EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVIII KÖIDE FOOSIKA * MATEMAATIKA. 1969, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVIII ФИЗИКА * МАТЕМАТИКА. 1969, № 1

https://doi.org/10.3176/phys.math.1969.1.09

Ю. ИБРУС

СПЕКТРОФОТОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ HD 190603

Звезда HD 190603 (в каталоге Мерилла и Бэруелл [¹] под номером MWC 326) является сверхгигантом класса B2 звездной величины 5^m.7. Эта звезда исследована Вильямсом только по одной спектрограмме [²]. Билс [³] считает HD 190603 звездой типа Р Лєбедя. Автор настоящей работы провел исследование атмосферы этой звезды на основании спектрограмм, полученных Крымской астрофизической обсерваторией с помощью диффракционного спектрографа 122-см рефлектора. Всего использовано три спектрограммы: одна с дисперсией 15 Å/мм и две — 36 Å/мм.

1. Обработка наблюдательного материала. Эквивалентные ширины спектральных линий измерены обычным способом, по регистрограммам, полученным на микрофотометре МФ4 с увеличением около 90 раз. Результаты измерений приведены в табл. 1.

Таблица 1

1 2 3 4 5 6 7 3686,83 H19 4 10,15 0,24 $-6,82$ $R_i = 0,17$ 3691,56 H18 4 10,15 0,28 $-6,67$ $R_i = 0,12$ 3697,15 H17 3 10,15 0,28 $-6,67$ $R_i = 0,19$ 3703,86 H16 3 10,15 0,40 $-6,59$ $R_i = 0,21$ 3705,00 He I 25 20,87 0,16 $-5,34$ 3711,97 H15 3 10,15 0,48 $-6,40$ $R_i = 0,21$ 3721,94 H14 3 10,15 0,48 $-6,30$ $R_i = 0,22$ 3750,15 H12 2 10,15 0,86 $-6,07$ $R_i = 0,26$ 3797,90 H10 2 10,15 0,86 $-5,78$ 3819,61 3819,76 He I 60 21,13 0,14 $-6,42$ 3838,65 3911,96 O II 17	λ	Элемент	Номер мульти- плета	е	Wλ	log gf λ	Примечания
3686.83H19410,150,24 $-6,82$ $R_i = 0,17$ 3691,56H18410,150,20 $-6,74$ $R_i = 0,12$ 3697,15H17310,150,28 $-6,67$ $R_i = 0,12$ 3703,86H16310,150,40 $-6,59$ $R_i = 0,22$ 3705,00He I2520,870,16 $-5,34$ 3711,97H15310,150,45 $-6,50$ $R_i = 0,22$ 3734,37H13310,150,73 $-6,19$ $R_i = 0,22$ 3750,15H12210,150,73 $-6,19$ $R_i = 0,22$ 3770,63H11210,150,86 $-6,07$ $R_i = 0,26$ 3797,90H10210,150,98 $-5,78$ 3819,61He I 22 20,870,60 $-5,07$ 3819,76He I 22 20,870,60 $-5,07$ 3819,76He I 22 0,15 $-6,66$ $-6,66$ 3835,87H9210,150,98 $-5,78$ 3890,05H8210,15 $-6,66$ $-6,66$ 3920,68C.II416,260,08 $-4,67$ 3920,68C.II416,260,08 $-4,67$ 3926,53He I5821,130,27 $-6,06$ 3935,85N.II6 $ -$ 3954,37O.II623,340,19 $-4,30$ $R_e = 0,34$ 3973,26O.II <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>6</td> <td>7</td>	1	2	3	4	5	6	7
3091,50 H18 4 10,15 0,20 $-6,74$ $R_i = 0,12$ 3697,15 H17 3 10,15 0,28 $-6,67$ $R_i = 0,12$ 3703,86 H16 3 10,15 0,40 $-6,59$ $R_i = 0,22$ 3705,00 He I 25 20,87 0,16 $-5,34$ 3711,97 H15 3 10,15 0,48 $-6,40$ $R_i = 0,22$ 3734,37 H13 3 10,15 0,48 $-6,40$ $R_i = 0,22$ 3750,15 H12 2 10,15 0,60 $-5,93$ $R_i = 0,26$ 3770,63 H11 2 10,15 0,60 $-5,93$ $R_i = 0,26$ 3707,90 H10 2 10,15 0,60 $-5,93$ $R_i = 0,26$ 3806,56 Si III 5 21,63 0,17 $-3,72$ 3819,76 3819,76 He I 2 20,87 0,60 $-5,07$ 3889,05 3889,05 H8 2 10,15 0,98 $-5,78$ 3919,90 O II	3686,83	H19	4	10,15	0,24	-6,82	$R_i = 0.17$
3703,86 H16 3 10,15 0,23 $-0,63$ $R_1=0,22$ 3703,86 H16 3 10,15 0,45 $-6,59$ $R_i=0,21$ 3701,97 H15 3 10,15 0,45 $-6,50$ $R_i=0,22$ 3721,94 H14 3 10,15 0,48 $-6,40$ $R_i=0,22$ 3721,94 H14 3 10,15 0,54 $-6,30$ $R_i=0,22$ 3734,37 H13 3 10,15 0,54 $-6,30$ $R_i=0,22$ 3750,15 H12 2 10,15 0,86 $-6,07$ $R_i=0,26$ 3797,90 H10 2 10,15 0,86 $-6,07$ $R_i=0,26$ 3806,56 Si III 5 21,63 0,17 $-3,72$ 3819,61 He I 2 20,87 0,60 $-5,07$ 3835,37 H9 2 10,15 0,98 $-5,78$ 3871,82 He I 60 21,13 0,14 $-6,42$ 3888,65 He I 2 10,15 $0,70$	3697,55	H18 H17	4	10,15	0,20	-6,74 -6.67	$R_i = 0.12$ $R_i = 0.19$
