EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 21. KÖIDE FOOSIKA * MATEMAATIKA. 1972, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 21 ФИЗИКА * МАТЕМАТИКА. 1972, № 1

https://doi.org/10.3176/phys.math.1972.1.14

УДК 621.314.263: 621.375.3

В. САРВ, Ю. ПЮССИМ, ТИЙУ САККОС, Х. ТЕХВЕР

БЫСТРОДЕЙСТВУЮЩИЕ ТРАНСФОРМАТОРНЫЕ МАГНИТНЫЕ УСИЛИТЕЛИ С УМНОЖЕНИЕМ ЧАСТОТЫ

Применение в магнитных умножителях частоты (МУЧ) внутренней обратной связи путем самоподмагничивания постоянной составляющей выходного тока позволяет наряду с устранением спада внешней характеристики и большого тока холостого хода существенно увеличить добротность управляемых МУЧ [^{1, 2}]. Поэтому на их базе возможно создать качественные силовые магнитные усилители с выходом на постоянном и переменном токах [^{3–6}]. Основными преимуществами МУЧ по сравнению с магнитными усилителями (МУ) без умножения частоты являются 1) простота трансформаторного разделения цепей питания и нагрузки, 2) увеличенная кратность изменения выходного напряжения [³].

Применение в поляризованных МУЧ самоподмагничивания постоянной составляющей выходного тока во многом аналогично применению самонасыщения в обыкновенных МУ. Поэтому аналогичными являются и результаты этих приемов, в том числе в обоих случаях становится возможным быстродействующее управление. В работе анализируются особенности быстродействующего управления в симметричных магнитных умножителях частоты с самоподмагничиванием (МУЧС).

Основные структурные схемы различных источников питания и усилителей на базе МУЧС можно комплектовать из одинаковых звеньев, причем звеном структуры является *n*-сердечниковый МУЧС с умножением частоты в *n* раз [^{5, 6}]. В общем случае согласно рис. 1, *a* он имеет

Рис. 1.

следующие обмотки: питания — w_I , нагрузки — w_{II} , начального подмагничивания — w_0 и управления — w_y . Звено питается симметричной *n*-фазной системой напряжений, которая не должна обусловливать насыщения сердечников при отсутствии подмагничивания. Вентиль В_и для положительной внутренней обратной связи включен последовательно с нагрузочными обмотками. В реальных схемах некоторые или даже все обмотки на каждом сердечнике могут быть совмещены. В последнем случае получим схему рис. 1, б, где в ветви управления показан элемент управления ЭУ.

С учетом сдвига по времени в основных структурах все звенья работают одинаково. По существу комплектование реальных схем из нескольких звеньев является просто схемным способом выделения желаемых гармоник без дополнительных силовых фильтров. Преобразование параметров электроэнергии происходит отдельно в каждом звене. Поэтому основные процессы преобразования и управления возможно выявить из анализа работы одного звена.

Как и в работе [⁶], анализ процессов управления проведем для идеализированного случая, предполагая, что кривые намагничивания сердечников являются прямоугольными и в МУЧС отсутствуют потери. Такая идеализация позволяет определить потенциальные возможности управляемых МУЧС, причем качественно свойства таким образом идеализированных и современных реальных МУЧС совпадают.

В идеализированном случае степень нагруженности МУЧС не влияет на процессы управления [^{1, 3}] и, следовательно, их анализ возможен в режиме холостого хода. Так как в анализируемых МУЧС положительная внутренняя обратная связь осуществляется только по току нагрузки (а не по току питания), то при холостом ходе звено МУЧС превращается в обыкновенный симметричный *n*-кратный умножитель частоты. Его нагрузкой является эквивалентное сопротивление цепей подмагничивания и управления. Из анализа передачи энергии в такой схеме явствует [⁷], что ей, а при холостом ходе и схемам рис. 1, *a*, *б*, соответствует эквивалентная схема рис. 2, *a*. Здесь e_n — эквивалентная

э. д. с. вторичной цепи поляризованного МУЧ, равная максимальному значению выходного напряжения u_n ; K — дроссель с идеальной прямоугольной кривой намагничивания, который в дальнейшем будем называть магнитным ключом; I_0 — постоянный ток подмагничивания; i_y ток управления. Эквивалентная схема рис. 2, *а* сохраняется и при наличии нагрузки; присоединение ветви нагрузки к основной части схемы показано прерывистой линией. Схема рис. 2, а получается непосредственно из дроссельной схемы симметричного МУЧ рис. 1, б, где в каждый момент времени только один определенный нелинейный дроссель способен (но не должен) насыщаться и соответственно только одна фаза источника питания может участвовать в обмене энергии [7]. Э. д. с. e_n совпадает с э. д. с. фазы, способной насыщаться в данный момент, и поэтому ее частота f_n в n раз больше частоты питания f_1 . Состояние магнитного ключа K совпадает с состоянием нелинейного дросселя в способной к насыщению фазе.

