EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVIII KÕIDE FUUSIKA * MATEMAATIKA. 1969, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ ХVIII ФИЗИКА * МАТЕМАТИКА. 1969, № 1

https://doi.org/10.3176/phys.math.1969.1.03

Э. РАИК

О КЛАССЕ ИТЕРАЦИОННЫХ МЕТОДОВ С ФЕЙЕРОВСКИМИ ПОСЛЕДОВАТЕЛЬНОСТЯМИ

В данной работе исследуется сходимость в гильбертовом пространстве одного класса методов, так наз. методов фейеровского типа. Последовательность {xn} называется фейеровской относительно множества Q, если для любого $x \in Q$ выполняется неравенство $||x_{n+1} - x|| \leq ||x_n - x||$ [1-3]. Фейеровской последовательности $\{x_n\}$ присущи многие примечательные свойства.

Заметим сперва, что фейеровская последовательность {x_n} относительно множества Q является также фейеровской относительно его выпуклой замкнутой оболочки. Действительно, для любых $x^i \in Q$ и m имеем

$$\begin{aligned} \|x_{n+1} - \sum_{i=1}^{m} \lambda_{i} x^{i}\|^{2} &= \|x_{n+1} - x_{n}\|^{2} + \|x_{n} - \sum_{i=1}^{m} \lambda_{i} x^{i}\|^{2} + 2(x_{n+1} - x_{n}, x_{n} - \sum_{i=1}^{m} \lambda_{i} x^{i}) \\ - \sum_{i=1}^{m} \lambda_{i} x^{i}) &= \|x_{n+1} - x_{n}\|^{2} + \|x_{n} - \sum_{i=1}^{m} \lambda_{i} x^{i}\|^{2} + 2\sum_{i=1}^{m} \lambda_{i} (x_{n+1} - x_{n}, x_{n} - x^{i}) \\ &= \|x_{n} - \sum_{i=1}^{m} \lambda_{i} x^{i}\|^{2} + \sum_{i=1}^{m} \lambda_{i} (\|x_{n+1} - x^{i}\|^{2} - \|x_{n} - x^{i}\|^{2}) \leq \|x_{n} - \sum_{i=1}^{m} \lambda_{i} x^{i}\|^{2}, \\ \lambda_{i} \geq 0, \ \sum_{i=1}^{m} \lambda_{i} = 1. \end{aligned}$$

Поэтому в дальнейшем будем рассматривать только выпуклые замкнутые множества Q. Известно еще ([4], лемма 6), что если для фейеровской последовательности {x_n} относительно множества Q расстояние $\varrho(x_n, Q) \to 0$, то $x_n \to x^*$, где $x^* \in Q$. Обозначим через Q^0 множество внутренних точек множества Q

и продолжим исследование свойств фейеровских последовательностей.

Лемма 1. Фейеровская последовательность $\{x_n\}$ относительно выпуклого замкнутого множества Q сходится, если Q⁰ ≠ Ø.

Доказательство. Рассмотрим любую точку $x' \in Q^0$. Тогда существует $\delta > 0$ такое, что из $||x - x'|| \leq \delta$ следует $x \in Q$. Выберем точку $\overline{x} = x' + \delta \frac{x_n - x_{n+1}}{\|x_n - x_{n+1}\|}$, которая, согласно построению, принадлежит множеству Q, т. е. $\overline{x} \in Q$.

Используя «фейеровость» последовательности {x_n} и свойства скалярного произведения, получаем

$$\begin{aligned} \|x_{n} - x'\|^{2} - \|x_{n+1} - x'\|^{2} &= \|x_{n} - x_{n+1}\|^{2} + 2(x_{n} - x_{n+1}, x_{n+1} - x') = \\ &= \|x_{n} - x_{n+1}\|^{2} + 2(x_{n} - x_{n+1}, x_{n+1} - \overline{x}) + 2(x_{n} - x_{n+1}, \overline{x} - x') = \\ &= \|x_{n} - x_{n+1}\|^{2} + 2(x_{n} - x_{n+1}, x_{n+1} - \overline{x}) + 2\delta \|x_{n} - x_{n+1}\| = \\ &= \|x_{n} - \overline{x}\|^{2} - \|x_{n+1} - \overline{x}\|^{2} + 2\delta \|x_{n} - x_{n+1}\| \ge 2\delta \|x_{n} - x_{n+1}\|. \end{aligned}$$
(1)

Суммируя неравенство (1) для разных п

$$||x_0 - x'||^2 \ge ||x_0 - x'||^2 - ||x_k - x'||^2 \ge 2\delta \sum_{s=0}^{R-1} ||x_s - x_{s+1}||^2$$

и переходя к пределу, получаем

$$|x_0 - x'||^2 \ge 2\delta \sum_{s=0}^{\infty} ||x_s - x_{s+1}||.$$

Итак, последовательность {x_n} сходится.

