EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVII KÕIDE füüsika * matemaatika. 1968, nr. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVII ФИЗИКА * МАТЕМАТИКА. 1968, № 1

https://doi.org/10.3176/phys.math.1968.1.12

A. OTC

ВЛИЯНИЕ НЕКОТОРЫХ РЕЖИМНЫХ ПАРАМЕТРОВ НА ВРЕМЯ СГОРАНИЯ ПОЛИФРАКЦИОННОЙ ПЫЛИ МНОГОЗОЛЬНОГО ТОПЛИВА С МАЛОЙ ПЛОТНОСТЬЮ ГОРЮЧИХ

Существует ряд теорий горения полифракционной пыли беззольного топлива [1-5]. Вопросы о горении полифракционной пыли многозольного топлива рассматривались только в частных случаях [6,7]. В настоящей работе анализируется время сгорания полифракционной пыли многозольного топлива с малой плотностью горючих в более общем виде, с учетом как кинетических, так и диффузионных факторов.

Исходим из следующих предположений:

частицы имеют сферическую форму;

 частицы не изменяют в ходе горения внешних размеров и являются равнодоступными потоку кислорода;

 пренебрегаем реакциями восстановления углекислоты углеродом и объемным догоранием окиси углерода (это вполне допустимо при горении частиц малого размера [⁸]);

стадия горения кокса наступает после выгорания летучих веществ.

При принятых предположениях удельная поверхностная скорость горения отдельной ококсовавшейся частицы выражается формулой

$$K_{S} = \frac{\beta c_{0}}{\frac{1}{\alpha_{D}} + \frac{1}{\bar{\alpha}}} \,. \tag{1}$$

В формуле (1) а обозначает коэффициент реакционного газообмена. Предложенный А. Предводителевым и Л. Хитриным коэффициент а представляет собой величину, которая охватывает кинетические и диффузионные свойства кокса.

Используя понятия средней степени выгорания частицы $\overline{\eta} = 3 \int_{0}^{1} \eta \psi^2 d\psi$

и безразмерного времени ф, получим

$$\overline{\alpha} = \frac{2}{3} \frac{D_i}{\Delta} \frac{\partial \eta}{\partial \varphi}.$$
(2)

Учитывая, что $c_0 = c_0(1 - \eta/\alpha)$ и обозначая $\gamma(\Delta) = \varrho_0 \Delta^2/4\beta Dc_0$, на основании формул (1) и (2) время выражается

Влияние некоторых режимных параметров на время сгорания...

$$\tau = \frac{\gamma(\Delta)}{m} \int_{0}^{\eta} \frac{d\bar{\eta}}{\left(1 - \frac{\bar{\eta}}{\alpha}\right) \left(\frac{d\bar{\eta}}{d\varphi_{0}}\right)} \Rightarrow \gamma(\Delta) \cdot A(\eta, \alpha).$$
(3)

Формула (3) является весьма общей и ее можно использовать при расчетах горения как отдельных частиц, так и полифракционной пыли.

В простых случаях (например, при горении в кинетической или в диффузионной области) фигурирующая в формуле (3) производная $d\eta/d\phi_0$ легко определяется аналитически. В условиях, когда на процесс горения одновременно влияют кинетические и диффузионные факторы, определение $d\eta/d\phi_0$ усложняется. Исходим из того, что поверхность активных пор внутри частицы пропорциональна мгновенной плотности горючих в материале. Это предположение экспериментально доказано в работах [^{9, 10}]. Учитывая сказанное, процесс горения описывается системой уравнений [⁹]

$$\frac{\partial \eta}{\partial \varphi_0} - b^2 y_0 (1 - \eta) = 0$$

$$\frac{\partial \eta}{\partial \varphi_0} - \frac{\partial^2 y_0}{\partial \psi^2} - \frac{2}{\psi} \frac{\partial y_0}{\partial \psi} = 0$$
(4)

При начальных и граничных условиях

$$\eta = 0, \quad y_0 = y(\psi) = 1$$
 при $\varphi_0 = 0; \quad \left. \frac{\partial \eta}{\partial \psi} \right|_{\psi = 0}$

Обозначения

β — стехиометрический коэффициент;

- α_D коэффициент внешнего газообмена;
 - α коэффициент реакционного газообмена;
 - с концентрация кислорода в данной точке;
- с₀, с'₀ качальная и текущая концентрация кислорода в окружающей частицы среде;

$$y_0 = c/c_0;$$

- D, D_i коэффициент внешней и внутренней диффузия кислорода;
- $m = D_i/D;$
- δ, Δ текущий и наружный диаметр частицы;

$$\psi = \delta/\Delta;$$

- Δ_{\max} диаметр наиболее крупной частицы в системе, определяемый из условия $R(\Delta_{\max}) = \text{const};$
- $\Delta_0 = \Delta / \Delta_{\max};$
 - Δ_s массовый медианный диаметр полифракционной пыли;
- $\lambda = \Delta_{\max} / \Delta_s;$

m₀ — показатель равномерности пыли;

