EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVIII KÕIDE foosika * matemaatika. 1969, nr. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVIII ФИЗИКА * МАТЕМАТИКА. 1969, № 1

https://doi.org/10.3176/phys.math.1969.1.10

А. СЮГИС

ВЫСОКОЧУВСТВИТЕЛЬНЫЙ НЧ И ВЧ ИЗМЕРИТЕЛЬ ДЕВИАЦИИ ЧАСТОТЫ С РЕЗОНАНСНЫМИ *RC*-УСИЛИТЕЛЯМИ

Обычные измерители девиации частоты (ИДЧ) работают в диапазоне ВЧ (от-150 кгц и выше) и имеют границу чувствительности около 100 гц. Однако при некоторых исследованиях желательно иметь ИДЧ со значительно большей чувствительностью. Например, при измерении характеристик НЧ генераторов, а также высокостабильных ВЧ генераторов; при исследовании систем с фазовой автоподстройкой частоты (ФАПЧ) в НЧ и ВЧ диапазонах; при прохождении ЧМ или ФМ через системы с ФАПЧ. В нашей лаборатории нижеописываемый ИДЧ применяется при исследовании спектрометра ядерного магнитного двсйного резонанса, в частности спинового генератора с ФАПЧ [¹].

Все ВЧ ИДЧ работают с преобразованием измеряемой частоты в промежуточную частоту. В данном случае это вызывало бы значительные осложнения, так как диапазон несущих $f_3 = 0,5 \div 50$ кец. Применение перестраиваемого резонансного RC-усилителя в схеме частотного детектора позволило построить систему ИДЧ без преобразования.

Блок-схема такого ИДЧ изображена на рис. 1. От входа HY измеряемая частота проходит через делитель напряжения $\mathcal{Д}H$ и предусилитель \mathcal{Y}_1 , затем разветвляется через усилитель \mathcal{Y}_2 на фазовый детектор $\mathcal{P}\mathcal{J}$ и на резонансный RC-усилитель $P\mathcal{Y}_1$, имеющий на частоте резонанса фазовый сдвиг 90°. Это сдвинутое в фазе напряжение через усилитель \mathcal{Y}_3 подается на другой вход $\mathcal{P}\mathcal{J}$. Фазовый детектор работает по схеме двух-полупериодного выпрямления на четырех диодах и питается от двух симметричных трансформаторов. Схема автоматической регулировки усиления $AP\mathcal{Y}_1$ поддерживает напряжение на $\mathcal{P}\mathcal{J}$ постоянным и таким образом сохраняет работоспособность прибора при изменении входного напряжения в отношении 1:50 без переключения $\mathcal{Д}H$. Вместо индикатора напряжения на $\mathcal{P}\mathcal{J}_1$ применяется индикатор $\mathcal{U}\Pi_1$ режима $AP\mathcal{Y}_1$. Небольшая неравномерность амплитудно-частотной характеристики $P\mathcal{Y}_1$ и \mathcal{Y}_3 устраняется $AP\mathcal{Y}_2$.

Рис. 1. Блок-схема ИДЧ.

Выходное напряжение $\Phi \mathcal{A}$ предварительно фильтруется в простом RC-фильтре $\Phi H \mathcal{Y}$ с переключаемой частотой среза от 0,01 до 10 кгц. Измерительный прибор $U\Pi_2$ с нулем посередине используется при настройке $P\mathcal{Y}_1$ на несущую частоту, а также показывает изменение средней частоты при неизменной настройке. Выход 1 служит для регистрации изменений средней частоты, а также самой девиации частоты при большом значении отношения несущей частоты f_0 к модулирующей частоте f_m . Однако для данной схемы характерно именно небольшое значение отношения $f_0: f_m$. Это требует применения фильтра со значительной крутизной среза для выделения f_m и подавления f_0 . Кроме того, при малой девиации напряжение с частотой f_m на выходе $\Phi \mathcal{A}$ очень мало по сравнению с напряжением несущей. Для эффективной фильтрации используется резонансный RC-усилитель $P\mathcal{Y}_2$ с плавно регулируемой верхней частотой среза от 0,01 до 10 кгц.

