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Abstract. For a solid double sequence spaceΛ and a matrix of moduliF = (fki) let
Λ(F) = {x = (xk) : (fki(|xk|)) ∈ Λ}. We characterize the F-seminormability of the
sequence spaceΛ(F). As concrete examples we consider the spaces of stronglyB-summable
and stronglyB-bounded sequences with respect toF . We also give a correction of the theorem
of Esi (Turkish J. Math., 1997,21, 61–68) about the topologization ofw0[A, p, F ].
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1. INTRODUCTION

We use the symbolN to denote the set of all positive integers, andK to denote
C or R, the set of all complex and real numbers, respectively. Bys we denote the
vector space of all number sequences, i.e.,

s = {x = (xk) : xk ∈ K (k ∈ N)} ,

where the vector space operations are defined coordinatewise. A subspace of the
vector spaces is called asequence space. A sequence spaceλ is calledsolid if
(xk) ∈ λ and|yk| ≤ |xk| (k ∈ N) imply (yk) ∈ λ. Well-known solid sequence
spaces are the spacem of all bounded sequences and the spacec0 of all convergent
to zero sequences.

Let S be the vector space of all real or complex double sequences with the
vector space operations defined coordinatewise. Vector subspaces of S are called
double sequence spaces. A double sequence spaceΛ is calledsolid if (xki) ∈ Λ
and|yki| ≤ |xki| (k, i ∈ N) yield (yki) ∈ Λ. For example, the double sequence
spaces
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W p
∞[B] =

{

X = (xki) ∈ S : sup
n,i

|σni(X)| < ∞

}

and

W
p
0 [B] =

{

X = (xki) ∈ W p
∞[B] : lim

n
σni(X) = 0 uniformly in i

}

are solid, whereB = (Bi) is a sequence of infinite scalar matricesBi = (bnk(i))
with bnk(i) ≥ 0 (n, k, i ∈ N), p > 0 and

σni(X) =
∞
∑

k=1

bnk(i)|xki|
p.

A function f : [0,∞) → [0,∞) is called amodulus function(or simply a
modulus) if
(i) f(t) = 0 if and only if t = 0,
(ii) f(t + u) ≤ f(t) + f(u) (t, u ≥ 0),

(iii) f is nondecreasing,
(iv) f is continuous from the right at 0.

For a modulusf and a sequence spaceλ, Ruckle [1], Maddox [2], and some
other authors defined a new sequence spaceλ(f) by

λ(f) = {x = (xk) : f(|x|) = (f(|xk|)) ∈ λ}.

An extension of this definition was given by Kolk [3]. For a sequence spaceλ and
a sequence of moduliF = (fk) he defined

λ(F ) = {x = (xk) : F (|x|) = (fk(|xk|)) ∈ λ}.

Analogously, for a double sequence spaceΛ and a matrix of moduliF = (fki) we
define

Λ(F) = {x = (xk) : F(|x|) = (fki(|xk|)) ∈ Λ}.

It is not difficult to see thatΛ(F) is a solid sequence space whenever the double

sequence spaceΛ is solid.
Recall that anF-seminormg on a vector spaceV is a functionalg : V → R

satisfying, for allx, y ∈ V , the axioms
(N1) g(0) = 0,
(N2) g(x + y) ≤ g(x) + g(y),
(N3) g(αx) ≤ g(x) for all scalarsα with |α| ≤ 1,
(N4) limn g(αnx) = 0 for every scalar sequence(αn) with limn αn = 0.

A paranormonV is a functionalg : V → R satisfying (N1), (N2), and
(N5) g(−x) = g(x),
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(N6) limn g(αnxn−αx) = 0 for every scalar sequence(αn) with limn αn = α

and every sequence(xn) with limn g(xn − x) = 0 (xn, x ∈ V ).
A seminormis a functionalg : V → R with the conditions (N1), (N2), and

(N7) g(αx) = |α|g(x) (α ∈ K, x ∈ V ).
An F-seminormg on a solid sequence spaceλ is said to beabsolutely monotoneif
g(y) ≤ g(x) for all x = (xk), y = (yk) ∈ λ with |yk| ≤ |xk| (k ∈ N).

An essential problem in the theory of sequence spaces is the topologization
of various vector spaces of sequences. For example, ifF = (fk) is a sequence
of moduli andλ is an F-seminormed (paranormed) solid sequence space, then the
linear spaceλ(F ) may be topologized by an F-seminorm (paranorm) under some
restrictions on the sequenceF = (fk) or on the space(λ, g) (see [4−6]). Kolk ([ 4],
Theorem 1) proved the following statement about the topologization ofλ(F ).

Theorem 1.1. If g is an absolutely monotone F-seminorm on a solid sequence
spaceλ and the sequence of moduliF = (fk) satisfies the condition

(M1) limu→0+ supt>0 supk

fk(ut)

fk(t)
= 0,

then the functionalgF , where

gF (x) = g(F (|x|)) (x ∈ λ(F )),

is an absolutely monotone F-seminorm onλ(F ).