3705,00 He I 25 20,87 0,16 -5,34 3711,97 H15 3 10,15 0,45 -6,50 $R_i = 0,21$ 3721,94 H14 3 10,15 0,48 -6,40 $R_i = 0,20$ 3734,37 H13 3 10,15 0,73 -6,19 $R_i = 0,22$ 3750,15 H12 2 10,15 0,73 -6,19 $R_i = 0,26$ 3770,63 H11 2 10,15 0,86 -6,07 $R_i = 0,26$ 3770,63 H11 2 10,15 0,86 -6,07 $R_i = 0,26$ 3777,90 H10 2 10,15 0,86 -5,73 $R_i = 0,26$ 3819,61 He I 22 20,87 0,60 -5,77 3835,37 H9 2 10,15 0,98 -5,78 3871,82 He I 60 21,13 0,14 -6,42 3888,65 He I 2 393 3919,29 O II 17 25,55 0,06 -4,66 - Meжзвездный 3954,37 O I	3703.86	H16	3	10,15	0,20	-6.59	$R_i = 0.22$
3711,97 H15 3 10,15 0,45 $-6,50$ $R_i = 0,21$ 3721,94 H14 3 10,15 0,48 $-6,40$ $R_i = 0,20$ 3734,37 H13 3 10,15 0,54 $-6,30$ $R_i = 0,22$ 3750,15 H12 2 10,15 0,73 $-6,19$ $R_i = 0,22$ 3770,63 H11 2 10,15 0,86 $-6,07$ $R_i = 0,26$ 3797,90 H10 2 10,15 0,60 $-5,93$ $R_i = 0,26$ 3819,61 He I 2 20,87 0,60 $-5,77$ 3819,76 He I 2 10,15 0,98 $-5,78$ 3871,82 He I 60 21,13 0,14 $-6,42$ 3889,05 H8 2 10,15 0,70 Бленд 3911,96 0 II 17 25,55 0,06 $-4,66$ 3920,68 C II 4 16,26 0,08 $-4,67$ 3933,66 C a II $ -$	3705,00	HeI	25	20,87	0,16	-5.34	
3721,94 H14 3 10,15 0,48 $-6,40$ $R_i = 0,20$ 3734,37 H13 3 10,15 0,54 $-6,30$ $R_i = 0,22$ 3750,15 H12 2 10,15 0,73 $-6,19$ $R_i = 0,26$ 3770,63 H11 2 10,15 0,86 $-6,07$ $R_i = 0,26$ 3797,90 H10 2 10,15 0,60 $-5,93$ $R_i = 0,26$ 3806,56 Si III 5 21,63 0,17 $-3,72$ 3819,61 He I 22 20,87 0,60 $-5,07$ 3835,37 H9 2 10,15 0,98 $-5,78$ 3871,82 He I 60 21,13 0,14 $-6,42$ 3888,65 He I 2 $7,55$ 0,10 $-4,33$ 3911,96 O II 17 25,55 0,06 $-4,66$ 3920,68 C II 4 16,26 0,08 $-4,67$ 3925,85 N II 6 $23,34$ 0,19 $-6,30$ 3973,26 <td>3711,97</td> <td>H15</td> <td>3</td> <td>10,15</td> <td>0,45</td> <td>-6,50</td> <td>$R_i = 0,21$</td>	3711,97	H15	3	10,15	0,45	-6,50	$R_i = 0,21$
3734.37 H13 3 10,15 0,54 $-6,30$ $R_i = 0,22$ 3750,15 H12 2 10,15 0,73 $-6,19$ $R_i = 0,22$ 3770,63 H11 2 10,15 0,86 $-6,07$ $R_i = 0,26$ 3770,63 H10 2 10,15 0,60 $-5,93$ $R_i = 0,26$ 3806,56 Si III 5 21,63 0,17 $-3,72$ 3819,61 He I 22 20,87 0,60 $-5,07$ 3835,37 H9 2 10,15 0,98 $-5,78$ 3871,82 He I 60 21,13 0,14 $-6,42$ 3888,65 He I 2 $70,70$ Бленд 3911,96 O II 17 25,55 $0,10$ $-4,33$ 3912,09 O II 17 25,55 $0,06$ $-4,66$ 3920,68 C II 4 16,26 $0,08$ $-4,67$ 3925,85 N II 6 $10,19$ Бленд 3973,26 O II 6 23,34	3721,94	H14	3	10,15	0,48	-6,40	$R_i = 0,20$
3750,15H12210,150,73 $-6,19$ $R_i = 0,22$ 3770,63H11210,150,86 $-6,07$ $R_i = 0,26$ 3797,90H10210,150,60 $-5,93$ $R_i = 0,26$ 3806,56Si III521,630,17 $-3,72$ 3819,61He I220,870,60 $-5,07$ 3835,37H9210,150,98 $-5,78$ 3871,82He I6021,130,14 $-6,42$ 3888,65He I20,70Бленд3911,96O II1725,550,10 $-4,33$ 3912,09O II1725,550,06 $-4,66$ 3920,68C II416,260,08 $-4,67$ 3933,66Ca II $ -$ 0,46 $-$ 3954,37O II6 $23,34$ 0,19 $-5,39$ 3970,07H _z 110,151,03 $-5,39$ Центральная глубина3973,26O II623,340,10 $-5,10$ 3995,00N II1218,420,44 $-4,10$ 4009,27He I5521,130,41 $-5,82$	3734,37	H13	3	10,15	0,54	-6,30	$R_i = 0,22$
