Из выражений (11) следует, что характеристические направления сохраняют свои свойства при просвечивании фотоупругой модели в обратном направлении; первичные характеристические направления превращаются лишь во вторичные и наоборот. Характеристическая разность фаз не зависит от направления просвечивания системы.

Отсюда следует, что если характеристические величины экспериментально определены при просвечивании объемной фотоупругой модели или дискретной унитарной оптической системы в одном направлении, то просвечивание в обратном направлении не может увеличить информацию о параметрах системы.

ЛИТЕРАТУРА

1. Абен Х. К., Изв АН СССР, Механика и машиностроение, № 4, 40 (1964).

2. Гантмахер Ф. Р., Теория матриц, М., 1953. 3. Jones R. C., J. Opt. Soc. Am., 31, 488 (1941).

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 28/Х 1968

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVIII KÕIDE FÜÜSIKA * MATEMAATIKA. 1969, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVIII ФИЗИКА * МАТЕМАТИКА. 1969, № 1

https://doi.org/10.3176/phys.math.1969.1.18

Р. АВАРМАА, Л. РЕБАНЕ

СТРУКТУРА БЕСФОНОННЫХ ЛИНИЙ В СПЕКТРАХ ПОГЛОЩЕНИЯ И ЛЮМИНЕСЦЕНЦИИ ИОНА NO₂ В КРИСТАЛЛАХ ГАЛОГЕНИДОВ КАЛИЯ

R. AVARMAA, L. REBANE. IOONI NO 2 NEELDUMIS- JA LUMINESTSENTSISPEKTRITE FOONONIVABADE JOONTE STRUKTUUR KAALIUMHALOGENIIDKRISTALLIDES

R. AVARMAA, L. REBANE. ZERO-PHONON LINE STRUCTURE IN ABSORPTION AND LUMINESCENCE SPECTRA OF NO₂ ION IN POTASSIUM HALIDE CRYSTALS

В предыдущих работах [¹⁻³] приведены оптические спектры поглощения и люминесценции кристаллов KCl, KBr и KJ с примесью молекулярных ионов NO₂⁻ и дан анализ вибронной структуры этих спектров как обусловленной взаимодействием электронного перехода в ионе NO₂⁻ с полносимметричными валентным (v₁) и деформационным (v₂) колебаниями молекулы (бесфононные квазилинии) и с колебаниями кристаллаоснования вблизи примеси (фононные крылья). В работе [²] отмечалось расщепление некоторых бесфононных линий в спектрах поглощения. Здесь приведены результаты исследования структуры бесфононных линий в спектрах поглощения NO₂⁻ в кристаллах KCl, KBr и KJ и в спектре люминесценции кристалла KCl-NO₂⁻.

Спектры поглощения фотографировались на спектрографе КС-55 со стеклянной оптикой. Дисперсия в области 4000 Å позволяла разрешать линии в спектре железа с интервалом 0,95 см⁻¹. Спектр люминесценции

Колебатель- ные кванто- вые числа		Длины волн и волновые числа бесфононных линий в спектрах поглощения NO ₂ -центра в кристаллах		
n1	n_2	KC1	KBr	KJ
0	0	3992,9 25037,2 -7 + 10	4009,8 24931,9 -8 -5 $+8$ $+11$	4009,8 24932 +17
0	1	3899,7 25635,7 -21 -7 +10 +19	3916,3 25527 -8 -6 $+7$ $+10$	3915,0 25536 +18
1	0	3836,1 26060,8 -6 + 4 + 17 + 25	3853,5 25943,4 +19	3855,7 25929
0	2	3811,0 26232,3 -19 -7 $+11$		3824,7 26139 +17
1	1	3751,3 26650,0 -6 +17 +22	3768,7 26527,2 +19	3769,0 26525 +17
0	3	3726,4 26827,6 -7 +11		
2	1	3608,3 27706,1 -6 +11	3625,9 27571	λ, \hat{A} ν, cm^{-1} $\Delta \nu, cm^{-1}$

регистрировался фотоэлектрически на спектрофотометре ДФС-12 с оптической шириной щели 1,7 см⁻¹. Образцы помещались в сосуд Дьюара с жидким гелием и имели температуру 4,2° К.

