EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVII KÕIDE FOOSIKA * MATEMAATIKA. 1968, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVII ФИЗИКА * МАТЕМАТИКА. 1968, № 1

https://doi.org/10.3176/phys.math.1968.1.19

Я. ЛЫХМУС

НЕКОТОРЫЕ ЗАМЕЧАНИЯ О СИНГУЛЯРНЫХ СЖАТИЯХ ГРУПП Ли

J. LÖHMUS. MÖNED MÄRKUSED Lie- RÜHMADE SINGULAARSETE KONTRAKTSIOONIDE KOHTA J. LÖHMUS. SOME REMARKS CONCERNING SINGULAR CONTRACTIONS OF Lie GROUPS

В [1] впервые четко сформулирован предельный переход в алгебраическом многообразии всевозможных лиевых структур заданной размерности r. Алгебры Ли однопараметрического семейства { $L(\varepsilon)$ } изоморфные друг другу при $\varepsilon \neq 0$, переходят в пределе $\varepsilon = 0$ в алгебру L(0), неизоморфную алгебрам { $L(\varepsilon), \varepsilon \neq 0$ }. При этом алгебры $L(\varepsilon)$ зависят от предельного параметра ε весьма специальным образом — они получаются из некоторой исходной (допредельной) алгебры L преобразованием ее базиса { I_i ; i = 1, 2, ..., r} матрицей $A(\varepsilon)$, являющейся прямой суммой квадратных блоков $I + \varepsilon v$ (порядка s < r) и εI (порядка r - s). Здесь I обозначают единичные матрицы соответствующих (порядков), а v — некоторая регулярная матрица порядка s. Матрицу $I + \varepsilon v$ можно назвать также регулярной частью матрицы $A(\varepsilon)$. Предельный переход такого типа в дальнейшем называется IW-сжатием. Любые матрицы $A(\varepsilon)$, зависящие каким-то образом от непрерывного параметра ε и превращающиеся в сингулярные при $\varepsilon = 0$ (т. е. det A(0) = 0), будем называть матрицами ε -вырожденных преобразований. В пределе они переходят в вырожденные предельные преобразования [²].

Позже были предложены сингулярные обобщения IW-сжатий, при которых генераторы $\{I_i; i = 1, 2, ..., r\}$ алгебры умножаются каждый на некоторую степень $\varepsilon^{m_i} m_i^{(1)} m_i^{(2)} m_i^{(k)}$

одного и того же параметра [³] или на произведение $\varepsilon_1^{m_i^{(1)}} \varepsilon_2^{m_i^{(2)}} \ldots \varepsilon_k^{m_i^{(k)}}$ нескольких предельных параметров в разных степенях [²]. При таких «чистых» сингулярных сжатиях регулярная часть (типа $I + \varepsilon v$) в ε -преобразовании может вовсе отсутствовать.

Целью настоящей заметки является указание условий осуществимости «чистых» сингулярных сжатий с одним предельным параметром.

Подразделим генераторы $\{I_i; i = 1, 2, ..., r\}$ в *р* группы

$$\{I_{i_1}^{(1)}\}, \{I_{i_2}^{(2)}\}, \dots, \{I_{i_n}^{(p)}\},$$
 (1)

где $i_1 = 1, 2, ..., r_1$; $i_2 = r_1 + 1$, $r_1 + 2, ..., r_2$; ...; $i_p = r_{p-1} + 1$, $r_{p-1} + 2, ..., r$, $(r_0 = 0)$, и налишем допредельные соотношения коммутации в виде

$$[I_i^{(a)}, \ I_i^{(\beta)}] = c_{ai, \ \beta j}^{\gamma k} \ I_k^{(\gamma)}, \tag{2}$$

$$i = r_{\alpha-1} + 1, \ r_{\alpha-1} + 2, \dots, \ r_{\alpha}; \ j = r_{\beta-1} + 1, \ r_{\beta-1} + 2, \dots, \ r_{\beta};$$

$$k = r_{\gamma-1} + 1, \ r_{\gamma-1} + 2, \dots, \ r_{\gamma}; \ \alpha, \beta, \gamma = 1, 2, \dots, p.$$