3770,03 H11 2 10,15 0,86 $-6,07$ $R_i = 0,26$ 3797,90 H10 2 10,15 0,60 $-5,93$ $R_i = 0,26$ 3806,56 Si III 5 21,63 0,17 $-3,72$ 3819,61 He I 22 20,87 0,60 $-5,07$ 3819,76 He I 2 20,87 0,60 $-5,78$ 3835,37 H9 2 10,15 0,98 $-5,78$ 3871,82 He I 60 21,13 0,14 $-6,42$ 3888,65 He I 2 0,70 Бленд 3911,96 O II 3 17 25,55 0,10 $-4,33$ 3912,09 O II 17 25,55 0,06 $-4,66$ 3920,68 C II 4 16,26 0,08 $-4,67$ 3933,66 Ca II - - 0,46 - Межзвездный 3954,37 O II 6 23,34 0,19 $-4,30$ $R_e = 0,34$ 3973,26 O II 6	3750,15	H12	2	10,15	0,73	-6,19	$R_i = 0.22$
379,90 1110 2 10,15 0,60 $-3,93$ $R_1 = 0,25$ 3806,56 Si III 5 21,63 0,17 $-3,72$ 3819,61 He I 22 20,87 0,60 $-5,07$ 3835,37 H9 2 10,15 0,98 $-5,78$ 3871,82 He I 60 21,13 0,14 $-6,42$ 3888,65 He I 2 10,15 0,70 Бленд 3911,96 O II 3 17 25,55 0,10 $-4,33$ 3919,29 O II 17 25,55 0,06 $-4,66$ 3920,68 C II 4 16,26 0,08 $-4,67$ 3926,53 He I 58 21,13 0,27 $-6,06$ 3935,85 N II 6 \right \right \right \right 3970,07 H ₂ 1 10,15 1,03 $-5,39$ ILentpanbhag ray6mta 3973,26 O II 6 23,34 0,19 $-4,30$ $R_c=0,34$ 3982,72 O II	3770,03	HII	2	10,15	0,86	-0,07	$R_i = 0.20$
3000,00 3111 3 21,03 0,17 $= -5,72$ 3819,61 He I 22 20,87 0,60 $-5,07$ 3835,37 H9 2 10,15 0,98 $-5,78$ 3871,82 He I 60 21,13 0,14 $-6,42$ 3889,05 H8 2 10,15 $0,70$ Бленд 3911,96 O II 17 25,55 $0,10$ $-4,33$ 3919,29 O II 17 25,55 $0,06$ $-4,66$ 3920,68 C II 4 16,26 $0,08$ $-4,67$ 3926,53 He I 58 21,13 $0,27$ $-6,06$ 39354,37 O II 6 \right $\right) 0,19 Бленд 3970,07 Hz 1 10,15 1,03 -5,39 Центральная глубина 3973,26 O II 6 23,34 0,19 -4,30 R_c=0,34 3982,72 O II 6 23,34 0,10 -5,10 3995,00 N II 12 $	3806 56	Silli	2 5	10,15	0,00	- 0,90	$R_i = 0,20$
3819,76 He I 22 20,87 0,60 $-5,07$ 3835,37 H9 2 10,15 0,98 $-5,78$ 3871,82 He I 60 21,13 0,14 $-6,42$ 3888,65 He I 2 10,15 $0,70$ Бленд 3911,96 O II 2 10,15 $0,70$ Бленд 3911,96 O II 17 25,55 $0,10$ $-4,33$ 3919,29 O II 17 25,55 $0,06$ $-4,66$ 3920,68 C II 4 $16,26$ $0,08$ $-4,67$ 3926,53 He I 58 21,13 $0,27$ $-6,06$ 39354,37 O II 6 \right \right \right $0,19$ Бленд 3970,07 H _z 1 10,15 $1,03$ $-5,39$ Центральная глубина 3973,26 O II 6 23,34 $0,19$ $-4,30$ $R_c=0,34$ 3982,72 O II 6 23,34 $0,10$ $-5,10$ 3995,00 N II </td <td>3819.61</td> <td>HeI</td> <td>)</td> <td>21,00</td> <td>0,17</td> <td>-0,12</td> <td></td>	3819.61	HeI)	21,00	0,17	-0,12	
3833,37 H9 2 10,15 0,98 $-5,78$ 3871,82 He I 60 21,13 0,14 $-6,42$ 3888,65 He I 2 10,15 0,70 Бленд 3911,96 O II 2 10,15 0,70 Бленд 3911,96 O II 17 25,55 0,10 $-4,33$ 3912,09 O II 17 25,55 0,06 $-4,66$ 3920,68 C II 4 16,26 0,08 $-4,67$ 39354,53 He I 58 21,13 0,27 $-6,06$ 39354,37 O II 6 $\}$ 0,19 Бленд 3955,85 N II 6 $\}$ 0,19 Бленд 3970,07 H _z 1 10,15 1,03 $-5,39$ Центральная глубина 3973,26 O II 6 23,34 0,10 $-5,10$ 3982,72 O II 6 23,34 0,10 $-5,10$ 3995,00 N II 12 18,42 0,44 $-4,10$	3819.76	HeI	22	20,87	0,60	-5,07	
3871,82 He I 60 $21,13$ $0,14$ $-6,42$ 3888,65 He I 2 $0,70$ Бленд 3911,96 O II 2 $0,70$ Бленд 3911,96 O II 17 $25,55$ $0,10$ $-4,33$ 3912,09 O II 17 $25,55$ $0,06$ $-4,66$ 3920,68 C II 4 $16,26$ $0,08$ $-4,67$ 3926,53 He I 58 $21,13$ $0,27$ $-6,06$ 3933,66 Ca II $ 0,46$ $-$ Межзвездный 3955,85 N II 6 $\}$ $0,19$ Бленд 3970,07 H _z 1 $10,15$ $1,03$ $-5,39$ Центральная глубина 3973,26 O II 6 $23,34$ $0,19$ $-4,30$ $R_c=0,34$ 3982,72 O II 6 $23,34$ $0,10$ $-5,10$ 3995,00 N II 12 $18,42$ $0,44$ $-4,10$ 4009,27 He I 55 21	3835,37	H9	2	10,15	0,98	-5,78	
