EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVII KÕIDE FÜÜSIKA * MATEMAATIKA. 1968, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVII ФИЗИКА * МАТЕМАТИКА. 1968, № 1

https://doi.org/10.3176/phys.math.1968.1.09

P. ABAPMAA

КОЛЕБАТЕЛЬНАЯ СТРУКТУРА СПЕКТРОВ ЛЮМИНЕСЦЕНЦИИ И ПОГЛОЩЕНИЯ ПРИМЕСИ NO₂ В КРИСТАЛЛАХ ГАЛОИДОВ КАЛИЯ

Измерены спектры люминесценции и поглощения галоидов калия с примесью NO₂⁻ при 4,2 °K. Определены частоты полносимметричных внутренних колебаний иона NO₂⁻. Обсуждается фононная структура колебательных подполос.

Настоящая работа является продолжением исследований в области спектроскопии щелочногалоидных кристаллов с молекулярными примесями ¹. Центр, образованный примесной молекулой NO_2^- , дает ярко выраженную электронноколебательную структуру не только в спектре люминесценции, как O_2^- и S_2^- , но и в спектре поглощения.

В настоящее время хорошо изучены спектры инфракрасного поглощения иона NO₂ в щелочногалондных кристаллах [²⁻⁴]. Оптическое поглощение при 4,2 °К измерено недавно [⁵]. В этой же работе сообщается о люминесценции этих кристаллов, но спектры не приводятся. Довольно подробно изучены также спектры NO₂⁻-иона в нитритах [⁶].

Нами изучены спектры люминесценции $KCl-NO_2^-$ и $KBr-NO_2^-$ при температурах 4,2 и 80 °K, а также спектры поглощения NO_2^- в KCl, KBr и KJ.

Микрофотограмма спектра люминесценции кристалла KCl-NO₂ при 4,2 °К. Группа около 4358 Å принадлежит спектру возбуждающей ртутной лампы.

¹ Обзор литературы по этой теме см. в [¹].

Кристаллы выращивались по методу Киропулоса из солей КСІ и КВг (марки «особо чистый») и КЈ (х. ч.) с добавкой в шихту от 1 до 2 мол.% солей КNO₂ или КNO₃. В результате кристаллы содержали примеси NO₂⁻, NO₃⁻ и O₂⁻. Методика эксперимента описана в [¹].

Спектры люминесценции $KC1-NO_2$ и $KBr-NO_2$ при 80 °K состоят из десятка эквидистантных полос с расстоянием $800 \ cm^{-1}$ друг от друга и полушириной около $300 \ cm^{-1}$. При 4,2 °K вместо каждой полосы появляется бесфононная линия с фононным крылом (см. рисунок). Видна также вторая серия линий, сдвинутая на $\approx 1310 \ cm^{-1}$ относительно основной. Спектры поглощения тоже имеют при 4,2 °К развитую колебательную структуру.

Серии бесфононных линий спектров поглощения приближенно описываются формулой

$$\mathbf{v}(n_1, n_2) = \mathbf{v}_{00} + (n_1 \mathbf{v}_1 + n_2 \mathbf{v}_2), \tag{1}$$

где v_1 и v_2 — локальные частоты, n_1 и n_2 — колебательные квантовые числа и v_{00} соответствует чистоэлектронному переходу. Для спектров

Кристалл	KCI	KBr	KJ	Интерпретация
лонно +20. (л. 1. что расшения.	1313	1310		v ₁
Люминесценция, <i>см</i> ⁻¹	75	70	remotectibles o	v ₂ v _j
	230	140 210		$\frac{2v_f}{3v_f}$
Поглощение, см-1	25039	24935	24934	V ₀₀
	1023	1010	996	v 1
	603	596 43	605	v 2
	65	68	66	vj
	125	135	133	$2v'_f$
		195	200	3v'f

люминесценции применима аналогичная формула, со знаком «—» перед скобкой и с несколько измененными частотами. Определенные из спектров локальные частоты в основном (v₁ и v₂) и в возбужденном (v₁ и v₂) электронном состояниях приведены в таблице.

