s, p], где n — степень его экстремального полинома, s — число нагруженных узлов этого полинома, p — число повторений на [0, 1].

Каков бы ни был отрезок-функционал $(\mu_i)_0^{n-1} = 0_0, \ldots, 0_{n-1}$ ([1], c. 47), существуют два числа $\mu'_n < \mu''_n$ таких, что отрезок $(\mu_i)_0^n = \mu_0, \ldots, \mu_{n-1}, \mu_n$ а) при $\mu_n \ge \mu''_n$ обслуживается полиномом Чебышева $+T_n(x) = \cos n \arccos (2x - 1)$ и не обслуживается им ни при каком значении $\mu_n < \mu''_n$;

б) при $\mu_n \leq \mu'_n$ обслуживается полиномом Чебышева $-T_n(x)$ и не обслуживается им ни при каком значении $\mu_n > \mu'_n$.

Интервал (μ'_n, μ''_n) называется чебышевским критическим интервалом отрезка, имеющего базис (μ_i) $_0^{n-1}$, для *n*-го параметра. Устойчивым функционалом $F_n = \mu_0(\Theta), \ldots, \mu_n(\Theta)$ ([¹], с. 164)

Устойчивым функционалом $F_n = \mu_0(\Theta), \ldots, \mu_n(\Theta)$ ([1], с. 164) будем называть такой отрезок-функционал с переменным параметром Θ , который в области изменения параметра обслуживается, помимо полиномов Чебышева $\pm T_n(x)$, только полиномами одного постоянного паспорта. Отрезок-функционал $F_n = \alpha_0, \ldots, \alpha_{n-1}, \alpha_n + \Theta$ с переменным n параметром, который при $-\infty < \Theta < \infty$ не имест, помимо полиномов Чебышева $\pm T_n(x)$, никаких других экстремальных полиномов степени $n \ge 1$, называется отрезком-функционалом с чебышевской устойчивостью. В [2] и [3] нами установлено, что существует единственный (с точностью до множителя) функционал $F = (u_i)_0^{\infty}$ с чебышевской устойчивостью, т. е. такой функционал F на $C_{[0,4]}$, у которого каждый частичный отрезок $F_n = (u_i)_0^n$ обладает свойством чебышевской устойчивости.

В [2] и [3] дана также конструкция этого функционала

$$u_n = \frac{1}{n} \left(\sum_{i=1}^{n-1} \tau_{i,n}^n + \frac{1}{2} \right), \tag{1}$$

где $(\tau_{i,n})_0^n$ — узлы полинома Чебышева $T_n(x) = \cos n \arccos (2x - 1)$ и доказано, что длина чебышевского критического интервала для *n*-го параметра отрезка $F_n = (u_i)_0^n$ вычисляется по формуле

$$L_n = \frac{1}{2^{2n-2}}.$$
 (2)

В данной статье займемся изучением свойств функционала $F = (u_i)_0^{\infty}$.

Теорема 1.
$$u_n = \frac{1}{n} \left(\sum_{i=1}^{n-1} \tau_{i,n}^n + \frac{1}{2} \right)$$
 есть бесконечно малая, имею-
щая порядок малости $\frac{1}{\sqrt{n}}$.

Доказательство. Обозначим при $n = \text{const } \Phi_n = \sum_{i=1}^{n-1} \tau_{i,n}^n + \frac{1}{2}$ и оценим Φ_n двусторонним образом. Для этого разобьем Φ_n на группы слагаемых, взяв в каждой группе по $[\sqrt[n]{n}]$ членов, где через $[\sqrt[n]{n}]$ обозначена целая часть $\sqrt[n]{n}$.

Имеем

$$\Phi_n = \sum_{i=1}^{[\gamma n]} S_{i,n} - R_n, \qquad (3)$$

$$S_{[\overline{\gamma n}],n} = \frac{1}{2} + \tau_{n-1,n}^n + \ldots + \tau_{n-[\overline{\gamma n}]+1,n}^n,$$

$$S_{[\overline{\gamma n}]-1,n} = \tau_{n-[\overline{\gamma n}],n}^{n} + \dots + \tau_{n-2[\overline{\gamma n}]+1,n}^{n},$$

$$S_{1,n} = \tau_{n-([\overline{\gamma n}]-1)[\overline{\gamma n}],n}^{n} + \dots + \tau_{n-[\overline{\gamma n}]^{2}+1,n}^{n},$$