3888,65 He I 2 10,15 0,70 Бленд 3911,96 O II 17 25,55 0,10 -4,33 3912,09 O II 17 25,55 0,06 -4,66 3920,68 C II 17 25,55 0,06 -4,66 3920,68 C II 4 16,26 0,08 -4,67 3933,66 Ca II - - 0,46 - Межзвездный 3955,85 N II 6 } 0,19 Бленд 3970,07 Hz 1 10,15 1,03 -5,39 Центральная глубина 3973,26 O II 6 23,34 0,19 -4,30 $R_c=0,34$ 3982,72 O II 6 23,34 0,10 -5,10 3985,00 N II 12 18,42 0,44 -4,10 4009,27 He I 55 21,13 0,41 -5,82	3871,82	He I	60	21,13	0,14	-6,42	
3889,05 H8 2 10,15 0,10 Бленд 3911,96 O II $\}$ 17 25,55 0,10 -4,33 3912,09 O II $\}$ 17 25,55 0,06 -4,66 3920,68 C II 4 16,26 0,08 -4,67 3926,53 He I 58 21,13 0,27 -6,06 3933,66 Ca II - - 0,46 - Межзвездный 3955,85 N II 6 $\}$ 0,19 Бленд 3970,07 Hz 1 10,15 1,03 -5,39 Центральная глубина 3973,26 O II 6 23,34 0,19 -4,30 $R_c=0,34$ 3982,72 O II 6 23,34 0,10 -5,10 3995,00 N II 12 18,42 0,44 -4,10 4009,27 He I 55 21,13 0,41 -5,82	3888,65	He I	2		0.70		Бленл
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3889,05	H8	2	10,15	1 0,10		Durcha
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3911,96	OII	} 17	25.55	0.10	-4.33	
3919,29 0 II 17 29,35 0,06 $-4,06$ 3920,68 C II 4 16,26 0,08 $-4,67$ 3920,53 He I 58 21,13 0,27 $-6,06$ 3933,66 Ca II - - 0,46 - Межзвездный 3954,37 O II 6 - - 0,46 - Межзвездный 3955,85 N II 6 - - 0,19 Бленд 3970,07 H _z 1 10,15 1,03 -5,39 Центральная глубина 3973,26 O II 6 23,34 0,19 -4,30 R_c =0,34 3982,72 O II 6 23,34 0,10 -5,10 3995,00 N II 12 18,42 0,44 -4,10 4009,27 He I 55 21,13 0,41 -5,82	3912,09	OII	1 17	OFFE	0.00	1.00	
3926,53 He I 58 21,13 0,27 $-6,06$ 3933,66 Ca II — — 0,46 — Межзвездный 3954,37 O II 6 $\}$ 0,19 Бленд 3955,85 N II 6 $\}$ 0,19 Бленд 3970,07 H _z 1 10,15 1,03 $-5,39$ Центральная глубина 3973,26 O II 6 23,34 0,19 $-4,30$ $R_c=0,34$ 3982,72 O II 6 23,34 0,10 $-5,10$ 3995,00 N II 12 18,42 0,44 $-4,10$ 4009,27 He I 55 21,13 0,41 $-5,82$	3020 68	CII	17	20,00	0,00	-4,00	
3933,66 Ca II — — 0,46 — Межзвездный 3954,37 O II 6 $\}$ 0,19 Бленд 3955,85 N II 6 $\}$ 0,19 Бленд 3970,07 Hz 1 10,15 1,03 —5,39 Центральная глубина 3973,26 O II 6 23,34 0,19 —4,30 $R_c=0,34$ 3982,72 O II 6 23,34 0,10 —5,10 3995,00 N II 12 18,42 0,44 —4,10 4009,27 He I 55 21,13 0,41 —5,82	3926,53	Hel	58	21 13	0.08	-6.06	
3954,37 О II 6 } 0,19 Бленд 3955,85 N II 6 } 0,19 Бленд 3970,07 Hz 1 10,15 1,03 -5,39 Центральная глубина 3973,26 O II 6 23,34 0,19 -4,30 Rc=0,34 3982,72 O II 6 23,34 0,10 -5,10 3995,00 N II 12 18,42 0,44 -4,10 4009,27 He I 55 21,13 0,41 -5,82	3933.66	Ca II	-	21,10	0.46	0,00	Межзвездный
3955,85 N II 6 j 0,19 Бленд 3970,07 H_z 1 10,15 1,03 -5,39 Центральная глубина 3973,26 O II 6 23,34 0,19 -4,30 $R_c=0,34$ 3982,72 O II 6 23,34 0,10 -5,10 3995,00 N II 12 18,42 0,44 -4,10 4009,27 He I 55 21,13 0,41 -5,82	3954,37	OII	6		1 0.10		
3970,07 Hz 1 10,15 1,03 -5,39 Центральная глубина 3973,26 O II 6 23,34 0,19 -4,30 Rc=0,34 3982,72 O II 6 23,34 0,10 -5,10 3995,00 N II 12 18,42 0,44 -4,10 4009,27 He I 55 21,13 0,41 -5,82	3955,85	NII	6		3 0,19		Бленд
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3970,07	Ha	1	10,15	1,03	-5,39	Центральная глубина
3982,72 O II 6 23,34 0,10 -5,10 3995,00 N II 12 18,42 0,44 -4,10 4009,27 He I 55 21,13 0,41 -5,82	3973,26	OII	6	23,34	0,19	-4,30	$R_c = 0,34$
3995,00 N 11 12 18,42 0,44 -4,10 4009,27 He I 55 21,13 0,41 -5,82	3982,72	OII	6	23,34	0,10	-5,10	
4009,27 He I 55 21,13 0,41 -5,82	3995,00	NII	12	18,42	0,44	-4,10	
	4009,27	Hel	55	21,13	0,41	-5,82	
4026,50 He I 18 20,87 0,69 $-4,77$	4026,36	Hel	18	20,87	0,69	-4.77	
407916 OIL 10 9554 0.94 _3.80	4072 16	OII	10	95.54	0.94	- 3.90	