Измерения на ВЧ проводятся с помощью вспомогательного ВЧ генератора с подходящей частотой и необходимой чистотой спектра. Оба ВЧ напряжения (входы *ВЧ* I и II) подаются в диодный смеситель *СМ*, и образовавшаяся разностная частота поступает в схему ИДЧ.

Резонансный *RC*-усилитель *PУ*₁ должен обладать во всем поддиапазоне плавной перестройки постоянной абсолютной крутизной фазо-частотной характеристики, т. е. добротность *Q* должна изменяться пропорционально частоте. При этом нежелательно изменение резонансного коэффициента передачи. Кроме того, при резонансе усилитель должен иметь между напряжениями входа и выхода разность фаз 90°. Резонансные *RC*-усилители пониженных частот [^{2–8}], «средних» частот [^{8–12}], а также и другие активные *RC*-системы [^{4,7}] в данном случае неприменимы. Пригодным оказался резонансный *RC*-усилитель повышенных частот [^{5–8, 13}]. Мы применили вариант «*в*» [⁸] с выходом от «*1*». В той же работе приведены и соответствующие формулы, определяющие поведение схемы.

Рис. 2. Резонансный RC-усилитель PY_1 : Все транзисторы типа П415. Диоды $\mathcal{I}_{1, 2}$ — диски от селенового столбика $ABC \oslash 5$ мм: \mathcal{I}_1 — 7 шт., \mathcal{I}_2 — 2 шт.

Резонансная частота осуществленного усилителя (рис. 2) определяется постоянными времени $\tau = R_0 C_0$ и усилением схемы. Усиление можно изменить с помощью $R_{11} - R_{12}$ (грубо) и $R_{21} - R_{22}$ (точно) в отношении 1:3 в обоих каскадах, чем обеспечивается плавное перекрытие по частоте также в отношении 1:3. В том же отношении изменяется и Q (от 5 до 15), сохраняя постоянной абсолютную крутизну фазо-частотной характеристики с точностью +5%. Используемая часть характеристики

составляет $\pm 6^{\circ}$ от резонансного значения 90°. Потери в емкостях C_0 ограничивают рост Q: при неограниченном увеличении усиления $Q_{max} = 1/2 \cdot 1/\text{tg} \delta$. Следовательно, применение металлобумажных конденсаторов с tg $\delta = (50 \div 120) \cdot 10^{-4}$ приведет к большой ошибке. Более пригодны бумажные конденсаторы с tg $\delta = (28 \div 35) \cdot 10^{-4}$.

Резонансный *RC*-усилитель *PУ*₂ должен обладать хорошей равномерностью модуля коэффициента передачи при перестройке и давать возможность получать различные характеристики фильтрации. Для этой цели наиболее подходит резонансный *RC*-усилитель «средних» частот

Рис. 3. Блок-схема резонансного RC-усилителя «средних» частот.

 $[^{8-12}]$. Как известно, такой усилитель (рис. 3) состоит из двух интеграторов и инвертирующего усилителя. Теория работы такой схемы опубликована для случая очень больших коэффициентов усиления ($10^3 \div 10^5$) интегрирующих усилителей. В этом случае Q определяется шунтированием или резистора R емкостью [$^{10, 11}$], или емкости C резистором [$^{9, 12}$].

Здесь приведены результаты анализа для случая умеренных коэффициентов усиления \sqrt{k} (но все же $k \gg 1$) усилителей $\mathcal{Y}\Pi T$ (рис. 3) при учете внутреннего сопротивления выходной ступени усилителя, что существенно влияет на поведение схемы на частотах вне резонансной области (см. табл. и рис. 4*a*).