В исходной схеме при максимальном выходном напряжении дроссель в способной к насыщению фазе всегда насыщен. Поэтому в схеме замещения рис. 2, а максимальному выходному напряжению соответствует непрерывное замкнутое состояние магнитного ключа K, т. е. насыщение его сердечника. В этом режиме ток подмагничивания I_0 замыкается через ключ K, напряжение ключа $u_K = 0$ и $u_n = e_n$.

Так как в общем случае $u_n = e_n - u_K$, а э. д. с. эквивалентного генератора e_n определена уже структурой схемы и системой питания, то управление выходным напряжением u_n реализуемо путем управления напряжением u_K . При $u_K \neq 0$ ключ разомкнут и должна существовать возможность замыкания I_0 через элемент управления. Такая возможность отсутствует, пока эквивалентное сопротивление элемента управления

$$R_{\Im Y} \geqslant R_{\rm fsp} = \frac{e_{n\,\max}}{I_0} \,, \tag{1}$$

где $R_{\rm KP}$ — критическое сопротивление ветви управления, $e_{n\rm max}$ — амплитуда э. д. с. e_n . Объясняется это тем, что при $R_{\rm ЭУ} > R_{\rm KP}$ отрицательная амплитуда тока управления всегда меньше тока подмагничивания и поэтому ток ключа $i_{\rm K} = I_0 + i_{\rm Y} > 0$.

Замыкание ключа возможно при $i_{\rm K} = 0$. Согласно [7], такие этапы работы возникают при $R_{\rm BV} < R_{\rm Kp}$ и удлиняются с уменьшением соотношения

$$\frac{R_{\Im Y}}{R_{KD}} = \frac{R_{\Im Y}I_0}{e_{n \max}}.$$
(2)

При $R_{\Im Y} = 0$ источник постоянного тока закорочен, сердечник магнитного ключа непрерывно ненасыщен, ключ *K* разомкнут и $u_K = e_n$, $u_n = 0$.

Следовательно, управление выходным напряжением требует изменекия условий прохождения тока подмагничивания через элемент управления или же изменения самого тока подмагничивания *I*₀. Скорость управления выходным напряжением естественно ограничена длительностью переходного процесса при выполнении этих операций.

Практически источники постоянного тока реализуются последовательным соединением источника постоянного напряжения с цепью относительно большой индуктивности. Быстрое изменение тока в такой цепи затруднительно. Поэтому при анализе вариантов быстродействующего управления будем предполагать $I_0 = \text{const}$ и иметь в виду только способы быстрого изменения параметров ветви управления.

В простейшем случае в качестве быстродействующего элемента управления может выступать согласно рис. 2, δ сопротивление R_y . С целью уменьшения потерь последовательно с ним может быть включен вентиль B_y . Основные процессы в схеме от этого не зависят, но в целях конкретности рассмотрим сперва вариант схемы без вентиля B_y . В этом случае определение моментов размыкания ключа K облегчается, если параллельное соединение источника тока I_0 и сопротивления R_y заменить эквивалентной э. д. с. управления $e_y = I_0 R_y$ с внутренним сопротивлением R_y [⁷].

В работе схемы рис. 2, δ в общем случае имеется четыре состояния, соответствующих возможным комбинациям замкнутого и разомкнутого состояний ключа K и знака э. д. с. e_n . В двух частных случаях (при максимальном и нулевом выходных напряжениях) остается два состояния, каждое из которых длится в течение полупериода e_n .

Управляющий полупериод $e_n < 0$		Рабочий полупериод е _л > 0	
I Промежуточное состояние	II Управляющее состояние	III Задерживающее состояние	IV Нагрузочное состояние
$ e_n \leq l_0 R_y = e_y$ $u_K = \dot{\psi}_K = 0$ $\psi_K = \Psi_{Ks}$ $(0 \leq i_K \leq l_0)$ $u_n = e_n < 0$	$ e_{n} \ge e_{y}$ $u_{K} = \psi_{K} < 0$ $\psi_{K} \le \Psi_{Ks}$ $i_{K} = 0$ $u_{n} = -e_{y} < 0$	$u_{\rm K} = \dot{\psi}_{\rm K} > 0$ $\psi_{\rm K} \leqslant \Psi_{\rm K},$ $i_{\rm K} = 0$ $u_{\rm n} = -e_{\rm y} < 0$	$u_{\mathbf{K}} = \psi_{\mathbf{K}} = 0$ $\psi_{\mathbf{K}} = \Psi_{\mathbf{K}},$ $i_{\mathbf{K}} \ge I_{0}$ $u_{n} = e_{n} > 0$
$(i_y \leq I_0)$	$ i_y = I_0$	$ i_{y} = I_{0}$	$\left(i_{y}=\frac{n}{R_{y}}\right)$

