EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVII KÖIDE FÜÜSIKA * MATEMAATIKA. 1968, NR. 1

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVII ФИЗИКА * МАТЕМАТИКА. 1968, № 1

https://doi.org/10.3176/phys.math.1968.1.18

М. ЛЕВИНА

ОБ ОДНОМ СПОСОБЕ ПОСТРОЕНИЯ НЕКОТОРЫХ КВАДРАТУРНЫХ ФОРМУЛ

M. LEVINA. ÜHEST KVADRATUURVALEMITE TULETAMISE MEETODIST
M. LEVINA. ON A METHOD OF DERIVING SOME QUADRATURE FORMULAS

В настоящей заметке показывается, что при получении ряда интерполяционных квадратурных формул с равноотстоящими узлами можно отказаться от требования совпадения многочлена приближения с функцией на концах отрезка интегрирования, заменив его требованием, чтобы сумма квадратов отклонений значений многочлена приближения от функции на концах отрезка была наименьшей.

Покажем, что в случае четного числа узлов 2n+2 формулы Ньюгона-Котеса могут быть получены путем интегрирования многочленов степени 2n, (а не 2n+1 как это обычно делается). Одновременно построим эти многочлены и выясним их связь с интегрируемой функцией.

Нам нужны будут следующие две формулы.

Пусть $P_n(x)$ — многочлен Лагранжа, построенный для функции y=f(x) по узлам x_0,x_1,\ldots,x_n , а $P_{n+1}(x)$ — многочлен Лагранжа, построенный для этой же функции по узлам $x_0,x_1,\ldots,x_n,x_{n+1}$.

Тогда очевидно

$$P_{n+1}(x) = P_n(x) + \frac{f(x_{n+1}) - P_n(x_{n+1})}{w(x_{n+1})} w(x), \tag{1}$$

где $w(x) = (x - x_0)(x - x_1) \dots (x - x_n).$

Для функции $r(x) = (x-1)(x-2)\dots(x-2n)$ справедливо равенство

$$\int_{0}^{2n+1} r(x) dx = \frac{2}{2n+1} \int_{0}^{2n+1} x r(x) dx,$$
 (2)

в чем легко убедиться, если во втором интеграле сделать замену

$$x=t+\frac{2n+1}{2}.$$

Для функции y = f(x) введем обозначения $y_i = f(i)$ (i = 0, 1, 2, ..., 2n + 1).

Пусть многочлен $P_{2n-1}(x)$ означает многочлен Лагранжа, построенный для функции f(x) по узлам $1, 2, \ldots, 2n$.

Рассмотрим многочлен степени 2n:

$$\varphi(x) = P_{2n-1}(x) + \lambda r(x), \tag{3}$$

ксторый очевидно совпадает с функцией f(x) в узлах $1, 2, \ldots, 2n$. Выберем λ так, чтобы величина

$$m = [\varphi(0) - y_0]^2 + [\varphi(2n+1) - y_{2n+1}]^2$$

имела наименьшее значение. Тогда из условия $m'_{\lambda} = 0$, учитывая, что r(0) = r(2n+1) = (2n)!, получаем искомое значение λ :

$$\lambda = \frac{1}{2(2n)!} [y_0 + y_{2n+1} - P_{2n-1}(0) - P_{2n-1}(2n+1)]. \tag{4}$$

Подставляя (4) в (3), находим многочлен приближения в виде

$$\varphi(x) = P_{2n-1}(x) + \frac{1}{2(2n)!} [y_0 + y_{2n-1} - P_{2n-1}(0) - P_{2n-1}(2n+1)] r(x).$$
 (5)

Теперь убедимся, что, заменив в интеграле

$$\int_{0}^{2n+1} f(x) dx$$

функцию f(x) функцией (5), получим формулу Ньютона-Котеса по 2n+2 узлам.

На основании формулы (1), выражая $P_{2n+1}(x)$ через $P_{2n}(x)$, а $P_{2n}(x)$ — через $P_{2n-1}(x)$, имеем

$$P_{2n+1}(x) = P_{2n-1}(x) + \frac{y_0 - P_{2n-1}(0)}{(2n)!} r(x) + \frac{y_{2n+1} - P_{2n-1}(2n+1) - y_0 + P_{2n-1}(0)}{(2n+1)!} xr(x).$$
(6)

Это есть многочлен Лагранжа, построенный по узлам $0, 1, 2, \ldots, 2n+1$. Поэтому, интегрируя этот многочлен на отрезке [0, 2n+1], получим формулу Ньютона-Котеса с 2n+2 узлами.

По (6), учитывая формулу (2), имеем

$$\int_{0}^{2n+1} P_{2n+1}(x) dx = \int_{0}^{2n+1} P_{2n-1}(x) dx + \frac{1}{2(2n)!} [y_{2n+1} - P_{2n-1}(2n+1) + y_0 - P_{2n-1}(0)] \int_{0}^{2n+1} r(x) dx.$$

Но из (5) видно, что интеграл от $\varphi(x)$ на отрезке [0,2n+1] дает это же выражение, что и доказывает наше утверждение.