- η, η местная и средняя степень выгорания частицы;
- ηmax средняя степень выгорания наиболее крупной частицы в системе пыли;
 - 7 ENSV TA Toimetised F * M-1 1968

η_k — степень выгорания ококсовавшейся пыли;

= 0

τ — время;

- $\varphi_0 = 4\beta Dc_0 \tau / \Delta^2 \varrho_0$ безразмерное время; φ — то же, что φ_0 при $\epsilon \rightarrow \infty$;
- $b = \Delta \sqrt{Ak \varrho_0 / 4 D_i}$ определяющий параметр процесса горения;
 - А удельная активная поверхность пор в частице;
 - k константа скорости горения;
 - Nu_D диффузионный критерий Нуссельта;
- $\varepsilon = \mathrm{Nu}_D/2m;$
 - а общий коэффициент избытка воздуха;
 - α_k коэффициент избытка воздуха в зоне горения кокса;
 - β_v относительное содержание летучих веществ в топливе;
 - V⁰ теоретическое количество воздуха, необходимое для полного сгорания топлива;
 - V количество продуктов сгорания топлива;
 - ro2 парциальный объем кислорода в начале горения;

$$\mathbb{D}(x) = \sqrt{2/\pi} \int_{0}^{t} \exp(-t^2/2) dt$$
 — интеграл

вероятности Гаусса.

из системы уравнений (4) получается уравнение

$$\frac{d^2\eta}{d\psi^2} + \frac{1}{1-\eta} \left(\frac{d\eta}{d\psi}\right)^2 + \frac{2}{\psi} \frac{d\eta}{d\psi} + b^2\eta \left(1-\eta\right) = 0.$$
(5)

Для решения уравнения (5) с учетом внешней диффузии кислорода используем условия, вытекающие из формулы (1) и первого уравнения системы (4)

$$\varphi_0 = \int_{\eta}^{\eta} \left(\frac{1}{3\varepsilon} + \frac{1}{d\bar{\eta}/d\varphi} \right) d\bar{\eta} = -b^{-2} \ln\left(1-\eta\right) |_{\psi=1} + \bar{\eta}/3\varepsilon.$$
(6)

Решение уравнения (5) позволяет установить зависимости вида

$$\eta = F(\varepsilon, b, \varphi_0) \tag{7}$$

 $\partial \bar{\eta} / \partial \varphi_0 = F'_{\varphi} (\varepsilon, b, \varphi_0). \tag{8}$

Далее рассмотрим возможности использования решений уравнения (5) для расчета времени сгорания полифракционной пыли.

Предположим, что все частицы в полифракционной пыли сгорают в данный момент времени в условиях равных концентраций кислорода и температур. Также считаем, что для всех частиц $\varepsilon = \text{const.}$ Это позволяет выразить степень выгорания данной частицы через степень выгорания наиболее крупной частицы в системе [⁵].

На основе (7) можем написать

$$F^{-1}(b_{\max}, \eta_{\max}) = (b/b_{\max})^2 F^{-1}(\Delta_0 b_{\max}, \eta).$$
(9)

Из уравнения (9) получаем $\eta = \eta (\eta_{\text{max}}, b_{\text{max}}, \Delta_0)$.

Значение b_{max} определяет режим горения наиболее крупной частицы в полифракционной системе пыли. При больших b_{max} (≥15) влияние кинетического сопротивления мало и горение частицы размером Δ_{max} можно рассматривать как происходящее в диффузионном режиме. Это позволяет упростить уравнение (9)

$$\frac{1}{3}\left(\frac{1}{\varepsilon}-1\right)\overline{\eta}_{\max}+\frac{1}{2}\left[1-\left(\sqrt[3]{1-\eta}_{\max}\right)^{2}\right]=\Delta_{0}^{2}F^{-1}(b,\overline{\eta}).$$
(10)

При предельном режиме, когда все частицы в системе сгорают в диффузионной области

$$\frac{1}{3} \left(\frac{1}{\epsilon} - 1\right) \overline{\eta}_{\max} + \frac{1}{2} \left[1 - \left(\sqrt[3]{1 - \overline{\eta}_{\max}}\right)^2 \right] = \Delta_0^2 \left\{ \frac{1}{3} \left(\frac{1}{\epsilon} - 1\right) \overline{\eta} + \frac{1}{2} \left[1 - \left(\sqrt[3]{1 - \overline{\eta}}\right)^2 \right] \right\}.$$
(11)