$$R_{n} = \tau_{n-[\overline{\gamma n}]^{2},n}^{n} + \dots + \tau_{1,n}^{n}.$$

Заметим, что $R_n = 0$ при n точном квадрате. Найдем для R_n мажоранту, используя, что

$$n - [\sqrt{n}]^2 \leq 2[\sqrt{n}]$$

Имеем

$$R_{n} < \tau_{1,n}^{n} + \dots + \tau_{2[\overline{\gamma n}],n}^{n} < 2[\overline{\gamma n}]\tau_{2[\overline{\gamma n}],n}^{n} = 2[\overline{\gamma n}]\sin^{2n}\frac{\pi[\overline{\gamma n}]}{n} \leq \\ \leq 2\overline{\gamma n} \left(\sin^{2}\frac{\pi}{\overline{\gamma n}}\right)^{n}.$$

Вследствие монотонного убывания $\sin \pi/\sqrt{n}$ по *n* при $n \ge 16$ справедлива оценка

$$R_n < \frac{\gamma n}{2^{n-1}}.$$
(4)

Этим остатком в общей оценке можно будет пренебречь. Определим миноранту для Φ_n :

$$\Phi_n + \frac{1}{2} > S_{[\overline{\gamma n}], n} > [\overline{\gamma n}] \tau_{n-[\overline{\gamma n}], n}^n = [\overline{\gamma n}] \sin^{2n} \frac{(n-[\overline{\gamma n}])}{2n} \pi =$$
$$= [\overline{\gamma n}] \cos^{2n} \frac{[\overline{\gamma n}]}{2n} \pi > \overline{\gamma n} \left(\cos^2 \frac{\pi}{2 \overline{\gamma n}} \right)^n.$$

Вследствие монотонного возрастания $\left(\cos^2\frac{\pi}{2\sqrt{n}}\right)^n$ по *n* при $n \ge 4$ справедлива оценка

$$\Phi_n + \frac{1}{2} > \frac{\left[\sqrt{n}\right]}{16}.$$
(5)

Определим мажоранту для Ф_n:

$$\Phi_n < \sum_{k=1}^{[\gamma n]} [\gamma n] \tau_{n-k[\gamma n],n}^n$$

Так как

$$\begin{bmatrix} \sqrt{n} \end{bmatrix} \tau_{n-k[\sqrt{n}],n}^{n} \leqslant \sqrt{n} \left(\sin^2 \frac{(n-k[\sqrt{n}])}{2n} \pi \right)^{n} = \\ = \sqrt{n} \left(\cos^2 \frac{k[\sqrt{n}]}{2n} \pi \right)^{n} \quad (k=0, \dots, [\sqrt{n}]),$$

TO

$$\Phi_n < \sqrt{n} \sum_{k=0}^{\lfloor \sqrt{n} \rfloor} \cos^{2n} \frac{k \lfloor \sqrt{n} \rfloor}{2n} \pi$$

При $0 \leq x \leq [\sqrt{n}]$ имеем

$$\sum_{h=0}^{\lceil \sqrt{n} \rceil} \frac{k[\sqrt{n}]}{2n} \pi < 1 + \int_{0}^{\lceil \sqrt{n} \rceil} \cos^{2n} \frac{x[\sqrt{n}]}{2n} \pi dx < 1 + \frac{2n}{\pi[\sqrt{n}]} \int_{0}^{\pi/2} \cos^{2n} t dt = 1 + \frac{2n}{\pi[\sqrt{n}]} \frac{2n!}{2^{2n}(n!)^2} \frac{\pi}{2}.$$

Отсюда, воспользовавшись формулой Стирлинга, получим

$$\Phi_n < \sqrt{n} \left(1 + \frac{\sqrt{n}}{\left[\sqrt{n} \right]} \frac{1}{\sqrt{\pi}} \right). \tag{6}$$

Таким образом, из (5) и (6) имеем

$$\frac{[\sqrt{n}]}{16} - \frac{1}{2} < \Phi_n < \sqrt{n} \left(1 + \frac{\sqrt{n}}{[\sqrt{n}]} - \frac{1}{\sqrt{\pi}} \right),$$

$$\frac{[\sqrt{n}]}{16n} - \frac{1}{2n} < u_n < \frac{1}{\sqrt{n}} \left(1 + \frac{\sqrt{n}}{[\sqrt{n}]} - \frac{1}{\sqrt{\pi}} \right).$$
(7)

Из (7) следует, что u_n есть бесконечно малая, имеющая порядок малости $\frac{1}{\sqrt{n}}$. Теорема доказана.