In this note we describe the topologization of the sequence spaceΛ(F), gene-
ralizing in this way Theorem 1.1. As an application we consider the topologization
of the spaceswp

∞[B,F ] and w
p
0[B,F ] and give a correction of the theorem of

Esi [7] about the topologization of the spacew0[A, p, F ].

2. TOPOLOGIZATION OF Λ(F)

Let Λ be a double sequence space and letg be an F-seminorm onΛ.

Definition 2.1. An F-seminormg on a double sequence spaceΛ is said to be
absolutely monotoneif for all X = (xki) andY = (yki) fromΛ with |yki| ≤ |xki|
(k, i ∈ N) we haveg(Y ) ≤ g(X).

Now we can describe the topology of the sequence spaceΛ(F) defined by a
matrix of moduliF = (fki).

Theorem 2.2. Let (Λ, g) be a solid F-seminormed double sequence space. Ifg is
absolutely monotone and the matrix of moduliF = (fki) satisfies the condition

(M2) limu→0+ supt>0 supk,i

fki(ut)

fki(t)
= 0,

then the functionalgF defined by

220



gF (x) = g(F(|x|)) (x ∈ Λ(F))

is an absolutely monotone F-seminorm onΛ(F).

Proof. Letg be an absolutely monotone F-seminorm onΛ and letF = (fki) satisfy
(M2).

First we prove thatgF is an F-seminorm, i.e.,gF satisfies the axioms (N1)–
(N4). Sinceg is an F-seminorm, (N1) holds by (i). The axiom (N2) follows
immediately from the subadditivity ofg and fki (k, i ∈ N) becauseg is an
absolutely monotone F-seminorm and the functionsfki (k, i ∈ N) satisfy the
property (iii).

If |α| ≤ 1 (α ∈ K), then|αxk| ≤ |xk| (k ∈ N) and by (iii) we may write

fki (|αxk|) ≤ fki (|xk|) (k, i ∈ N).

So, sinceg is absolutely monotone, we get

gF (αx) = g(F(|αx|)) = g ((fki (|αxk|))) ≤ g ((fki (|xk|))) = g(F(|x|)) = gF (x),

i.e., (N3) is valid.
To prove (N4), letlimn αn = 0 (αn ∈ K) andx = (xk) ∈ Λ(F). Since

fki(t) > 0 (k, i ∈ N) for t > 0 andfki(|αnxk|) = 0 for k ∈ K0 = {k ∈ N : xk =
0}, i ∈ N, we have

fki (|αnxk|) ≤ hnfki (|xk|) (k, i, n ∈ N), (1)

where

hn = sup
k 6∈K0

sup
i

fki (|αnxk|)

fki (|xk|)
.

While

hn ≤ sup
|xk|>0

sup
k 6∈K0

sup
i

fki (|αn||xk|)

fki (|xk|)
,

by condition (M2) we see thathn −→ 0, as n → ∞. Sinceg is absolutely
monotone, we get

g(F(|αnx|)) = g ((fki (|αnxk|))) ≤ g (hn (fki (|xk|))) = g(hnF(|x|)) (2)

by (1). Now, using thatg satisfies (N4), we have

lim
n→∞

g(hnF(|x|)) = 0,

which, together with (2), gives

lim
n→∞

gF (αnx) = lim
n→∞

g(F(|αnx|)) = 0.

ThusgF is an F-seminorm onΛ(F).
Finally, letx = (xk), y = (yk) be inΛ(F) and|yk| ≤ |xk| (k ∈ N). Then

fki (|yk|) ≤ fki (|xk|) (k, i ∈ N),
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and sinceg is an absolutely monotone F-seminorm,

gF (y) = g(F(|y|)) = g ((fki (|yk|))) ≤ g ((fki (|xk|))) = g(F(|x|)) = gF (x).

HencegF is absolutely monotone and the proof is completed. �

3. SPACES OF STRONGLY B-SUMMABLE SEQUENCES

For a sequenceB = (Bi) of infinite scalar matricesBi = (bnk(i)) with
bnk(i) ≥ 0 (n, k, i ∈ N) we consider the spacesW p

∞[B] andW
p
0 [B] of strongly

B-bounded and stronglyB-summable to zero double sequences, respectively,
which were defined in Section 1.

It is easy to prove that forp ≥ 1 the functionalgp
B

, where

g
p
B

(X) = sup
n,i

(σni(X))1/p ,

is an absolutely monotone seminorm onW
p
∞[B] andW

p
0 [B].

LetF = (fki) be a matrix of moduli andp ≥ 1. We define the sequence spaces

wp
∞[B,F ] = {x = (xk) : F(|x|) ∈ W p

∞[B]}

and
w

p
0[B,F ] = {x = (xk) ∈ wp

∞[B,F ] : F(|x|) ∈ W
p
0 [B]} .

A sequencex = (xk) from w
p
∞[B,F ] (wp

0[B,F ]) is calledstronglyB-bounded
(stronglyB-summable to zero) with respect to the matrix of moduliF .