Обсуждение и выводы

1. Строение примесного центра. В работах [^{2,6}] высказывалось предположение, что введенная в щелочногалоидный кристалл соль нитрита может образовать микрофазу. По нашему мнению, в исследованных кристаллах ионы NO₂ образовали одиночные центры. Против присутствия микрофазы соли KNO₂ говорит существенное различие энергий электронного перехода: v₀₀ для центров NO₂ на 400—500 см⁻¹ меньше, чем в KNO₂ [⁶].

Методом одноосного сжатия определена симметрия центра $NO_2^$ в КСІ [²]. Оказалось, что ось C_2 иона NO_2^- лежит в направлении <110> и центр принадлежит к группе симметрии C_{2v} свободного иона.

2. Внутримолекулярные колебания. а) Найденные локальные частоты в основном электронном состоянии согласуются с измерениями ИК-поглощения [²]. Как в основном, так и в возбужденном состоянии частоты не очень сильно зависят от основания и близки также к соответствующим частотам в KNO_2 [6]. Поэтому можно интерпретировать v_1 как частоту симметричного валентного, $v_2 -$ деформационного колебания (оба типа A_1) молекулы NO_2^- . По спектру излучения мы получили для ангармонизма колебания v_2 значение 1 ± 1 с m^{-1} . Частота чисто-электронного перехода v_{00} сравнительно мало зависит от основного вещества (ср. [¹]).

б) Расположение линий в спектрах поглощения заметно отклоняется от формулы (1). Частота v_2 убывает при возбуждении колебания v_1 . Так, для KCl-NO₂ среднее значение v_2 меняется от величины 599 с m^{-1} в серии с $n_1 = 0$ до 566 с m^{-1} в серии с $n_1 = 3$. Такая взаимная зависимость колебаний, по-видимому, является следствием ангармонизма.

Некоторые линии поглощения расщеплены (расщепление ~20 см⁻¹). Пока не установлено, чем это обусловлено. Возможно, что расщепления связаны с вращательным движением примесной молекулы.

Расщепление бесфононных линий затрудняет определение ангармонизма колебаний v_1 и v_2 , однако кажется, что расстояния между уровнями колебания v_1 последовательно увеличиваются. В спектре поглощения KCl-NO₂, например: $v(1,3) - v(0,3) = 1006 \ cm^{-1}$, $v(2,3) - v(1,3) = 1037 \ cm^{-1}$, $v(3,3) - v(2,3) = 1058 \ cm^{-1}$. Не ясно, обязан ли этот эффект чисто колебательным движениям.

в) Благодаря тому, что колебание v_1 дает несущественный вклад в излучение, можно довольно точно определить стоксовы потери (в квантах колебания основного состояния) p на колебание v_2 по спектру излучения при 80 °К. В основаниях КСІ и КВг они одинаковы и равны $4 \pm 0,2$. В поглощении p' (в квантах колебания возбужденного состояния) определено сравнением разных колебательных серий. На колебание $v_2 \ p' \approx 4$, на $v_1 \ p' \approx 1$ во всех кристаллах. По спектру излучения при 4,2 °К видно, что p для v_1 -колебания не превышает 0,1. Интересно, что это намного меньше, чем в поглощении. Нам кажется, что столь бсльшое различие не объясняется лишь различием частот v_1 и v_1 , но что при электронном переходе происходит также поворот осей нормальных координат.

3. Колебательное крыло бесфононной линии. а) В спектре излучения выполняется закон подобия [7] отдельных колебательных групп (на рисунке интенсивные линии искажены из-за переэкспозиции). В поглощении подобие несколько нарушается — взаимодействие колебания v₂ с фононами сильнее, чем колебания v₁. Фононное крыло в поглощении имеет примерно такую же форму и ширину, как и в излучении.

б) Расстояния максимумов от бесфононных линий даны в таблице. В спектре поглощения KJ-NO₂ ширина первого максимума сравнима с шириной бесфононной линии. Повторяющаяся частота $v_f = 66 \ cm^{-1}$ попадает в щель фононного спектра решетки KJ [8]. В спектрах ИКпоглощения KJ-NO₂ наблюдалась [²⁻⁴] частота 71 cm^{-1} , близкая к v_f . Мы предполагаем, что эти частоты принадлежат одному колебанию (разницу относим за счет влияния электронного перехода), которым является локальное колебание иона NO₂ относительно решетки [³, ⁵]. В вибронных спектрах должны быть активны только колебания типа A_1 [⁹]. Этим можно объяснить отсутствие в оптическом поглощении других частот ИК-спектра [³].