Теорема 2. Если через $(\Delta_{i,n}^{\prime\prime(1)})_{0}^{n}$ н $(\Delta_{i,n}^{\prime\prime(2)})_{0}^{n}$ обозначить нагрузки при разложении отрезков $(v_{i})_{0}^{n} = v_{0}, \ldots, v_{n-1}, v_{n}^{\prime\prime} u (\psi_{i})_{0}^{n} = \psi_{0}, \ldots, \psi_{n-1}, \psi_{n}^{\prime\prime}$ по узлам $(\tau_{i,n})_{0}^{n}$ полинома Чебышева $T_{n}(x)$, то для длины чебышевского критического интервала n-го параметра отрезка (базис $(v_{i}+\psi_{i})_{0}^{n-1}$) имеет место формула

$$L_n = \frac{(\tilde{\Delta}^{(n)} - \underline{\Delta}^{(n)})}{2^{2n-1}} n,$$
(8)

где

$$\begin{split} \tilde{\Delta}^{(n)} &= \max_{0 \leqslant i \leqslant n} \varepsilon_i \left| \Delta_{i,n}^{\prime\prime(1)} + \Delta_{i,n}^{\prime\prime(2)} \right|, \\ \Delta^{(n)} &= \min_{0 \leqslant i \leqslant n} \varepsilon_i \left| \Delta_{i,n}^{\prime\prime(1)} + \Delta_{i,n}^{\prime\prime(2)} \right|, \\ \varepsilon_i &= \begin{cases} 1, \text{ если } 0 < i < n; \\ 2, \text{ если } i = 0, i = n. \end{cases} \end{split}$$

Доказательство. Рассмотрим отрезок-функционал

 $(\mu_i)_0^n = v_0 + \psi_0, \ldots, v_{n-1} + \psi_{n-1}, v''_n + \psi''_n.$

Его экстремальным полиномом является $T_n(x)$, и нагрузки $(\Delta_{i,n})_0^n$ при разложении этого отрезка по узлам $(\tau_{i,n})_0^n$ определяются выражением

$$\Delta_{i,n} = \Delta_{i,n}^{\prime\prime(1)} + \Delta_{i,n}^{\prime\prime(2)} \quad (i=0, \ldots, n).$$

Возможны два случая: 1. Ненагруженные узлы отрезков $(v_i)_0^n$ и $(\psi_i)_0^n$ полностью или частично совпадают. В этом случае среди чисел $(\Delta_{i,n})_0^n$ есть равные нулю, а это означает, что $\Delta^{(n)} = 0$; $\mu''_n = v''_n + \psi''_n$. Тогда, согласно теореме 2 из [⁴], получим (8).

2. Ненагруженные узлы отрезков $(v_i)_0^n$ и $(\psi_i)_0^n$ не совпадают. В этом случае среди чисел $(\Delta_{i,n})_0^n$ нет равных нулю, а это означает, что $\mu''_n < v''_n + \psi''_n$. Будем искать μ''_n . Для этого введем в рассмотрение отрезок- функционал $(\gamma_i)_0^n = 0_0, \ldots, 0_{n-4}, h_n$.

рение отрезок- функционал $(\gamma_i)_0^n = 0_0, \ldots, 0_{n-1}, h_n$. Этот отрезок отличается от отрезка, определяющего полином Чебышева $+T_n(x)$ только множителем h ([1], с. 45), следовательно, $T_n(x)$ его экстремальный полином с нагрузками $(\delta_{i,n}'')_0^n$, вычисляемыми по формуле

$$\delta_{i,n}'' = (-1)^{n-i} \frac{2^{2n-1}}{\varepsilon_i n} h \quad (i=0, \ldots, n).$$
(9)

Рассмотрим теперь отрезок $(\mu_i - \gamma_i)_0^n$. Его нагрузками при разложении по узлам $(\tau_{i,n})_0^n$ будут числа $(\Delta_{i,n} - \delta_{i,n}'')_0^n$. Согласно критерию экстремальности ([¹], с. 40), для того чтобы полином этого отрезка $T_n(x)$ был экстремальным, необходимо и достаточно выполнения при всех *i* либо sign $(\Delta_{i,n} - \delta_{i,n}'') = (-1)^{n-i}$, либо $\Delta_{i,n} - \delta_{i,n}'' = 0$ (но не все *i*), причем, если хоть одно из чисел $\Delta_{i,n} - \delta_{i,n}'' = 0$, то $\mu_n'' = \mu_n - \gamma_n$.