Our purpose is to characterize the F-seminormability ofw
p
∞[B,F ] and

w
p
0[B,F ] by Theorem 2.2.

For the topologization ofwp
∞[B,F ] andw

p
0[B,F ] we introduce the functional

g
p
B,F defined by

g
p
B,F (x) = sup

n,i

(

∞
∑

k=1

bnk(i)(fki(|xk|))
p

)1/p

.

The sequence spacesw
p
∞[B,F ] andw

p
0[B,F ] are the spaces of typeΛ(F) with

Λ = W
p
∞[B] andΛ = W

p
0 [B], respectively. In addition,gp

B,F = (gp
B

)F . Since
every seminorm is also an F-seminorm, from Theorem 2.2 we immediately get

Corollary 3.1. Let p ≥ 1. If the matrix of moduliF = (fki) satisfies the condi-
tion (M2), theng

p
B,F is an absolutely monotone F-seminorm onw

p
∞[B,F ] and

w
p
0[B,F ].
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Let A = (ank) be an infinite matrix of non-negative numbers,p = (pk) a
bounded sequence of positive numbers andr = max{1, supk pk}. For a sequence
of moduliF = (fk), following Esi [7], we consider the sequence spaces

w∞[A, p, F ] =
{

x = (xk) : sup
n,i

sni(x) < ∞
}

and

w0[A, p, F ] =
{

x ∈ w∞[A, p, F ] : lim
n

sni(x) = 0 uniformly in i
}

,

where

sni(x) =
∞
∑

k=1

ank (fk(|xk+i−1|))
pk =

∞
∑

k=i

an,k−i+1 (fk−i+1(|xk|))
pk−i+1 .

Nanda [8] examined similar tow∞[A, p, F ] andw0[A, p, F ] sequence spaces.
Theorem 3 of Esi [7] asserts that the functionalgA,p,F , where

gA,p,F (x) = sup
n,i

(sni(x))1/r,

is a paranorm onw0[A, p, F ] for an arbitrary sequence of moduliF = (fk). But it
seems that this is not true in general. In fact, ifA = C1, the matrix of arithmetical
means,F = (fk) is a constant sequence of moduli, i.e.,fk = f (k ∈ N) and
pk = 1 (k ∈ N), then Corollary 2 of [5] shows that the functionalgA,p,F is not
a paranorm onw0[A, p, F ] wheneverf is bounded. Consequently, the theorem of
Esi cannot be true without restrictions on the sequence of moduliF = (fk).

The sequence spacew0[A, p, F ] can be considered as a space of typeΛ(F).
Indeed, defining the matrix of moduliFp = (fp

ki) by

f
p
ki(t) =

{

(fk−i+1(t))
(pk−i+1)/r if k ≥ i,

t if k < i,
(3)

we can write
w0[A, p, F ] = (W r

0 [B]) (Fp),

whereBi are matrices with the elements

bnk(i) =

{

an,k−i+1 if k ≥ i,

0 if k < i.

Since, moreover,gA,p,F = (gr
A)Fp , from Theorem 2.2 we get
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Corollary 3.2. If the sequence of moduliF = (fk) satisfies the condition

(M3) limu→0+ supt>0 supk

(

fk(ut)

fk(t)

)pk

= 0,

thengA,p,F is an absolutely monotone F-seminorm onw0[A, p, F ].

Our Corollary 3.2 shows thatw0[A, p, F ] can be topologized by the F-
seminormgA,p,F if the sequence of moduliF = (fk) satisfies the restriction (M3).
Since every F-seminorm is also a paranorm, Corollary 3.2 can be considered as a
correction of Theorem 3 of Esi [7].

Example. Let (Λ, g) be a solid F-seminormed double sequence space. Defining
pk = 1

3

(

1 + 1
k

)

andfk(t) = t (k ∈ N), we getr = max{1, supk pk} = 1. By (3)
we have the matrix of moduliFp = (fp

ki) with the elements

f
p
ki(t) =

{

t1/3(1+1/(k−i+1)) if k ≥ i,

t if k < i.

Since

sup
t>0

sup
k,i

f
p
ki(ut)

f
p
ki(t)

= max{u2/3, u},

the condition (M2) is fulfilled. Therefore, the functionalgFp is an absolutely
monotone F-seminorm on the sequence spaceΛ(Fp) by Theorem 2.2.
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Moodulite maatriksi abil defineeritud
jadaruumide topologiseerimine

Annemai Mölder

Olgu Λ soliidne topeltjadade ruum. Artiklis kirjeldatakse moodulite maatrik-
sigaF = (fki) määratud jadaruumiΛ(F) = {x = (xk) : (fki(|xk|)) ∈ Λ} F-pool-
normeeritavust. Näidetena vaadeldakse moodulite maatriksi abil defineeritudtuge-
valt B-summeeruvate ja tugevaltB-tõkestatud jadade ruumide topologiseerimist.
Lisaks uuritakse jadaruumiw0[A, p, F ] F-poolnormeeritavust, näidates ära ühe
võimaluse A. Esi analoogilise teoreemi parandamiseks.
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