Ю. Ибрус

Продолжение табл.

1	2	3	4	5	6	7	
4075.87	OII	10	25 55	0.20	_2.62		- 2003
4078.86	OII	10	25,53	0,20	- 5,05		
4088.86	SiIV	10	23,95	0.20	-4.90		
4092.94	OII	10	25,55	0.14	-4,20		
4101.74	Ha	10	10.15	0.98	-5.14	$R_{1} = 0.39$	
4104 74	OII		05 72	0.11	4.00	1(1-0,02	
4110.80	OII	20	20,70	0,11	-4,09		
4116.10	SUV	20	20,70	0,14	-4,40		
4110.99	OII	20	20,90	0,17	-4,30		
4120.00	Hel	16	20,75	0,15	-0,00		
4121 48	OII	10	20,07	0,27		Бленд	
4132.81	OII	10	20,72	0.07	1.40		
4143.76	Hel	53	20,72	0,07	-4,40		
4153.30	OII	10	21,10	0,25	- 1.98		
4168.97	HeI	59	91 13) 0,11	-4,20		
4169.23	OII	19	21,10	0,13		Бленд	
4267.1	CII	6	17 97	0.15	-3.50		
4336.86	OII	2	22.88	0.10	-5.08		
4340.47	H	ĩ	10.15	0.86	-4.81	$P_{1} = 0.20$	
1245 56	OII	id en aroos	00.00	0,00	4,01	1(1-0,25	19 .103 .0
4040,00	OII	16	22,00	0,13	-4,00		
4347,42	OII	10	20,00	0,05	-4,34		
4366 00	OII	2 9	22,90	0,55	-4,20		
4387.03	Hal	51	22,90	0,27	-4,00		
4414 91	OII	5	21,10	0.02	-0,20		
4416.08	OIL	5	20,04	0,25	-4,02		
4447 03	NII	15	20,02	0,20	-4,50		
4448 91	OII	35	20,02	0.08	-4.07		
4452 38	OII	5	20,24	0.07	-5.10		
4471 6	Hel	14	20,04	0.78	-431		
4481.33	Moll	4	8.83	0.38	-3.35		
4552 65	Silli	2	18.92	0.85	-4.04		
4567.87	Si III	2	18.92	0.62	-4.25		
4574.78	SiIII	. 2	18.92	0.36	-4.72		
4590.97	OIL	15	25.55	0.43	-3.85		
4596.17	OII	15	25.55	0.12	-4.01		
4607.15	NII	5	18.38	0.12	-4.80		
4630,54	NII	5	18.40	0.62	-4.14		
4641.81	OII	1	22.88	1 0.05		F	
4643.09	NII	5	18,40	0,35		Бленд	
4661.64	OII	1	22,88	0,14	-4.45		
4676.23	OII	1	22,90	0,18	-4,62		
4713.14	TTT	10	00.97	0.94	5.91		
4713,37	Hel	12	20,87	0,24	-0,01		