Обозначив через h" максимальное из чисел h, удовлетворяющих системе неравенств

$$|\Delta_{i,n}| - \frac{2^{2n-1}}{\varepsilon_i n} h \ge 0 \quad (i=0, \ldots, n),$$

получим

$$h'' = \Delta_{i,n}^{(n)} \frac{n}{2^{2n-1}}; \quad \mu_n'' = \nu_n'' + \psi_n'' - \Delta_{i,n}^{(n)} \frac{n}{2^{2n-1}};$$

$$\Delta_{i,n}'' = \Delta_{i,n}''^{(1)} + \Delta_{i,n}''^{(2)} - (-1)^{n-i} \frac{\Delta_{i,n}^{(n)}}{\varepsilon_i} \quad (i=0, \dots, n).$$
(10)

Отсюда и согласно теореме 2 из [4] получим (8). Теорема доказана.

Теорема 3. Последовательность $(u_i)_0^\infty$ является последователькостью с минимальной длиной чебышевского критического интервала

для каждого частичного отрезка $(u_i)_0^n$ начиная с n = 2.

Доказательство. Рассмотрим отрезок-функционал

$$(\mu_i)_0 = u_0, \ldots, u_{n-2}, u_{n-1} + h, \mu_n(h)$$

с переменным (n-1) параметром и докажем, что имеют место формулы: а) если п — нечетное, то

$$L_{n}(h) = \begin{cases} \frac{1}{2^{2n-2}} + h, & \text{если } h \ge 0; \\ \frac{1}{2^{2n-2}} - (1-2\tau_{1,n})h, & \text{если } -\frac{1}{2^{2n-2}\tau_{1,n}} \le h < 0; \\ -\frac{1}{2^{2n-2}} - h, & \text{если } h < -\frac{1}{2^{2n-2}\tau_{1,n}}; \end{cases}$$
(11)

б) если п — четное, то

$$L_{n}(h) = \begin{cases} \frac{1}{2^{2n-2}} + (1-\tau_{1,n})|h|, \text{ если } |h| \leq \frac{1}{2^{2n-2}\tau_{1,n}}; \\ |h|, \quad \text{если } |h| > \frac{1}{2^{2n-2}\tau_{1,n}}. \end{cases}$$
(12)

Для нахождения $L_n(h)$ воспользуемся (8), положив

$$(v_i)_0^n = 0_0, \ldots, 0_{n-2}, h_{n-1}, v_n''(h); \quad (\psi_i)_0^n = u_0, \ldots, u_{n-1}, u_n''$$

Тогда нетрудно показать, что

$$\Delta_{i,n}^{\prime\prime(i)} = \begin{cases} (-1)^{n-i} \tau_{i,n} h \frac{2^{2n-1}}{\varepsilon_i n} & \text{при } h \ge 0, \\ (-1)^{n-i} (1-\tau_{i,n}) h \frac{2^{2n-1}}{\varepsilon_i n} & \text{при } h < 0. \end{cases}$$
(13)

Из [²] и [³] имеем а) если *n* — нечетное, то

$$\Delta_{2i,n}^{\prime\prime(2)} = 0; \quad \varepsilon_i |\Delta_{2i+1,n}^{\prime\prime(2)}| = \frac{2}{n} \quad \left(i = 0, \dots, \left[\frac{n}{2}\right]\right); \quad (14)$$

б) если п — четное, то

$$\Delta_{2i+1,n}^{\prime\prime(2)} = 0; \quad \varepsilon_i |\Delta_{2i,n}^{\prime\prime(2)}| = \frac{2}{n} \quad \left(i = 0, \dots, \frac{n}{2}\right). \tag{15}$$