Состояния схемы рис. 2, б при отсутствии Ву и характерные для них соотношения представлены в таблице, где ψ_к и Ψ_{кs} — соответственно мгновенное потокосцепление и потокосцепление насышения ключа К. На основе некоторой аналогии между процессами в быстродействующих МУ без умножения и с умножением частоты назовем один полупериод э.д.с. еп рабочим, а другой — управляющим. Это оправдано, поскольку при выбранных положительных направлениях еп и Іо питание нагрузки возможно только при $e_n > 0$ в нагрузочном состоянии, а управляющее состояние входит в состав отрицательного полупериола ел.

Описание отдельных состояний начнем с нагрузочного состояния. Рассуждения для общего случая *n*-кратного умножения частоты иллюстрированы приведенным на рис. З процессом удвоения частоты. Средние выпрямленные значения напряжения u_n и э.д.с. e_n обозначены состветственно через U_n и E_n . Время отсчитано от начала управляющего полупериода.

Нагрузочному состоянию характерно, что замкнутый (насыщенный) ключ К остается замкнутым до конца рабочего полупериода независимо от изменения управляющего воздействия. Регулированием начала нагрузочного состояния в течение рабочего полупериода можно регулировать выходное напряжение в пределах

$$E_n = U_n \max \geqslant U_n \geqslant U_n \min = 0. \tag{3}$$

На рис. З нагрузочное состояние предшествует непосредственно началу отсчета времени и обозначено согласно таблице через IV.

В момент прохождения уменьшающейся э.д. с. e_n через нуль нагрузочное состояние всегда кончается и при условии $I_0R_y = e_y \neq 0$ начинается промежуточное состояние, обозначенное через І. Состояние І характеризуется тем, что из-за отрицательной э.д. с. e_n питание цепи нагрузки уже невозможно, но под влиянием тока $i_K = I_0 + i_y > 0$ ключ K еще замкнут. Поэтому потокосцепление ключа сохраняет максимальное значение Ψ_{Ks} , а источник подмагничивания передает энергию в источник питания и покрывает потери в ветви управления.

При $R_y \ge R_{\kappa p}$ размыкание ключа K вообще невозможно, состояние I продолжается до конца управляющего полупериода, и следующий рабочий полупериод начинается сразу нагрузочным состоянием. В этом случае $U_n = U_{n \max}$. Когда же $R_y < R_{\kappa p}$ и соответственно $e_y < e_{n \max}$, то в управляющем полупериоде всегда наступает момент t_{β} , после которого $e_n + e_y < 0$. Это обусловливает размыкание ключа K, и с момента t_{β} начинается управляющее состояние, т. е. состояние II.

В течение состояния II потокосцепление ключа удаляется от значения $\Psi_{\rm Ks}$ на величину

$$\Delta \psi_{\mathbf{y}} = \int_{t_{\beta}}^{T_{n}/2} \left[u_{\mathbf{k}} \right] dt = \int_{t_{\beta}}^{T_{n}/2} \left[e_{n} + e_{\mathbf{y}} \right] dt = \Delta \psi_{\mathbf{y}}(e_{\mathbf{y}}).$$

$$\tag{4}$$

В частном случае $I_0 R_y = e_y = 0$ управляющее состояние охватывает весь управляющий полупериод и

$$\Delta \psi_{\mathbf{y}} = \Delta \psi_{\max} = \int_{0}^{T_{n}/2} |e_{n}| dt.$$
 (5)

Во всех случаях, когда $\Delta \psi_y \neq 0$ и существует управляющее состояние, за ним начиная с нового рабочего полупериода следует задерживающее состояние III. Длительность этого состояния $T_{\rm III}$ зависит непосредственно от величины $\Delta \psi_y$. Оно заканчивается в момент t_{α} , после увеличения потокосцепления $\psi_{\rm K}$ на величину

$$\Delta \psi_{\mathbf{p}} = \int_{T_n/2}^{t_\alpha} u_{\mathbf{k}} dt = \int_{T_n/2}^{t_\alpha} (e_n + e_{\mathbf{y}}) dt = \Delta \psi_{\mathbf{y}}(e_{\mathbf{y}}), \qquad (6)$$

новым замыканием ключа К, что дает начало очередному нагрузочному состоянию.