Произведем є-преобразование

$$I_{i_1}^{(1)}(\varepsilon) = \varepsilon^{m_1} I_{i_1}^{(1)}, \ I_{i_2}^{(2)}(\varepsilon) = \varepsilon^{m_2} I_{i_2}^{(2)}, \dots, I_{i_p}^{(p)}(\varepsilon) = \varepsilon^{m_p} I_{i_p}^{(p)},$$
(3)

после которого соотношения коммутации (2) переходят в

$$[I_i^{(\alpha)}(\varepsilon), I_j^{(\beta)}(\varepsilon)] = \varepsilon^{m_\alpha + m_\beta - m_1} c_{\alpha i, \beta j}^{1k} I_k^{(1)}(\varepsilon) + \varepsilon^{m_\alpha + m_\beta - m_2} c_{\alpha i, \beta j}^{2k} I_k^{(2)}(\varepsilon) + \ldots + \varepsilon^{m_\alpha + m_\beta - m_p} c_{\alpha i, \beta j}^{pk} I_k^{(p)}(\varepsilon).$$
(4)

В пределе є-преобразованные генераторы переходят в сжатые: $I_{k}^{(\gamma)}(\varepsilon) \rightarrow I_{k}^{(\gamma)}(0) = I_{k}^{(\gamma)}$. Для обеспечения конечных значений предельных структурных констант показатели степеней должны удовлетворить неравенствам

$$m_{\alpha} + m_{\beta} - m_{\gamma} \ge 0. \tag{5}$$

При $m_{\alpha} + m_{\beta} - m_{\gamma} = 0$ соответствующие члены в коммутаторе сохраняются и структурные константы остаются прежними:

$$c_{\alpha i,\beta j}^{\prime \gamma k} = c_{\alpha i,\beta j}^{\gamma k}. \tag{6}$$

Если $m_{\alpha} + m_{\beta} - m_{\gamma} > 0$, то члены с $I_{k}^{\prime(\gamma)}$ исчезают — проекция предельного коммутатора на подпространство { [, (7) } равна нулю.

Неравенства (5) являются необходимыми и достаточными условиями осуществимости «чистого» предельного перехода с є-преобразованием (3). Условие для IW-сжатий (генераторы $\{I_i^{(1)}; i = 1, 2, ..., s\}$ должны порождать подалгебру) является частным случаем условий (5).

Иногда такие ограничительные условия совсем отпадают. Например, если произвести сингулярное сжатие с ε -преобразованием (3), где p=2и $m_1 = 1, m_2 = 2$, то сжатие осуществимо при любом разбиении генераторов (т. е. при любом значении r₁).

Наконец, можно еще отметить, что такое простое разбиение генераторов и рассмотрение коммутационных свойств позволяет получить условия заменимости данного сингулярного сжатия несколькими последовательными «чистыми» несингулярными IW-сжатиями. Например, сингулярное сжатие с $p = 3, m_1 = 2, m_2 = m_3 = 1$ заменимо двумя последовательными несингулярными IW-сжатиями с $p'=3, m'_1=m'_2=1,$ $m'_3 = 0$ и p'' = 3, $m''_1 = m''_3 = 1$, $m''_2 = 0$ (здесь $r_1 = r'_1 = r''_1$, $r_2 = r'_2 = r'_2$ $=r_{2}''$) только тогда, если выполняется специальное добавочное условие $c_{2i,\ 2i}^{lk} = 0$. Такие добавочные условия можно вывести и в других, более сложных случаях.

При рассмотрении многопараметрических сингулярных сжатий [2] получаются точно такие же условия (5) отдельно для каждого предельного параметра (при предположении независимого устремления параметров к предельным значениям).

ЛИТЕРАТУРА

- Іпопи Е., Wigner E. P., Proc. Nat. Acad. Sci. (USA), 39, 510 (1953).
 Зайцев Г. А., Проблема инвариантно-группового изучения множеств предельных геометрий и специальные подалгебры Ли. Тезисы доклада, Всесоюзная геометрическая конференция, Киев, 1961.
- 3. Doebner H. D., Melsheimer O., Nuovo Cimento, 49 A, 306 (1967).

Институт физики и астрономии Академии наук Эстонской ССР Поступила в редакцию 1/XII 1967