В таблице приведены частоты всех зарегистрированных компонентов бесфононных линий. Квантовые числа бесфононных линий по колебаниям v_1 и v_2 определяются значениями n_1 и n_2 . В каждой группе для наиболее интенсивного компонента указано положение линии; для остальных компонентов указаны знак и величина смещения.

Бесфононные линии во всех трех основаниях представляют собой группы довольно узких линий. Самые узкие линии составляют группу

Структура бесфононных линий спектров NO₂центра при 4,2° К:

(0, 0) в спектре поглощения KCl-NO₂. Эта группа состоит из трех линий с интервалами 7 и 10 см-1. Ширина линий около 2 см-1. Бесфононные линии, соответствующие возбуждению колебания v2, повторяют эту структуру, но начиная с $n_2 = 3$ линии становятся сильно диффузными, достигая ширины около 10 см⁻¹. По сравнению с этой серией бесфононные линии, соответствующие B03буждению колебания VI (группы (1,0); (1,1)), имеют существенно иную структуру.

На рисунке приведены микрофотограммы с участков спектра поглощения, содержащих группы (0,0) в кристалле КС1 (*a*) и КВг (*б*), а также группа (0, 3) спектра люминесценции NO₂⁻ в кристалле КСl. В кристалле КВг наблюдается структура, сходная с таковой в КСl, но линии ее несколько уширены. Качественно иная картина в кристалле КJ, где в каждой группе есть одна интенсивная и довольно диффузная (даже в группе (0, 0)) линия и только один слабый коротковолновый спутник на расстоянии 17 с*m*⁻¹. Кроме того, в области квазисплошного фононного крыла наблюдались узкие максимумы с $\Delta v = 40 \ cm^{-1}$ в кристалле КВг и с $\Delta v = 71$ и 137 с*m*⁻¹ в кристалле КJ.

В спектре люминесценции кристалла KCl-NO₂⁻ бесфононные линии в серии $n_1 = 0$, $n_2 = 1, ..., 6$ состоят из двух компонентов с интервалом 8 см⁻¹ и полушириной компонентов около 5 см⁻¹ [³]. Как величина расщепления, так и полуширины линий не обнаруживают заметной зависимости от номера группы. Отношение интенсивностей компонентов, равное 1:0,36, также не зависит от n_2 .

Обсуждение результатов

Полосы поглощения и люминесценции иона NO₂ можно приписать сопряженным переходам ${}^{1}B_{2} \leftrightarrow {}^{1}A_{1}$ [4, 5]. Другие возбужденные состояния иона значительно отдалены от ${}^{1}B_{2}$ [6], поэтому мало вероятно, чтобы описанная выше структура бесфононных линий была обусловлена электронным расщеплением.

Наиболее вероятным представляется учет вращательного и либрационного движения примесного иона NO₂⁻. Молекулярный ион NO₂⁻ имеет в невозбужденном состоянии следующие вращательные постоянные: $A = 4,2 \ cm^{-1}$ для вращения вокруг оси a, параллельной линии, соединяющей атомы кислорода; $B = 0,45 \ cm^{-1}$ вокруг оси b, совпадающей с осью C_2 молекулы; $C = 0,43 \ cm^{-1}$ вокруг оси c [7]. В кристалле ось b направлена вдоль <110> и ось a вдоль <001> [7,8]. Влияние поля кристалла приводит к затормаживанию вращения и к появлению либраций.

Исследование инфракрасных спектров поглощения молекулы NO₂ вкристаллах галогенидов калия показало, что полосы поглощения, соответствующие колебаниям молекулы, имеют структуру, которая удовлетворительно интерпретируется на основе модели Девоншира [9]. В работах [^{7, 8}] показано, что вращение молекулы в кристаллах вокруг осей *b* и *c* при гелиевых температурах заторможено, в то время как вращение вокруг оси *a* лишь слабо заторможено в кристаллах КСІ и КВг и сильнозаторможено в кристалле КЈ.