Отличительным свойством задерживающего состояния в управляемых МУЧ является рост потокосцепления $\psi_{\rm K}$ не только под влиянием э. д. с. питания (как это происходит в быстродействующих МУ без умножения частоты [⁸]), но и согласно формуле (6) под совместным влиянием e_n и e_y . Поэтому изменение в задерживающем состоянии управляющей э. д. с. e_y отражается уже на этом самом рабочем полупериоде в частичном изменении выходного напряжения. Для полного установления нового значения выходного напряжения требуется прохождение одного целого этапа управляющего состояния. Новое установленное выходное напряжение выражается формулой

$$U_n = E_n - 2f_n \int_{(\text{III})} e_n \, dt = E_n + 2f_n T_{\text{III}} e_y - 2f_n \Delta \psi_y, \tag{7}$$

где интеграл берется в пределах задерживающего состояния III; член $2f_n T_{III}e_y$ обусловлен влиянием e_y на изменение ψ_K в состоянии III.

Из изложенного выше видно, что в общем случае последовательность состояний является следующей: I—II—III—IV—I. В установившемся режиме эта последовательность не изменяется и в частных случаях, но при максимальном выходном напряжении отпадают состояния II и III, а при нулевом напряжении — I и IV.

Свойства и взаимоотношения отдельных состояний определяют также переходный процесс. Проследим изменение выходного напряжения в результате скачкообразного изменения управляющего сопротивления R_y в момент t'. На рис. 3 уменьшение R_y и соответственно e_y происходит в нагрузочном состоянии. Поэтому, согласно изложенному выше, процесс продолжается без изменения до начала в момент t_{β}' управляющего состояния. Как видно, уменьшение e_y увеличивает продолжительность управляющего состояния, увеличивает $\Delta \psi_y$ и, в итоге, уменьшает выходное напряжение.

В данном случае длительность переходного процесса меньше двух полупериодов эквивалентной э.д.с. e_n . Так как для окончания переходного процесса необходимо прохождение одного целого этапа управляющего состояния, то максимальная длительность переходного процесса в звене МУЧС при изменении управляющей э.д.с. e_y не может превышать 3/2 периода умноженного, или соответственно 3/2*n* периода первичного напряжения.

До сих пор предполагалось, что в схеме рис. 2, б вентиль B_y отсутствует. В то же время мы видели, что при $i_y > 0$, т. е. в нагрузочном состоянии, ветвь управления не оказывает регулирующего воздействия. Поэтому включение вентиля B_y в указанном направлении не изменяет основного процесса в идеализированном случае, а только позволяет уменьшить потери в ветви управления. (Естественно, что остаточное падение напряжения $u_{\rm B}$ на реальном открытом вентиле ограничивает минимальное выходное напряжение, так как невозможно полностью закоротить ветвь управления.) Все соотношения в таблице состояний остаются в силе и при наличии вентиля B_y за исключением того, что в нагрузочном состоянии вместо $i_y = e_n/R_y$ выполняется $i_y = 0$.

Так как изменение управляющего сопротивления R_y проявляется через изменение эквивалентной э.д.с. e_y , то без изменения основных процессов можно согласно схеме рис. 4, *a* заменить R_y реальной управляющей э.д.с. e_y . В этом случае вентиль B_y необходим для устранения короткого замыкания через e_y в нагрузочном состоянии. Для схемы с реальной e_y в таблице состояний изменяются только уравнения, заключенные в скобки. Так, в состоянии I $i_K = I_0$ и $i_y = 0$, а в состоянии IV $i_y = 0$.

Из эквивалентной схемы рис. 4, а ясно видны также некоторые отличительные черты процесса в быстродействующих МУЧС по сравнению с процессом в быстродействующих МУ без умножения частоты. Типичное звено последнего представлено на рис. 4, б [8]. Основное различие схем рис. 4, а и рис. 4, б состоит в том, что e_1 является реальной э.д. с. питания, а e_n — эквивалентной э.д. с., существующей только при

Быстродействующие трансформаторные магнитные усилители...

наличии внешнего подмагничивания током I_0 . Под влиянием I_0 в схеме рис. 4, *a* при разомкнутом ключе *K* вентиль B_y всегда открыт, в схеме рис. 4, *б* B_y может быть открыт только в управляющем полупериоде. Именно поэтому в схеме рис. 4, *б* в рабочем полупериоде рост потокосцепления ψ_K происходит только под влиянием e_1 , а в схеме рис. 4, *a* под влиянием суммарной э.д.с. $e_n + e_y$.