80

в) Колебательное крыло в спектрах кристаллов КСІ и КВг содержит широкие максимумы. Частоты трех из них (см. таблицу) близки к частотам в спектре КЈ. Если их считать повторениями одной частоты, оказывается, что v_f и v_f мало зависят от основания и v_f несколько превышает v_f . Мы склонны отнести их за счет псевдолокального колебания иона NO₂. Максимум при 43 см⁻¹ и сплошной фон крыла следует отнести за счет кристаллических колебаний решетки.

Автор глубоко благодарен Л. Ребане за предложение темы и за руководство и К. Ребане за обсуждение. Автор благодарен также Е. Гроссу и сотрудникам его лаборатории за возможность выполнить измерение спектров и особенно Л. Суслиной за полезные советы.

ЛИТЕРАТУРА

- 1. Ребане Л. А., Тр. Ин-та физ. и астрон. АН ЭССР (в печати).
- 2. Narayanamurti V., Seward W. D., Pohl R. O., Phys. Rev., 148, 481 (1966).
- 3. Sievers A. J., Lytle C. D., Phys. Lett., 14, 271 (1965).
- 4. Bilz H., Renk K. F., Timmesfeld K. H., Solid State Communications, 3, 223 (1965).
- 5. Timusk T., Staude W., Phys. Rev. Lett., 13, 373 (1964).
- 6. Кулюпин Ю. А., Диссертация, ИФ АН УССР, Киев, 1963.
- 7. Ребане К. К., Теория оптических электронноколебательных переходов в примесном центре кристалла, Тартуский гос. ун-т, Ротапринт, 1963.
- Dolling G., Cowley R. A., Schittenhelm C., Thorson I. M., Phys. Rev., 147, 577 (1966).
- 9. Bron W. E., Wagner M., Phys. Rev., 139, А 233 (1965); Кристофель Н. Н., Тр. Ин-та физ. и астрон. АН ЭССР, № 12, 20 (1960).

Институт физики и астрономии Академии наук Эстонской ССР

Поступила в редакцию 21/IX 1967

R. AVARMAA

NO⁻₂-LISANDIGA KAALIUMHALOGENIIDKRISTALLIDE LUMINESTSENTSI- JA NEELDUMISSPEKTRITE VÕNKESTRUKTUUR

Artiklis esitatakse andmed, mis saadi $4.2 \,^{\circ}$ K-ni jahutatud NO_2^{-} -lisandiga kaaliumhalogeniidide spektritest. Nii luminestsentsi- kui ka neeldumisspektreis ilmneb rida foononvabu jooni, mis tekivad lisandi elektronüleminekuga kaasneval lokaalsete võnkumiste sellisel ergutamisel, kus kristallvõre võnkumised ei ergutu. Nende joonte lainepikkuste põhjal on leitud kahe lokaalse võnkumise sagedused ergutamata ja ergutatud elektronolekus. Need on lisandi NO_2^{-} molekulisisesed sümmeetrilised võnkumised. Peale selle on spektraalribadel ka alamstruktuur, mis on osalt tingitud lokaalseist või pseudolokaalseist, osalt kristallvõre võnkumistest.

R. AVARMAA

VIBRATIONAL STRUCTURE OF LUMINESCENCE AND ABSORPTION SPECTRA OF NO⁻⁻ IMPURITY IN POTASSIUM HALIDE CRYSTALS

The luminescence spectra of the NO_2^- impurity in KCl and KBr and the absorption spectra of NO_2^- in KCl, KBr and KJ single crystals were measured at 4.2 °K. All these spectra consist of many sharp zero-phonon lines with corresponding phonon bands. The frequencies of the symmetrical internal vibrations of the NO_2^- ion are determined by the wave numbers of all the zero-phonon lines. The symmetrical bending mode in the ground electronic state is almost harmonic. The vibrations in the excited electronic state demonstrate a somewhat unusual deviation from the harmonicity. It is probable that the sharp satellites of the zero-phonon lines in the absorption spectrum of KJ- NO_2^- are due to a local mode in the gap. The broad maxima in the other spectra are attributed to the pseudolocal and lattice modes.