Переходим к рассмотрению конкретных методов, в которых мы имеем дело с фейеровскими последовательностями.

Метод простых итераций для нерастягивающего оператора P($||Px - Py|| \leq ||x - y||$) порождает фейеровскую последовательность относительно множества неподвижных точек оператора P. В работе [⁵] доказано (см. теорема 1), что если нерастягивающий оператор отображает в себя некоторое выпуклое замкнутое множество Q, то существует неподвижная точка x : Px = x. Обозначим множество неподвижных точек оператора P через $Q = \{x : Px = x\}$ и будем исследовать сходимость последовательности простых итераций $x_{n+1} = Px_n$.

Теорема, 1. Пусть множество неподвижных точек Q нерастягивающего оператора P содержит внутренние точки. Тогда последовательность простых итераций сходится к некоторой неподвижной точке x^* , $Px^* = x^*$.

Доказательство. Последовательность простых итераций x_n является фейеровской относительно множества неподвижных точек $Q = \{x : Px = x\}$, так как $||x_n - x|| \ge ||Px_n - Px|| = ||x_{n+1} - x||$ и по лемме 1 сходится. В данном случае оператор P удовлетворяет условию Липшица и поэтому является непрерывным; переходя к пределу в обеих частях равенства $x_{n+1} = Px_n$, получаем $x^* = Px^*$, что и требовалось доказать.

Замечание 1. При выполнении условий теоремы 1 последовательность $x_{n+1} = (1 - \lambda)x_n + \lambda P x_n$, $0 < a \leq \lambda \leq 1$ также сходится к некоторой неподвижной точке оператора *P*. Действительно, если обозначить оператор $(1 - \lambda)x + \lambda P x = Ax$, $0 < a \leq \lambda \leq 1$, то оператор *A* является тоже нерастягивающим и множества неподвижных точек оператора *A* и оператора *P* совпадают, и по теореме 1: $x_n \to x^*$, $x^* = A x^* = P x^*$.

Сходимость последовательности простых итераций исследована во многих работах (см. библиографию в [^{6, 7}]).

Решение системы неравенств $g_i(x) \leq 0$ i = 1, 2, ..., m, где $g_i(x)$ — выпуклые и непрерывные функционалы, можно производить одним из следующих методов [⁸]:

$$x_{n+1} = x_n - \lambda \frac{g_k(x_n)_+}{\|g'_k(x_n)\|^2} g'_k(x_n), \qquad (2)$$

где

 $k \equiv n \pmod{m} + 1$,

$$g_k(x_n)_+ = \max\{0, g_k(x_n)\};$$

здесь и дальше $0 < \alpha \leq \lambda \leq 2;$

23

$$x_{n+1} = x_n - \lambda \, \frac{g(x_n)_+}{\|g'(x_n)\|^2} \, g'(x_n) \,, \tag{3}$$

где $g(x_n) = \sum_{i=1}^m K_i g_i(x_n)_+$ и все $K_i > 0;$

$$x_{n+1} = x_n - \lambda \frac{\max_{j} g_j(x_n)}{\|(\max_{j} g_j(x_n))'\|^2} (\max_{j} g_j(x_n))'.$$
(4)

Через f'(x) обозначен опорный функционал к выпуклому непрерывному функционалу f(x), т. е. линейный функционал, удовлетворяющий неравенству

$$(f'(x), y - x) \leq f(y) - f(x).$$
 (5)

Лемма 2. Последовательность (2) является фейеровской относительно множества $Q = \{x : g_i(x) \leq 0, i = 1, 2, ..., m\}.$