В классических быстродействующих МУ без дополнительного трансформатора трудно электрически разделить нагрузку и источник питания. В быстродействующих МУЧС трансформаторное разделение всех цепей легко осуществить путем применения схемы рис. 1, а. Этого ценного качества управляемых МУЧС эквивалентная схема рис. 4, а не отражает.

До сих пор мы имели в виду одно звено МУЧС. Когда быстродействующий МУ с умножением частоты составлен из нескольких звеньев [3-6], то процесс управления в каждом звене не изменяется, но из-за временного сдвига работы отдельных звеньев длительность переходного процесса схемы в целом уменьшается. Например, в двухзвеньевом усилителе по схеме рис. 5, а переходный процесс не может превышать 1/п части периода первичного напряжения. Для иллюстрации на рис. 5, б приведена осциллограмма нагрузочного напряжения ин при скачкообразном изменении сопротивления управления в схеме рис. 5, а. Для определения начала переходного процесса осциллографом снято также напряжение ир на контактах рубильника, шунтирующего часть сопротивления управления. Осциллограмма соответствует утроению час-

тоты. Видно, что действительно новый режим устанавливается не позже двух полупериодов выходного напряжения одного звена, т. е. в течение 1/с периода напряжения питания. Аналогичные результаты получены и при других кратностях умножения.

Так как быстродействие является результатом структуры схемы, то относительная длительность переходного процесса не зависит от мощ-

ности устройства и частоты питания. Кратность умножения не ограничена, но ее увеличение сопровождается уменьшением коэффициента использования активных материалов. Поэтому в силовых быстродействующих трансформаторных МУ, вероятно, целесообразно ограничиваться кратностью умножения частоты в два-три раза.

ЛИТЕРАТУРА

- 1. Сарв В. В., Сювари Т. Ю., В кн.: Вопросы теории и расчета устройств преобразовательной техники, Киев, 1968, с. 40.
- Сарв В. В., Лаусмаа Т. М., Сювари Т. Ю., Паат К. Л., Тезисы докл. XII Всес. совещ. по магнитным элементам автоматики и вычисл. техники, Ташкент, 7—11 окт. 1968, с. 191.
 Сарв В. В., В сб.: Проблемы технической электродинамики, Вып. 24, Элект-
- ромагнитные и полупроводниковые устройства преобразовательной техники, Киев, 1970, с. 131. 4. Сарв В. В., В сб.: Проблемы технической электродинамики, Вып. 19, Вопросы
- преобразования параметров электрической энергии, Киев, 1969, с. 24.
- 5. Сарв В. В., Изв. АН ЭССР, Физ. Матем., 19, 94 (1970). 6. Сарв В. В., Изв. АН ЭССР, Физ. Матем., 20, 182 (1971).
- 7. Сарв В. В., Передача энергии в симметричных поляризованных магнитных умножителях частоты. В кн.: Устройства преобразовательной техники, Вып. 3, Киев, 1969, с. 133.
- 8. Липман Р. А., Негневицкий Н. Б., Быстродействующие магнитные и магнитно-полупроводниковые усилители, М.-Л., 1960.

Инститит термофизики и электрофизики Академии наик Эстонской ССР

Поступила в редакцию 19/III 1971

V. SARV, J. PÜSSIM, TIIU SAKKOS, H. TEHVER

KIIRETOIMELISED SAGEDUSKORDISTUSEGA TRAFOMAGNETVÕIMENDID

Analüüsitakse magnetsageduskordistite ja nendest kujundatud trafomagnetvõimendite kiiretoimelise juhtimise mooduseid üldjuhul, mil kordistustegur on n. Seni tuntud kiiretoimelisi magnetvõimendeid võib vaadelda kui erijuhtu, mil n = 1. Sageduskordistusega kaasneb kordistusteguriga võrdeline siirdeprotsessi kiirenemine ning võimalus toite- ja koormusahelad omavahel isoleerida.

V. SARV, J. PÜSSIM, TIIU SAKKOS, H. TEHVER

TRANSFORMER-TYPE MAGNETIC AMPLIFIERS WITH FREQUENCY MULTIPLICATION

Principles of the high-speed control of magnetic frequency multipliers and transformer-type magnetic amplifiers composed from them are analysed. A general case corresponding to the multiplication factor equal to n is treated. The known high-speed magnetic amplifiers can be regarded as a special case with n = 1. The frequency multiplication decreases the response time proportionally to the increase of the multiplication factor, and enables isolation between supply and load circuits.