Отсюда

а) если п — нечетное, то

$$\tilde{\Delta}^{(n)} = \begin{cases} \frac{2}{n} + \frac{2^{2n-1}}{n}h, & \text{если } h \geqslant 0; \\ \frac{2}{n} - (1 - \tau_{1,n})\frac{2^{2n-1}}{n}h, & \text{если } -\frac{1}{2^{2n-2}\tau_{1,n}} \leqslant h < 0; \\ -\frac{2^{2n-1}}{n}h, & \text{если } h < -\frac{1}{2^{2n-2}\tau_{1,n}}; \end{cases}$$

$$\Delta^{(n)}_{n} = \begin{cases} 0, & \text{если } h \geqslant 0; \\ \tau_{1,n}\frac{2^{2n-1}}{n}h, & \text{если } -\frac{1}{2^{2n-2}\tau_{1,n}} \leqslant h < 0; \\ 0, & \text{если } h \geqslant 0; \end{cases}$$

$$\Delta^{(n)}_{n} = \begin{cases} 0, & \text{если } h \geqslant 0; \\ \tau_{1,n}\frac{2^{2n-1}}{n}h, & \text{если } -\frac{1}{2^{2n-2}\tau_{1,n}} \leqslant h < 0; \end{cases}$$

$$(17)$$

если h<-

1

 $-\frac{1}{2^{2n-2}\tau_{1,n}}$

2 ENSV TA Toimetised F*M-1 1974

2

Подставив (16) и (17) в (8), получим (11). б) если n — четное, то

$$\tilde{\Delta}^{(n)} = \begin{cases} \frac{2}{n} + \frac{2^{2n-1}}{n}h, \text{ если } h \ge 0; \\ \frac{2}{n} - \frac{2^{2n-1}}{n}h, \text{ если } h < 0; \end{cases}$$

$$\Delta_{\tau}^{(n)} = \begin{cases} \frac{2}{n}, & \text{если } |h| \ge \frac{1}{2^{2n-2}\tau_{1,n}}; \\ \tau_{1,n}, \frac{2^{2n-1}}{n}h, & \text{если } |h| < \frac{1}{2^{2n-2}\tau_{1,n}}. \end{cases}$$
(19)

Подставив (18) и (19) в (8), получим (12).

Таким образом, независимо от $n L_n(h)$ минимальна при h = 0; следовательно, если мы имеем отрезок-функционал $(u_i)_0^{n-2}$ $(n \ge 2)$ и хотим его продолжить так, чтобы Ln была минимальной, что в качестве (n-1)-го параметра необходимо брать u_{n-1} , и $(u_i)_0^{\infty}$ — будет последовательностью с минимальной длиной чебышевского критического интервала для каждого ее частичного отрезка начиная с n == 2.

Следствие. Для длины чебышевского критического интервала L_{re} любого отрезка-функционала $(\mu_i)_0^n$ имеет место оценка

$$L_n \geqslant \frac{\mu_0}{2^{2n-2}} \,.$$

ЛИТЕРАТУРА

 Вороновская Е. В., Метод функционалов и его приложения, Л., 1963. 2. Вороновская Е. В., ДАН, 206. № 1, с. 17—21 (1972). 3. Ярв Э. А., ДАН, 206, № 1, с. 33—36 (1972).

4. Вороновская Е. В., Ярв Э. А., ДАН, 197, № 1, с. 21-24 (1971).

Ленинградский электротехнический институт связи им. М. А. Бонч-Бруевича Поступила в редакцию 26/VI 1973

Eleonora JARV

TŠEBOŠOVI TÜÜPI STABIILSUSEGA FUNKTSIONAALIDE OMADUSI

Artiklis tõestatakse, et Tšebõševi tüüpi stabiilsusega funktsionaalidel $F = (u_i)_0^{\infty}$ on järgmised omadused:

1) u_n läheneb nullile kiirusega $1/\sqrt{n}$;

2) kui $n \ge 2$, siis iga osalõike $(u_i)_0^n$ jaoks on $(u_i)_0^\infty$ Tšebõšovi kriitilise vahemiku minimaalse pikkusega jadaks.

Teoreemi järeldusena on saadud suvalise osalõike $F_n = (u_i)_0^n$ Tšebõšovi kriitilise vahemiku minoranthinnang.

Eleonora JARV

PROPERTIES OF THE CHEBYSHEV STABLE FUNCTIONAL

In the present paper the following properties of the Chebyshev stable functional $F = (u_i)_0^\infty$ are investigated:

1. u_n tends to zero and is of the order $1/\sqrt{n}$;

2. $(u_i)_{0}^{\infty}$ is a sequence with a minimum length of the Chebyshev critical interval

for each partial segment $(u_i)_0^n$ beginning with n = 2. As a result of this theorem, we get the minorant evaluation for the Chebyshev critical interval of any segment-functional $F_n = (\mu_i)_0^n$.