Вращательная структура вибронных полос, возникающих при электронно-колебательно-вращательном переходе, должна отличаться от вращательной структуры колебательных полос. В нашем случае три основных компонента с интервалами около 7 и 10 с m^{-1} , наблюдаемые в основаниях КСІ и КВг, могут быть интерпретированы как взаимодействие электронного перехода ${}^{1}B_{2} \leftarrow {}^{1}A_{1}$ со слабо заторможенным вращением вокруг оси *а*. Бедность структуры в КЈ объясняется сильной заторможенностью вращения NO₂⁻ в этой системе. Некоторые компоненты структуры бесфононных линий могут быть обусловлены также либрацией NO₂⁻ вокруг оси *b*. При интерпретации структуры нельзя исключить возможной роли неоднородного состава центров в кристалле.

Наблюдавшееся в спектре поглощения KCl-NO₂ уширение линий в серии $(0, n_2)$, начиная с $n_2 = 3$, можно связать с зависимостью кванто-

вого выхода люминесценции от частоты возбуждающего света [10], считая причиной уширения большую вероятность безызлучательных переходов, начиная с $n_2 = 3$.

В заключение авторы выражают благодарность К. Ребане за внимание к работе и ее плодотворное обсуждение.

ЛИТЕРАТУРА

- 1. Timusk T., Staude W., Phys. Rev. Lett., 13, 373 (1964).
- 2. Авармаа Р., Изв. АН ЭССР, Физ. Матем., 17, № 1, 78 (1968).
- Ребане Л. А., Авармаа Р. А., Материалы XVII совещания по люминесценции, Иркутск, 1968.
- 4. Sidman J. W., J. Am. Chem. Soc., 79, 2669 (1957).
- 5. Кулюпин Ю. А., Диссертация, ИФ АН УССР, Киев, 1963.
- 6. McEwen K. L., J. Chem. Phys., 34, 547 (1961).
- 7. Narayanamurti V., Seward W. D., Pohl R. O., Phys. Rev., 148, 481 (1966).
- 8. Sauer P., Z. Physik, 199, 270 (1967).
- 9. Devonshire A. F., Proc. Roy. Soc. (London), A153, 601 (1936).
- 10. Ребанс Л., Авармаа Р., Изв. АН ЭССР, Физ. Матем., 17, № 1, 120 (1968).

Институт физики и астрономии Академии наук Эстонской ССР Поступила в редакцию 5/XI 1968

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVIII KÕIDE FÜÜSIKA * MATEMAATIKA. 1969, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVIII ФИЗИКА * МАТЕМАТИКА. 1969, № 1

Э. ТАММЕТ

о поляризации в системе трех частиц (и-мезоатом)

E. TAMMET. POLARISATSIOONIST KOLME OSAKESE SÜSTEEMIS (µ-MESOAATOM) E. TAMMET. ABOUT THE POLARIZATION IN THE THREE-PARTICLE SYSTEM (µ-MESIC ATOM)

Согласно теории [1-3], поляризация µ-мезона в мезоатоме со спином ядра 1/2 составляет 50% от начальной поляризации, фиксируемой в момент поступления µ-мезона на К-оболочку. Магнитное взаимодействие µ-мезона и ядра с электронной оболочкой при этом не учитывается. Цель настоящей работы — оценить эффект этого взаимодействия.

Рассмотрим систему трех первоначально свободных частиц. В момент t = 0 включается взаимодействие, оператор которого имеет вид

$$\hat{\mathbf{H}} = A\vec{\mathbf{s}}\vec{\mathbf{I}} + B\vec{\mathbf{s}}\vec{\sigma} + G\vec{\sigma}\vec{\mathbf{I}}, \qquad (1)$$

где A, B, G — постоянные сверхтонкого взаимодействия, а I, о и s — спины частиц.

Предполагаем, что время жизни системы $\tau \gg \hbar/(A + B + G)$.

Для простоты будем решать только частную задачу, когда спин каждой частицы 1/2 и вначале поляризована только одна частица.