Ниже будем пользоваться обозначениями:

$$x_i = x_0 + ih$$
, $y_i = f(x_i)$, $y'_i = f'(x_i)$.

Пример. Для того чтобы получить квадратурное правило «трех восьмых»

$$\int_{x_i}^{x_{i+3h}} f(x) dx \approx \frac{3}{8} h[y_i + 3y_{i+1} + 3y_{i+2} + y_{i+3}],$$

можно подынтегральную функцию на отрезке $[x_i, x_{i+3}]$ заменить трехчленом

$$\varphi(x) = \frac{x_{i+2}-x}{h} y_{i+1} + \frac{x-x_{i+1}}{h} y_{i+2} + \lambda(x-x_{i+1}) (x-x_{i+2}),$$

где а выбирается из условия минимума величины

$$[\varphi(x_i) - y_i]^2 + [\varphi(x_{i+3}) - y_{i+3}]^2.$$

Приведем еще примеры построения квадратурных формул с помощью вышеизложенного приема.

На отрезке $[x_0, x_{2n}]$ строим для f(x) приближение $\varphi(x)$ так: $\varphi(x) = \varphi_{2i}(x)$ на $[x_{2i}, x_{2i+2}]$ $(i=0,1,\ldots,n-1)$, где $\varphi_{2i}(x)$ парабола с вершиной в точке (x_{2i+1}, y_{2i+1}) и такая, что величина

$$m_{2i} = [\varphi_{2i}(x_{2i}) - y_{2i}]^2 + [\varphi_{2i}(x_{2i+2}) - y_{2i+2}]^2$$

принимает наименьшее значение.

Но тогда, как в этом легко убедиться,

$$\varphi_{2i}(x) = y_{2i+1} + \lambda (x - x_{2i+1})^2,$$

где

$$\lambda = \frac{1}{2h^2} (y_{2i} - 2y_{2i+1} + y_{2i+2}).$$

Если в интеграле $\int\limits_{x_0}^{} f(x) dx$ функцию f(x) заменить функцией $\phi(x)$, то мы получим формулу Симпсона.

Рассмотрим теперь отрезок $[x_0,x_n]$. На нем для функции f(x) построим приближение $\varphi(x)$ так, чтобы $\varphi(x)=\varphi_i(x)$ на $[x_i,x_{i+1}]$ $(i=0,1,\ldots,n-1)$, где $\varphi_i(x)$ — многочлен второй степени, удовлетворяющий условиям: $\varphi(x_i)=y_i, \quad \varphi(x_{i+1})=y_{i+1}, \quad \text{а величина } [\varphi'(x_i)-y'_i]^2+[\varphi'(x_{i+1})-y'_{i+1}]^2$ принимает наименьшее значение. Получим

$$\varphi_i(x) = \frac{x_{i+1} - x}{h} y_i + \frac{x - x_i}{h} y_{i+1} + \lambda (x - x_i) (x - x_{i+1}),$$

$$\lambda = \frac{1}{2h} (y'_{i+1} - y'_i).$$

Если теперь вычисление интеграла от f(x) на отрезке $[x_0, x_n]$ заменить вычислением интеграла от $\varphi(x)$ на этом же отрезке, то мы получим уточненную формулу трапеций.

$$\int_{x_0}^{x_n} f(x) dx \approx h \left[\frac{y_0 + y_n}{2} + y_1 + y_2 + \ldots + y_{n-1} \right] - \frac{h}{12} (y'_n - y'_0).$$

Так же, если на каждом отрезке $[x_{2i}, x_{2i+2}]$ построить для f(x) приближение $\varphi_{2i}(x)$ так, чтобы $\varphi_{2i}(x)$ была бы параболой с вершиной в точке (x_{2i+1}, y_{2i+1}) и величина

$$[\phi_{2i}^{'}(x_{2i}) - y_{2i}^{'}]^2 + [\phi_{2i}^{'}(x_{2i+2}) - y_{2i+2}^{'}]^2$$

принимала наименьшее значение, то получим

$$\varphi_{2i}(x) = y_{2i+1} + \lambda (x - x_{2i+1})^2,$$

гле

$$\lambda = \frac{1}{4h} (y'_{2i+2} - y'_{2i}).$$

Замена в интеграле функции f(x) функцией $\phi(x) = \phi_i(x)$ на каждом отрезке $[x_i, x_{i+1}]$ приводит к формуле

$$\int_{x_0}^{x_0+2nh} f(x) dx \approx 2h \sum_{i=0}^{n-1} y_{2i+1} + \frac{h^2}{6} (y'_{2n} - y'_0),$$

которая точна для любого многочлена третьей степени и является уточненной формулой прямоугольников.

Таллинский политехнический институт

Поступила в редакцию 1/XII 1967