Выход *I*

$$\vec{K}$$
 $\begin{vmatrix} \frac{k_4}{k_3} Q \frac{\sqrt[4]{k_3} + i \frac{1}{\sqrt{k}} \left(\frac{1}{\eta} + k \frac{R_i}{R} \eta\right)}{1 + Q \left(\eta - \frac{1}{\eta}\right)}$ $\begin{vmatrix} \frac{k_4}{k_3} Q \frac{-i \frac{1}{\eta} - \sqrt{\frac{k_3}{k}} \frac{R_i}{R} \left(2 - i \sqrt{\frac{k_3}{k}} \frac{R_i}{R} \eta\right)}{1 + Q \left(\eta - \frac{1}{\eta}\right)}$
 Q
 ω_0
 K_0 $\frac{k_4}{\sqrt{k_3}} Q$ $\sqrt{k_3}$; τ
 K_0 $\frac{k_4}{\sqrt{k_3}} Q$ $\frac{k_4}{\sqrt{k_3}} Q$
 Q^2
 Q
 $\frac{k_6}{K_{\text{H}}}$ $\frac{2Q^2}{Q^2}$ Q
 $\frac{k^{3/2}R^2}{2\sqrt{k_3}R_i^2}$
Примечаняя. $\vec{K} = \vec{U}_2$: \vec{U}_1 — полный коэффициент передачи;
 $Q = - \text{добротность;}$
 ω_0 — резолнансная частота;
 $K_0 = - \text{резолнансная частота;}$
 $K_0 = - \text{резолнансная частота;}$

 $K_{\rm H}$ — ", ", ", $\eta \ll 1$ $K_{\rm B}$ — ", ", ", $\eta \gg 1$

$$=\omega:\omega_0; \quad \tau=RC.$$

Рис. 4. Амлпитудно-частотные характеристики: *а* – теоретические для блок-схемы рис. 3 (см. таблицу); б – экспериментальные для *PY*₂ (см. рис. 5).

Резонансная частота осуществленного усилителя (рис. 5) определяется только постоянными времени $\tau = R_0 C_0$ и изменяется плавно с помощью $R_{11} - R_{12}$ (грубо) и $R_{21} - R_{22}$ (точно) в отношении 1:10. Схема позволяет выбирать один из трех видов частотных характеристик (рис. 46). Точность по амплитуде при изменении резонансной частоты и переключении вида характеристики составляет +2% и достигается с

Рис. 5. Резонансный RC-усилитель РУ2.

помощью трех юстировок, но только при условии соответствующей точности сопряжения резисторов $R_{11} - R_{12}$ и $R_{21} - R_{22}$. Для юстировки схемы при изменении R_0 служит R_3 , при переключении с «А» на «В» — R_4 (или же R_5) и при переключении с «В» на «С» — R_6 (юстировка коэффициента усиления $k_3 = 1$).

90

Заключение

1. Описанный ИДЧ обеспечивает точность измерения девиации $\pm 10\%$ в широких пределах изменения входного напряжения при условии, что амплитуда девиации $\Delta f \leq 50 \ \epsilon u$ и частота модуляции $f_m \leq 100 \ \epsilon u$ для поддиапазона несущей $f_0 = 2 \div 6 \ \kappa \epsilon u$. Это ограничение наложено со стороны полосы пропускания PV_1 . На других поддиапазонах Δf и f_m кратны соответствующим величинам для отмеченного выше поддиапазсна.

2. Резкость фильтрации позволяет еще качественно наблюдать модуляцию с $f_m \leqslant 500 \ eq$ (для поддиапазона 2 \div 6 кец и т. д.) без снижения чувствительности (см. следующий пункт).