Кроме эквивалентных ширин, в табл. 1 приведены и прочие данные, необходимые в дальнейших вычислениях: в графе 4 — потенциал возбуждения нижнего уровня и в графе 6 — сила осциллятора в виде $\log g f \lambda$. Силы осцилляторов заимствованы из [4-5]. В качестве окончательного значения какого-либо f использовалось среднее из значений, приведенных в этих источниках. Полученные эквивалентные ширины сравнивались с данными Вильямса [2] (см. рис. 1). Как видно из рисунка, в результатах систематических различий не отмечается.

80

 Анализ спектра водорода. А. Для нахождения электронной концентрации N_e использовалась формула Инглиса—Теллера:

$$\log N_e = 23,26 - 7,5 \log n_m, \tag{1}$$

где n_m обозначает номер последней наблюдаемой бальмеровской линии. Величина n_m определялась графически. В данном случае употреблялись эквивалентные ширины W_{λ} и остаточные интенсивности $R_i(n)$. На график (рис. 2) наносились W_{λ} (или R_i) против n, где n — номер соответствующей бальмеровской линии. Путем экстраполяции получаемой кривой до $W_{\lambda} = 0$ (или $R_i = 0$) определялись n_m . По ним получали $n_m = 22$ (по W_{λ}) и $n_m = 26$ (по R_i). Соответствующие значения $\log N_e$ по (1) 13,21 и 12,68. В дальнейшем использовалось среднее значение $\log N_e = 12,95$.

Б. Число водородных атомов над 1 см² фотосферы N₀₂ H определено с помощью формулы Унзольда:

$$W_{\lambda} = \frac{\pi e^2 \lambda^2}{m c^2} \int N_{02} H.$$
⁽²⁾

По этой формуле вычислили формальные значения N₀₂H' для каждой водородной линии и графически получили по максимуму кривой $\log N_{02}H = 15,58$ (рис. 3, кривая *a*). Чтобы избежать ошибки, которая возникает вследствие наложения крыльев линий высших членов бальмеровской серии, мы прибавили к найденному значению поправку +0,16 [9]. Окончательное значение $\log N_{02}H = 15,74.$ Другой способ исправления N₀₂H состоит в следующем [10]: каждое полученное ПО

(2) значение $N_{02}H$ умножается на $\frac{R_c}{R_c - R_n/2}$, где R_c — максимальная глубина линии в спектре и R_n — глубина данной линии. Построенная этим методом кривая δ (рис. 3) дает log $N_{02}H = 15,74$.

 Спектр гелия. Число атомов гелия над 1 см² фотосферы получено таким же способом, как и у водорода. Найдено, что log N_{2'P}H = 14,48

81

и log N_{2³P}H = 14,28. Несогласие с законом Больцмана вызвано, по-видимому, ошибками измерения.

3. Кривая роста. А. В качестве теоретической кривой роста мы использовали кривую, рассчитанную Унзольдом [11]. Предварительная кривая роста составлена по линиям О II, Si III и Si IV. Значения log 🔒

натную сетку. На последней была отложена и теоретическая кривая. Смещением отдельных мультиплетов параллельно осям мы стремились добиться их наилучшего совпадения с теоретической кривой. На основании предварительной кривой были получены населенности различных уровней этих ионов. Предполагая, что имеет место закон Больцмана, можно написать:

$$\log \frac{N_i H}{g_i} = \log \frac{N_k H}{g_k} - \Theta_{\varepsilon} \Delta \varepsilon_{ik},$$

где параметр $\Theta_{\varepsilon} = \frac{5040}{T_{\varepsilon}}$ содержит температуру возбуждения. Θ_{ε} найдена графически (рис. 4). Для численного значения T мы получили 22 000° К.

Окончательная кривая роста построена следующим образом. Абсцисса теоретической кривой Унзольда дается формулой

$$X = \log \frac{N_i H f \lambda}{2\pi R_c v_T}.$$
 (3)

Для определенного атома или иона это выражение можно преобразовать так: с помощью формулы Больцмана выражаем населенность і-го уровня $N_i H$ через населенности основного уровня $N_0 H$:

$$\log \frac{N_i H}{g_i} = \log \frac{N_0 H}{g_0} - \Theta_{\varepsilon} \varepsilon_i.$$

Подставляя это выражение в (3), получаем

$$X = \log \frac{1}{2\pi R_{e} v_{r}} + \log \frac{N_{0}H}{g_{0}} + \log g_{i} f \lambda - \Theta_{e} \varepsilon_{i}.$$

В качестве v_T употребляем полученную по предварительной кривой роста величину 53 км/сек.

