EESTI NSV TEADUSTE AKADEEMIA TOIMETISED, 19. KÕIDE FOOSIKA * MATEMAATIKA, 1970, NR, 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 19 ФИЗИКА * МАТЕМАТИКА. 1970, № 1

https://doi.org/10.3176/phys.math.1970.1.19

Любовь РЕБАНЕ, П. СААРИ

ПАРАМЕТРЫ ЛОКАЛЬНОГО КОЛЕБАНИЯ ЦЕНТРОВ О2-В ЩЕЛОЧНОГАЛОИДНЫХ КРИСТАЛЛАХ

LIUBOV REBANE, P. SAARI. LISANDITSENTRI O₂ LOKAALSE VÕNKUMISE PARAMEETRID LEELISHALOGENIIDKRISTALLIDES

LIUBOV REBANE, P. SAARI. LOCAL MODE VIBRATIONAL CONSTANTS OF IMPURITY MOLECULE 09 IN ALKALI HALIDE CRYSTALS

В спектре люминесценции молекулярных центров O_2^{-*} в щелочногалоидных основаниях при 4,2° К выделяется серия узких линий, соответствующих переходам с нулевого уровня локального колебания O_2^{-*} в возбужденном состоянии на различные уровни *n* в основном электронном состоянии без возбуждения кристаллических колебаний (бесфононные линии) [¹⁻³]. Максимум интенсивности в спектре O_2^{-*} приходится на переходы с возбуждением около 10 квантов локального колебания [^{3, 4}], поэтому чистоэлектронная линия и линии с малыми номерами *n* из-за своей малой интенсивности до сих пор не были зарегистрированы, что в свою очередь создавало трудности в определении номера бесфононных линий и положения чистоэлектронной линии.

Применив методику счета фотонов, нам удалось проследить спектр люминесценции O₂⁻ в КСl и КВг при 4,2° К вплоть до области чистоэлектронной линии, а также промерить изотопические линии центров ¹⁶O¹⁸O⁻ в кристаллах КJ и CsCl, содержащих естественную концентрацию изотопических центров. Кроме того, были уточнены положения бесфононных линий в спектрах O₂⁻ в кристаллах NaCl, NaBr и RbCl.

Полученные данные позволяют определить параметры локального колебания O₂⁻ в разных щелочногалоидных кристаллах на основе только спектра люминесценции. Последние оказались в ряде пунктов отличными от параметров, приведенных в [⁵] и определенных на основе данных комбинационного рассеяния [⁶].

1. Для описания локального колебания O_2^- в КВг в работе [³] был предложен осциллятор с параметрами $v_e'' = 1150 \ cm^{-1}$, $2v_e'' x_e'' = 18 \ cm^{-1}$ и частотой чистоэлектронного перехода $v_{00} = 26980 \ cm^{-1}$; номера бесфононных линий были определены по изотопическим смещениям линий от центров ¹⁶O¹⁸O⁻ [⁷]. Согласно этим параметрам положение в спектре линий n = 0 и 1 должно было быть при 3706 и 3868 Å. Измеренное в настоящей работе положение линий $\lambda_1 = 3867,8$ Å практически совпадает с предсказанным, демонстрируя тем самым надежность определения параметров локального осциллятора по данным спектра люминесценции. В предсказанной области чистоэлектронной линии были зарегистрированы две линии неизвестной природы при 3663,2 и 3682 Å (линии X_1 и X_2). Первая из них, по-видимому, принадлежит спектру O_2^- , поскольку ее спектр возбуждения совпадает со спектром возбуждения других линий люминесценции O_2^- . Чистоэлектронная линия не была обнаружена, возможно это обусловлено фоном от X_2 линии.