Доказательство. Используя свойства скалярного произведения и соотношения (2), (5), получаем для любого x, удовлетворяющего неравенству $g_k(x) \leq 0$, и тем более для любого $x \in Q$

$$\begin{aligned} \|x_n - x\|^2 &= \|x_{n+1} - x\|^2 + \|x_n - x_{n+1}\|^2 + 2(x_n - x_{n+1}, x_{n+1} - x) = \\ &= \|x_{n+1} - x\|^2 + 2(x_n - x_{n+1}, \frac{x_{n+1} - x_n}{2} - x) = \|x_{n+1} - x\|^2 + \\ &+ 2\lambda \frac{g_k(x_n)_+}{\|g'_k(x_n)\|^2} (g'_k(x_n), \frac{x_{n+1} + x_n}{2} - x) = \|x_{n+1} - x\|^2 + \\ &+ 2\lambda \frac{g_k(x_n)_+}{\|g'_k(x_n)\|^2} (g'_k(x_n), x_n - \frac{\lambda}{2} \frac{g_k(x_n)_+}{\|g'_k(x_n)\|^2} g'_k(x_n) - x) \ge \|x_{n+1} - x\|^2 + \\ &+ 2\lambda \frac{g_k(x_n)_+}{\|g'_k(x_n)\|^2} (g_k(x_n) - \frac{\lambda}{2} g_k(x_n) - g_k(x)) \ge \|x_{n+1} - x\|^2. \end{aligned}$$

Получим фейеровость последовательности (2) относительно множества Q. Аналогичным образом доказывается фейеровость последовательности (3) и (4) относительно множества Q.

Лемма 3. Пусть последовательность $\{x_n\}$, определенная по формулам (2), (3) или (4), сходится к x^* и $\|g'_k(x)\|$ ограничены в любой ограниченной области. Тогда $x^* \in Q = \{x : g_k(x) \leq 0, k = 1, 2, ..., m\}$.

Доказательство. Допустим, что $x_n \to x^* \in Q$. Тогда найдется хоть одно ограничение, для которого $g_k(x^*) > 0$. В силу непрерывности существует $\delta > 0$ такое, что если $||x - x^*|| \leq \delta$, то $g_k(x) > \varepsilon > 0$. Согласно предположению леммы для тех же x имеем $||g_k(x)|| \leq M$. Тогда шаг, сделанный по формуле (2) в шаре $||x - x^*|| \leq \delta$, имеет длину $||x_{n+1} - x_n|| =$ $= \lambda \frac{g_k(x_n)_+}{||g'_k(x_n)_||} \geq \alpha \frac{\varepsilon}{M} = \varepsilon_1$. Но в соответствии со сделанным допущением

найдется N такое, что для $n \ge N ||x_n - x^*|| \le \frac{\varepsilon_1}{4}$. Имеем

$$x_1 \leq ||x_{n+1} - x_n|| \leq ||x_{n+1} - x^*|| + ||x^* - x_n|| \leq \frac{\varepsilon_1}{2}$$

Приходим к противоречию, значит $x^* \in Q$. Аналогично доказывается сходимость последовательностей (3) и (4). Теорема 2. Пусть множество $Q = \{x : g_k(x) \leq 0, k = 1, 2, ..., m\}$ содержит внутренние точки и $||g'_k(x)|| k = 1, 2, ..., m$ ограничены в любой ограниченной области. Тогда последовательности (2), (3) и (4) сходятся к $x^* \in Q$.

Доказательство заменяется проверкой условий и утверждений лемм 1, 2 и 3.

Из приведенных методов можно вывести методы проекций для отыскания некоторой общей точки выпуклых множеств. Действительно, пусть даны выпуклые замкнутые множества Q_i , i = 1, 2, ..., m. Рассмотрим, например, последовательность (2), задавая функционалы $g_k(x)$ в виде $g_k(x) = ||x - P_k x||$, где $P_k x$ — проекция точки x на множество Q_k , т. е. $||x - P_k x|| = \min_{y \in Q_k} ||x - y||$. Этот функционал очевидным образом является $y \in Q_k$

выпуклым и непрерывным, и $g'_k(x) = \frac{x - P_k x}{\|x - P_k x\|}$, так как для него справєдливо неравенство (5). Используя неравенство Коши и лемму 1 [4], получаем

$$(g_k(x), y - x) = \left(\frac{x - P_h x}{\|x - P_h x\|}, y - x\right) =$$

$$= \left(\frac{x - P_{h}x}{\|x - P_{h}x\|}, y - P_{k}x\right) - \|x - P_{k}x\| = \left(\frac{x - P_{h}x}{\|x - P_{k}x\|}, y - P_{k}y\right) +$$

$$\left| \left(\frac{x - P_{k}x}{\|x - P_{k}x\|}, P_{k}y - P_{k}x \right) - \|x - P_{k}x\| \le \|y - P_{k}y\| - \|x - P_{k}x\| = 0$$

$$=g_k(y)-g_k(x).$$

Подставляем $g_k(x)$ и $g_k(x)$ в формулу (2):

$$x_{n+1} = x_n + \lambda (P_k x_n - x_n), \tag{6}$$

где

 $k = n \pmod{m} + 1,$

$$0 < \alpha \leq \lambda \leq 2$$
.