Ординатой теоретической кривой является

$$Y = \log \frac{c}{2R_c v_T} + \log \frac{W_{\lambda}}{\lambda}.$$

Окончательную наблюдаемую кривую роста построим в координатах

$$\begin{aligned} X' &= \log g_i f \lambda - \Theta_{\bullet} \varepsilon_i, \\ Y' &= \log \frac{W_{\lambda}}{\lambda}. \end{aligned}$$

Чтобы совместить теоретическую и наблюдаемую кривые, последнюю нужно перемещать по обеим осям. При этом сдвиг по оси Y

$$\Delta Y = Y - Y' = \log \frac{c}{\sqrt{R}}$$

определяет турбулентную скорость v_T . В качестве окончательного значения последней получаем 51 км/сек. Окончательная кривая роста приведена на рис. 5.

83

Tabauna 2

Б. Можно думать, что в атмосферах сверхгигантов роль столкновений в процессе расширения спектральных линий значительно меньше, чем в атмосферах звезд главной последовательности (см., например, [⁶]). Учитывая это, мы построили кривые роста для водорода и гелия (рис. 6). Для сравнения по данным [¹²] построены такие же кривые и для

· Clarker and	Caller and and all Mail			I uonuigu 2
Элемент	Определяемая величина	HD 190603	ж Cas	Метод определения
Н	$\log N_{02} H$	15,74 15,66	15,50 15,40	Метод Унзольда Кривая роста
He	$\log N_{2^1P}H$	14,48 14,64	14,50 14,37	Метод Унзольда Кривая роста
He	$\log N_{2^{3}P}H$	14,28 14,86	14,74 14,90	Метод Унзольда Кривая роста
	UT	112 37 51	103 34 31	Кривая роста водорода Кривая роста гелия Кривая роста других элементов
γ] α)			¥ •0,5	5)
		a proyente	0	
1	. ***	as 1	-0,5 -	e Cas He
-1-				renetae. Solution of the state of the second s
0	+1	+2 X	Sel - to	•1 •2 X

Рис. 7.

5*

к Cas (рис. 7). Результаты приведены в табл. 2. Как видно из таблицы, в случае гелия турбулентная скорость сравнительно хорошо согласуется с определенной по линиям других элементов, но по линиям водорода она значительно больше.

4. Химический состав атмосферы. При определении содержания какого-либо элемента в звездной атмосфере следует учитывать вклады ионов различной кратности ионизации в общее число атомов этого элемента. Нужную для расчетов температуру ионизации определяем по формуле

$$T_{i} = \frac{3360 (\chi - \varepsilon_{k} + \varepsilon_{j})}{\frac{2}{3} \log \frac{N_{k}}{N_{e} N_{j}} \frac{g_{j}}{g_{k}} + 10,43 + \log T_{i}},$$
(4)

взятой из работы А. Боярчука [7]. Здесь χ — потенциал ионизации; ε_i и ε_k — потенциалы возбуждения уровней *j* и *k* в электрон-вольтах. Величины $\frac{N_k}{g_k}$ и $\frac{N_j}{g_j}$ получаем по кривой роста. По линиям ионов Si III и Si IV получена температура $T_i = 20\,000^\circ$ К. Для учета ионов различной кратности ионизации использованы формулы Больцмана и Саха. Так как T_{ε} — T_i мало, а температура высока, то ионизация происходит большей частью с возбужденных уровней (тогда $\chi_h - \varepsilon_{n,i}$ также мало). Полагая, что $T_i = T_{\varepsilon}$, получаем окончательно

$$\log N_{r+1} = 9,14 + \log \frac{N_{r,i}}{g_{r,i}} + \log u_{r+1} - \Theta_i (\chi_r - \varepsilon_{r,k}),$$
 (5)

Таблица 3

где u_{r+1} — сумма по состояниям r+1-кратно ионизованного атома, χ_r — потенциал ионизации и $\varepsilon_{r,k}$ — потенциал возбуждения k-го уровня

г-кратно ионизованного атома. Полученные относительные числа атомов в атмосфере звезды приведены в табл. З. Для сравнения там же приведен и средний химический состав звезд класса В по данным [¹³] и [¹⁴]. Содержания элементов нормированы так, что логарифмы содержания водорода равны 12,00.

5. Ускорение силы тяжести может быть вычислено, с одной стороны, по спектроскопическим данным. Для этого употребляем формулу

$$g_{\rm cn} = \frac{4P_e}{m_H \sum_i N_i H \cdot A_i},$$

где N_iH — число атомов какого-либо элемента над 1 cm^2 фотосферы и A — атомный вес этого элемента; m_H — масса атома водорода и P_e — электронное давление. Вывод этой формулы можно найти в [¹⁵]. По известным P_e и N_iH получаем $g_{cn} = 280 \ cm/ce\kappa^2$. С другой стороны, мы можем вычислить g на основании динамических соображений — по массе и радиусу звезды:

$$g_{\mathrm{дин}} = g_{\odot} \frac{\mathfrak{M}_*}{R_*^2}.$$

Элемент HD 190603 [13] [14] Η 12,00 12.00 12.00 He 11,11 11,20 11,34 C 7,86 8,30 8,30 N 8.54 8,18 8,54 0 8,76 8.77 8.76 Mg 8,08 7,94 7,93 Si 7,89 7,45 7,69

84

(6)

Кроме того, используем соотношения, заимствованные из [16] и [17]:

$$\log R_* = -0.2 M_{6on} - 2 \log T_{i\phi\phi} + 8.47,$$

$$\log L_* = 1.90 - 0.4 M_{6on},$$

$$\log L_* = -0.13 + 2.79 \log \mathfrak{M}_* + 0.28 \log R_*.$$
(7)

После перехода к абсолютной визуальной величине M_v из уравнений (6) и (7) получаем

$$\log g_{\rm gHH} = -12.67 + 4.2 \log T_{\rm s \phi \phi} + 0.277 (M_v + BC). \tag{8}$$

Здесь *BC* — болометрическая поправка. Величина *M*_v определена по видимому блеску и эквивалентной ширине межзвездной линии Са II λ 3933 в спектре звезды. Расстояние *r* определяется формулой

$$r = 2.66 W_{\lambda} (3933)$$
.