2. Промерены изотопические линии центров ¹⁶О¹⁸О- в кристаллах КЈ-О2⁻ и CsCl-O2⁻ с естественной концентрацией изотопа О18. В табл. 1 приведены изотопические смещения частоты $v_n - v_n^*$ (v_n^* — частота перехода в центре ¹⁶O¹⁸O⁻) в кристаллах КЈ и CsCl, которые сравниваются с ранее измеренными изотопическими смещениями в кристалле КВг и с вычисленными по потенциальным кривым O₂- в КВг [^{3, 8}]. Величины vn - vn* совпадают в разных основаниях, так как небольшие различия колебания О2- не сказываются на изотопических смещениях в пределах точности эксперимента. Тем самым были определены номера п бесфононных линий в спектре кристаллов КЈ-О2⁻ и CsCl-O2⁻, и мы могли получить параметры локального осциллятора О2- в этих основаниях. Значения параметров приведены в табл. 2. Для KJ они близки к значениям, полученным с помощью данных по комбинационному рассеянию [6]. Спектры O₂- в CsCl при 4,2° К измерены здесь впервые. Параметры осциллятора О2- оказались мало чувствительными к изменению типа кристаллической решетки.

			1	иолици 1
Номер бесфонон- ной линии, <i>п</i>	$v_n - v_n^*, CM^{-1}$			
	вычисл.	KJ	CsCl	KBr
67	178 205	181 211	181 205	210
Intel 8 Holt an	228	227	229	231
9	252	254	258	256
10	274	276	276	281

Кристалл	Параметры осциллятора, см-1			
	ve"	$v_e''x_e''$	v00	
NaCl	1158 ± 1	8,4 ± 0,5	27283 ± 5	
NaBr KCl	1147 1162	7,9 8,3	26672 27553	
KBr	1150	9,0	26979	
RbCl	1142	9,3 8,5	20537 27483	
CsCI	1157	9,7	26554	

Таблица 2

3. В спектре O_2^- в кристаллах NaCl, NaBr, KCl и RbCl было уточнено положение бесфононных линий. В частности, для кристалла NaBr полученное нами здесь (и приводившееся ранее в [³]) положение линий O_2^- смещено на 15—20 Å в коротковолновую сторону от положения линий, которые приводит Рольфе в [¹]. Еще более существенно (на 25—40 Å) отличается от приведенных в работе [¹] положение линий в кристалле RbCl. Соответственно, мы получили другие, чем в [⁵], значения для частоты чистоэлектронного перехода в этих кристаллах.

Спектр O_2^- в кристалле КСІ был зарегистрирован вплоть до линии $\lambda_1 = 3785,7$ Å, что позволило достаточно точно экстраполировать положение чистоэлектронной линии и определить остальные параметры осциллятора.

Все постоянные, характеризующие локальный осциллятор O₂⁻ в разных щелочногалоидных основаниях, приведены в табл. 2.

Авторы благодарны К. Ребане за обсуждение.

124

ЛИТЕРАТУРА

- 1. Rolfe J., J. Chem. Phys., 40, 1664 (1964). 2. Ребане К., Ребане Л., Изв. АН ЭССР, Сер. физ.-матем. и техн. наук, 14, 309 (1965).
- 3. Ребане Л., Тр. ИФА АН ЭССР, № 37, 14 (1968). 4. Rebane K., Rebane L., Sild O., Internat. Conf. Luminescence, Preprints, Budapest, 2, C5, 115 (1966). 5. Rolfe J., Holzer W., Murphy W., Bernstein H., J. Chem. Phys., 49, 963
- Holzer W., Murphy W., Bernstein H., Rolfe J., J. Molec. Spectr., 26, 543 (1968).
- 6.

tailis CCI. Risanco J. Carl mi konweldsicomivaniu finessa kontailisa forik läengukantiate difusional kon C. R. a.a. Turbulentsele jugade levinimo suletud returnis Resimae . S. a.a. R. S. a.a. F. Ligandisantri Or Jokalisa vortkinuteo parameet leelistialogenittivistaliidas · Risanna

7. Ребане Л., Изв. АН ЭССР, Сер. физ.-матем. и техн. наук, 15, 301 (1966).

8. Еренчинов А., Сильд О., Тр. ИФА АН ЭССР, № 37, 46 (1968). Академии наук Эстонской ССР Поступила в редакцию 14/XI 1960