Для характеристики массового распределения частиц по размерам в полифракционной системе используем нормально-логарифмический закон распределения в виде

$$R(\Delta_0) = \frac{1}{2} \{ 1 - \Phi [\ln (\lambda \Delta_0)^{m_0}] \}.$$
⁽¹²⁾

98

и

С учетом формулы (12) степень выгорания ококсовавшейся пыли приобретает вид

$$\eta_k = \frac{1}{2} \int_0^{\infty} \eta(\overline{\eta}_{\max}, b_{\max}, \Delta_0) \frac{d\Phi[\ln(\lambda \Delta_0)^{m_0}]}{d\Delta_0} d\Delta_0.$$
(13)

Некоторые результаты интегрирования выражения (13) изображены в виде графиков на рис. 1. Анализ приведенных кривых позволяет установить некоторые общие закономерности влияния m_0 и b_{\max} на ход зависимости $\eta_k = \eta(\overline{\eta}_{\max})$.

Рис. 1. Зависимость η_h от η_{\max} при различных значениях m_0 и b_{\max} ($\varepsilon = 3.5$; $R(\Delta_{\max}) = 0.001$).

С приближением полифракционной пыли по своей зерновой характеристике к монофракционному составу, чему соответствует увеличение показателя равномерности пыли, кривые $\eta_k = \eta(\eta_{max})$ медленнее приближаются к максимальному значению η_k . В таком же направлении действует и увеличение параметра b_{max} . Очевидно, чем меньше b_{max} , тем ближе режим горения полифракционной пыли к режиму горения во внутреннекинетической области (если $b_{max} = 0$, то $\eta_k = \eta_{max}$). При $b_{max} \leq 10$, влияние полифракционности пыли на зависимость $\eta_k = \eta(\eta_{max})$ незначительно.

Парциальный объем кислорода в начале зоны горения кокса при предположении, что теоретическое количество воздуха, необходимое для сгорания кокса и летучих равно, выражается формулой

7*

$$r_{0_k} = r_{O_2} V^0(\alpha - \beta_v) (\beta_v V)^{-1}.$$
(14)

Учитывая (14), получим

$$\gamma(\Delta_{\max}) = \varrho_0 \Delta^2_{\max} / 4\beta D c_0 \tag{15}$$

$$A(\alpha, \eta) = \frac{(1+\chi)\left[\alpha_{k} + \beta_{v}(1-\beta_{v})^{-1}\right]}{m} \int_{0}^{\eta_{\max}} \frac{d\bar{\eta}_{\max}}{(\alpha_{k} - \eta_{k})\left(\frac{d\bar{\eta}_{\max}}{d\varphi_{0}}\right)},$$
 (16)

причем $\alpha_k = (\alpha - \beta_v)/(1 - \beta_v)$ и $\chi = \beta_v V/\alpha V^0 - 1$.

Используем разработанную схему расчета горения полифракционной пыли для анализа влияния температуры, коэффициента избытка воздуха и тонкости помола на время сгорания ококсовавшейся пыли при следующих константах: $Ak_0 = 1,857 \cdot 10^{10} \ cm^3/(e \cdot ce\kappa)$, E = $= 112625 \ \kappa \partial \mathscr{K}/monb$, $m = 0,29 \ [^{10, 6}]$, $r_{0_2} = 0,21 \ cm^3/cm^3$, $\varrho_0 = 0,2 \ e/cm^3$, $\beta = 0,5$ и $\beta_v = 0,8$. В расчетах принималось, что коэффициенты внутренней и внешней диффузии кислорода зависят от температуры в степени 1,75.

Исходной величиной служит степень выгорания η_k . Все расчеты проводились при четырех значениях η_k , а именно: 0,900; 0,950; 0,975 и 0,985. Искомой величиной являлось время сгорания (формула (3)), необходимое для достижения при данных режимных параметрах выбранной степени выгорания пыли.

Расчетный анализ производился по следующей схеме. Исходя из характеристики ситового анализа пыли (в данном случае в зависимости от R_{100} и m_0), определялся диаметр наиболее крупной частицы в системе Δ_{\max} , а при помощи ее и заданной температуры определяющий параметр процесса горения для наиболее крупной частицы b_{\max} и величина $\gamma(\Delta_{\max})$. При $b_{\max} \ge 15$ принималось, что горение частицы размерем Δ_{\max} происходит в диффузионном режиме, а при $b_{\max} < 15$ — в промежуточной области. Далее, по заданной η_k , b_{\max} и m_0 определялась степень выгорания η_{\max} , а при помощи последнего, коэффициента избытка воздуха и показателя равномерности пыли — $A(\eta, \alpha)$. Время сгорания, которое отвечает заданной η_k , равно $\tau = \gamma(\Delta_{\max}) \cdot A(\eta, \alpha)$.