3. Предел чувствительности ИДЧ определяется отношением сигнал/шум на входах $\Phi Д$. Собственные шумы схемы генерируются в основном входным каскадом \mathcal{Y}_1 и каскадами $P\mathcal{Y}_1$. Резонансный *RC*-усилитель повышенных частот допускает уровень напряжения сигнала приблизительно в

$$R_0: (1:\omega_0 C_0) = \omega_0 \tau = \sqrt{k} \cong 2Q$$

раз меньше, чем в обычном усилителе. Поэтому транзисторы PY_1 подобраны по НЧ шуму.

При входном напряжении не менее 15 *мв* результирующее отношение сигнал/шум на $\Phi \mathcal{A}$ составляет $\sigma = 5000$, что соответствует шумовой фазовой модуляции несущей с индексом $\beta = 1:2 \sigma = 10^{-4}$. Итак, на частоте $f_m = 200 \ \epsilon \mu$ возможно обнаружение девиации $\Delta f = \beta f_m = 0.02 \ \epsilon \mu$. Однако для $f_m < 200 \ \epsilon \mu$ этот предел не понижается вследствие возрастания спектральной плотности шумов полупроводниковых приборов на более низких частотах (1/f шумы).

4. Измеритель может быть использован и для регистрации дрейфа и флуктуации f_0 , а также переходных процессов в генераторах, связанных с изменением f_0 . Собственный дрейф прибора после часового «прогрева» не превышает 0,03% за час, что даже меньше дрейфа качественных *RC*-генераторов.

ЛИТЕРАТУРА

1. Сюгис А., Липпмаа Э., Изв. АН ЭССР, Физ. Матем., 16, № 1, 81 (1967).

- 2. Schneider E. E., Phil. Mag., 36, No. 257, 371 (1945).
- 3. Hyde F. J., Wireless Engr, 33, 271 (1956).
- 4. Hyde F. J., Electronic Engng, 29, No. 352, 260 (1957).
- 5. Криксунов В. Г., Электросвязь, 18, № 3, 67 (1964).
- 6. Bialko M., Electronics Lett., 3, No. 3, 102 (1967).
- 7. Сааков Е. О., Теорня и расчет избирательных RC-систем, М.-Л., 1954.
- 8. Сюгис А., Изв. АН ЭССР, Сер. физ.-матем. и техн. наук, 15, № 2, 191 (1966).
- 9. May F. T., Dandl R. A., Rev. Sci. Instr., 32, No. 4, 387 (1961).
- 10. Sutcliffe H., Electronic Engng, 36, No. 436, 399 (1964).
- 11. Sutcliffe H., Electronics Rec., 112, Feb., 301 (1965).
- 12. Faulkner E. A., Electronic Engng, 39, No. 471, 287 (1967).
- Кукк П. Л., Сюгис А. Ю., Варвас Ю. А., Липпмаа Э. Т., Тр. Таллинск политехн. ин-та, Сер. А, № 238, 3 (1966).

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 27/III 1968

A. SUGIS

RC-RESONANTSVÕIMENDITEGA KÕRGE TUNDLIKKUSEGA MS JA KS SAGEDUSDEVIATSIOONI MÕÕTJA

Kirjeldatakse sagedusmuunduseta deviatsioonimõõtjat, milles 90-kraadise faasinihke tekitamiseks enne faasdetektorit ja filtreerimiseks kasutatakse RC-resonantsvõimendeid.

A. SUGIS

SENSITIVE *lf* AND *rf* FREQUENCY DEVIATION METER USING RESONANT *RC*-AMPLIFIERS

A deviation meter without frequency conversion for the carrier frequency range $f_0 = 0.5 \div 50$ kHz has been described, having deviation measuring sensitivity limit of about $\Delta f = 0.02$ Hz and modulation index limit $\beta = 10^{-4}$ for modulating frequencies f_m below and above 200 Hz, respectively. A theory of operation of the resonant *RC*-amplifier incorporating two integrators with amplifiers having only moderate gains has been presented. The meter makes use of two resonant *RC*-amplifiers: one in the frequency discriminator circuit and the other for the sharp filtering of f_m from f_0 .