Получаем известную формулу, определяющую метод последовательных проекций [4]. Условия сходимости последовательности (6) приведены в [4] при $0 < \alpha \le \lambda \le \beta < 2$. В данном случае, если дополнительно предположить, что $Q^0 \neq \emptyset$, доказана сходимость и при $\lambda = 2$.

Следствие 1. Пусть пересечение выпуклых замкнутых множеств $Q = \bigcap_{i=1}^{m} Q_i$ содержит внутренние точки. Тогда последовательность (6) сходится при $0 < \alpha \leq \lambda \leq 2$ к $x^* \in Q$.

Доказательство. Зададим множества Q_k с функционалами $g_k(x) = ||x - P_k x||, Q_k = \{x : g_k(x) \leq 0\}$. Как отмечено выше, функционалы $g_k(x)$ выпуклы и непрерывны, а $g'_k(x) = \frac{x - P_k x}{||x - P_k x||}$ и $||g'_k(x)|| \leq 1$. Следовательно, выполнены условия теоремы 2, откуда следует сходимость $x_n k x^* \in Q$.

25

Э. Райк

Метод минимизации выпуклого непрерывного функционала f(x) получается как частный случай из формулы (2). Допустим при этом, что функционал f(x) достигает своего наименьшего значения f^* . Тогда множество точек минимума можно задавать в виде $Q = \{x : f(x) - f^* \leq 0\}$. Применяя для нахождения некоторой точки множества Q формулу (2), получаем последовательность

$$x_{n+1} = x_n + \lambda \, \frac{f^* - f(x_n)}{\|f'(x_n)\|^2} \, f'(x_n) \,. \tag{7}$$

Следствие 2. Пусть множество $Q = \{x : f(x) \le f^* = \min f(x)\}$ содержит внутренние точки и $\|f'(x)\|$ ограничена в любой ограниченной области. Тогда последовательность (7) при $0 < \alpha \le \lambda \le 2$ сходится к некоторой точке x^* , $f(x^*) = f^*$.

В заключение отметим, что при допущении $Q^0 \neq \emptyset$ выбор $\lambda = 2$ в формулах (2)—(4), (6) и (7) и $\lambda = 1$ для метода простых итераций является не только допустимым в смысле сходимости, но оказывается и более эффективным сравнительно с другими значениями λ . Косвенным образом это видно уже в неравенстве (1).

Автор благодарит С. Ульма за ценные замечания.

ЛИТЕРАТУРА

- 1. Agmon S., Canad. J. Math., 6, No. 3, 382 (1954).
- 2. Motzkin T. S., Schoenberg J., Canad. J. Math., 6, No. 3, 393 (1954).
- 3. Еремин И. И., Докл. АН СССР, 160, № 5, 994 (1965).
- 4 Гурин Л. Г., Поляк Б. Т., Райк Э. В., Ж. вычисл. матем. и матем. физ., 7, № 6, 1211 (1967).
- 5. Browder F. E., Proc. Nat. Acad. Sci. USA, 54, No. 4, 1041 (1965).
- 6. Облонская Л. Я., Ж. вычисл. матем. и матем. физ., 8, № 2, 417 (1968).
- 7. Browder F. E., Pietryshyn W. V., Bull. Am. Math. Soc., 72, No. 3, 571 (1966).
- 8. Райк Э., Изв. АН ЭССР, Физ. Матем., 16, № 3, 286 (1967).

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 14/V 1968

E. RAIK

FEJERI TÜÜPI JADADEGA ITERATSIOONIMEETODITE KLASSIST

Jada x_n nimetame Fejeri tüüpi jadaks hulga Q suhtes, kui $||x_{n+1}-x|| \leq ||x_n-x||$ suvalise x jaoks hulgast Q. Artiklis tõestatakse hulga Q suhtes Fejeri tüüpi jada koonduvus eeldusel, et hulk Q omab sisepunkte. Seda kasutades uuritakse mitmesuguste iteratsioonimeetoditega saadud jadade koonduvust.

E. RAIK

ON THE CLASS OF ITERATIVE METHODS WITH THE FEJER-MONOTONE SEQUENCES

The sequence $\{x_n\}$ is Fejer-monotone with respect to the set Q if for all $x \in Q$ $||x_{n+1} - x|| \leq ||x_n - x||$. The convergence of the Fejer-monotone sequence with respect to the set Q supposing the set Q has an inner point is proved. Using this property of the Fejer-monotone sequence, the convergence of some iterative methods is considered.