Все расчеты проводились для случая, когда показатель равномерности пыли $m_0 = 1$.

Результаты расчетов по выявлению влияния α и температуры на время сгорания пыли приведены в виде графиков на рис. 2. Из представленных данных выясняется большое влияние избытка воздуха на время сгорания. Это влияние особенно сильно в области, где коэффициент избытка воздуха ниже 1,10—1,15. Снижением α от 1,3 до 1,1 время сгорания увеличивается в среднем в 2—3 раза. Отметим, что влияние α на τ , отвечающее более высоким значениям степени выгорания пыли, больше. Тонкость помола слабо влияет на характер протекания представленных кривых, хотя абсолютные значения τ при этом могут друг от друга отличаться значительно.

Начиная от температуры T = 1450 - 1500 °К диффузионные факторы, влияющие на процесс горения отдельных ококсовавшихся частиц в системе сильно усиливаются, и на время сгорания температуры влияют уже слабо (при $R_{100} > 20\%$). Ниже этой температуры, в зависимости от

И

тонкости размола топлива, на ход процесса может оказывать усиленное влияние кинетика горения. Рис. 5. Зависимость т от R_{100} . Обозначения те же, что на рис. 2.

Влияние тонкости помола пыли на характер протекания процесса горения выясняется из графиков, приведенных на рис. 3. Рисунок составлен для $\alpha = 1,2$. Из него видно, что с увеличением температуры влияние R_{100} на характер протекания кривых усиливается, так как с повышением температуры процесс горения пыли перемещается в сторону диффузионного режима.

ЛИТЕРАТУРА

- 1. Hottel H. C., Steward Mc. C., Ind. Eng. Chem., 32, Nr. 5, 719 (1940).
- 2. Баскаков А. П., Изв. ВТИ, № 3, 1953.
- 3. Kenjiro Saji, 5-th Symposium (International) on Combustion, 252, New York, 1955.
- Резняков А. Б., Горение пылеугольного факела как полидисперсной системы. Изд. АН КазССР, 1958.
- 5 Померанцев В. В., Шагалова С. Л., Арефьев К. М., Теплоэнергетика, № 11, 33 (1958).
- 6. Отс А. А., Теплоэнергетика, № 3, 56 (1960).
- 7. Ууэсоо Р. Н., Изв. АН Эст. ССР. Сер. физ.-матем. и техн. наук, 8, № 2, 103 (1959).
- 8. Предводителев А. С., Хитрин Л. Н., Цуханова О. А., Колодцев Х. И., Гродзовский М. К., Горение углерода, М., 1949.
- 9. Гуревич М. А., Палеев И. И., Тимошин Ю. А., ЖТФ, 24, № 4, 1960 (1954).
- Шилов Л. А., Изв. АН Эст. ССР. Сер. физ.-матем. и техн. наук, 7, № 1, 34 (1958).

Таллинский политехнический институт

Поступила в редакцию 8/IX 1967

A. OTS

MÖNINGATE REZIIMPARAMEETRITE MÕJU VÄHESE POLEVAINESISALDUSEGA TUHARIKKA KÜTUSE POLÜFRAKTSIOONILISE TOLMU PÕLEMISELE

Artiklis käsitletakse vähese põlevainesisaldusega tuharikka kütuse polüfraktsioonilise tolmu põlemist, lähtudes üksikosakese kineetilis-difusioonilisest põlemisteooriast. Esitatakse valemid tolmu põlemisaja arvutamiseks ja analüüsitakse selle sõltuvust temperatuurist, liigõhutegurist ning jahvatuspeensusest.

A. OTS

INFLUENCE OF SOME REGIME FACTORS ON THE BURNING TIME OF THE POLYDISPERSE SYSTEM OF FUEL OF A HIGH ASH CONTENT AND A LOW DENSITY OF BURNING MATTER

In the article data are presented on the problem of combustion of polydisperse system of fuel of a high ash content and a low density of burning matter. The combustion velocity of a fuel particle is determined by the conditions of external and internal oxygen diffusion into the combustion zone and by reaction kinetics. Formulas on calculating the burning time of the polydisperse system are given in the article and the influence of temperature, air rate and milling characteristics upon the burning time are analysed.