где r — в килопарсеках и W_λ (3933) — в ангстремах [¹⁸]. Абсолютная величина

$$M_v = m_v + 5 - 5\log r + Ar.$$

Межзвездное поглощение A учтено по [¹⁹]. Из (8) имеем $g_{дин} = 1070 \ cm/ce\kappa^2$. Это различие между g_{cn} и $g_{дин}$ может быть обусловлено неточностью использованных при расчете $g_{дин}$ формул, а быть может является и некоторым намеком на существование у этой звезды протяженной атмосферы.

Суммируем коротко полученные в работе данные:

1) средняя электронная концентрация в атмосфере звезды определяется соотношением $\log N_e = 12,95$;

2) в атмосфере температура ионизации $T_i = 20\,000^\circ$ К и температура возбуждения $T_\varepsilon = 22\,000^\circ$ К;

3) найдено содержание элементов H, He, C, N, O, Mg, Si в атмосфере (см. табл. 3);

4) турбулентная скорость $v_T = 51 \ \kappa m/ce\kappa;$

5) гравитационное ускорение по спектроскопическим данным $g_{cn} = 280 \ cm/ce\kappa^2$, по грубым динамическим вычислениям 1070 $cm/ce\kappa^2$.

В заключение автор выражает благодарность Л. Лууду за предоставление спектрофотометрического материала и руководство работой.

ЛИТЕРАТУРА

1. Merrill P. W., Burwell C., Ap. J., 73, 87 (1933).

- 2. Williams E. G., Ap. J., 83, 279 (1936).
- 3. Beals C. S., Publ. Dom. Astrophys. Obs. Victoria, 9, No. 1 (1951).
- 4. Green L., Rush P., Chaudler C., Ap. J., Suppl., 3, No. 26 (1957).
- 5. Trefftz E., Schlüter A., Dettmar K.-H., Jörgens K., Z. Astrophys., 44, 1 (1957).
- 6. Голландский О. П., Копылов И. М., Изв. Крымской АО, 28, 3 (1962).
- 7. Боярчук А. А., Изв. Крымской АО, 21, 65 (1959).
- 8. Scholz M., Z. Astrophys., 65, 1 (1967).
- 9. Копылов И. М., Изв. Крымской АО, 35, 11 (1966).
- 10. Боярчук А. А., Астрон. ж., 36, 766 (1959).
- 11. Unsöld A., Physik der Sternatmosphären, Berlin, 1938.
- 12. Лууд Л., Нугис Т., Публ. Тартуск. Астрон. обсерв., 36 (в печати).

Ю. Ибрус

13. Аллер Л., Распространенность химических элементов, М., 1963.

14. Лууд Л., Изв. АН ЭССР, Физ. Матем., 16, 319 (1967).

15. Voigt H.-H., Z. Astrophys., 31, 48 (1952).

16. Мартынов Д. Я., Курс общей астрофизики, М., 1965.

17. Паренаго П. П., Масевич А. Г., Тр. ГАИШ, 20, 81 (1951).

18 Зонн В., Рудницкий К., Звездная астрономия, М., 1959.

19. Шаров А. С., Астрон. ж., 40, 900 (1963).

Институт физики и астрономии Академии наук Эстонской ССР Поступила в редакцию 27/III 1968

C. IBRUS

HD 190603 SPEKTROFOTOMEETRILINE UURIMINE

Töös määratakse P Cygni tüüpi tähe HD 190603 atmosfääri mõned parameetrid, kasutades kolme spektrogrammi dispersioonidega 15 ja 36 Å/mm. Analüüsiks kasutatakse kasvukõvera meetodit. Määratakse ionisatsiooni- ja ergutustemperatuurid ning elektronide tihedus ($T_i = 20\,000^\circ$ K, $T_e = 22\,000^\circ$ K, log $N_e = 12,95$). Leitakse, et elementide suhteline sisaldus atmosfääris on ligikaudu samasugune nagu B tähtedel.

C. IBRUS

SPECTROPHOTOMETRIC STUDY OF HD 190603

Some atmospheric parameters of a P Cyg-type star HD 190603 are determined on the basis of 3 spectrograms obtained with dispersions of 15 and 36 Å/mm. For an analysis, the curve-of-growth method is used. The ionisation and excitation temperatures and the electron density are estimated ($T_i = 20\,000^\circ$ K, $T_e = 22\,000^\circ$ K, $\log N_e = 12.95$). It is found that the relative abundances of elements are nearly the same as in B stars.