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Abstract. For a solid double sequence spateand a matrix of moduliF = (f;) let
AF) = {z = (=) : (frs(lzk])) € A}. We characterize the F-seminormability of the
sequence spadg(F). As concrete examples we consider the spaces of stréigdymmable
and stronglyB-bounded sequences with respectAio We also give a correction of the theorem
of Esi (Turkish J. Math.1997,21, 61-68) about the topologization af)[A, p, F].
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1. INTRODUCTION

We use the symbad¥ to denote the set of all positive integers, d&do denote
C or R, the set of all complex and real numbers, respectivelys Bye denote the
vector space of all number sequences, i.e.,

gz{x:(xk):l‘kGK (/{:EN)},

where the vector space operations are defined coordinatewise. pasebsf the
vector space is called asequence spaceA sequence spackis calledsolid if
(xx) € Nand|yk| < |zk| (k € N)imply (yx) € X\. Well-known solid sequence
spaces are the spageof all bounded sequences and the spaacaf all convergent
to zero sequences.

Let S be the vector space of all real or complex double sequences with the
vector space operations defined coordinatewise. Vector subspgaSesre called
double sequence spaceA double sequence spadeis calledsolid if (xg;) € A
and|yg;| < |zki| (k,i € N)yield (yx;) € A. For example, the double sequence
spaces
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WP [B] = {X = (ki) € S sup |on (X)| < oo}

n,i

and
W [B] = {X = (zg;) € WE[B] : lim 0,,;(X) = 0 uniformly in z}

are solid, wheréd = (B;) is a sequence of infinite scalar matrid@s= (b,,x (7))
with b,,;(i) > 0 (n,k,i € N),p > 0and

i (X) =3 b (1) g
k=1

A function f : [0,00) — [0, 00) is called amodulus functior(or simply a
modulu$ if
() f(t) =0ifand only ift = 0,
(i) ft+uw) < f(t)+ f(u) (t,u>0),
(iii) f is nondecreasing,
(iv) f is continuous from the right at 0.
For a modulusf and a sequence spasgRuckle [[], Maddox P], and some
other authors defined a new sequence spage by

M) = {z = (z) : flz]) = (f(lze])) € A}

An extension of this definition was given by KolK][ For a sequence spageand
a sequence of moduli’ = (fi) he defined

AF) = A{z = (zx) - F(l2]) = (fe(lz])) € A}

Analogously, for a double sequence spacand a matrix of moduliF = (fi;) we
define

AF) = {z = (zr) : Flz]) = (frilzx])) € A}
It is not difficult to see that\(F) is a solid sequence space whenever the double

sequence spadeis solid.

Recall that arFF-seminormg on a vector spac®’ is a functionalg: V' — R
satisfying, for allz,y € V, the axioms

(N1) g(0) =0,

(N2) g(z +y) < g(x) + g(y),

(N3) g(ax) < g(z) for all scalarsy with |a] < 1,

(N4) lim,, g(apx) = 0 for every scalar sequencge,,) with lim,, «,, = 0.
A paranormonV is a functionaly: V' — R satisfying (N1), (N2), and

(N5) g(—z) = g(=),
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(N6) lim,, g(ay,z,, —ax) = 0 for every scalar sequence,,) with lim,, o, = «
and every sequende,,) with lim,, g(x, —z) =0 (z,,z € V).
A seminormis a functionaly: V' — R with the conditions (N1), (N2), and

(N7) g(az) = [alg(z) (aeK, zeV).
An F-seminorny on a solid sequence spakés said to beabsolutely monotonié
g(y) < g(x)forallz = (zx), v = (yx) € Awith |yg| < |zg| (k€ N).

An essential problem in the theory of sequence spaces is the topologization
of various vector spaces of sequences. For examplg, # (f) is a sequence
of moduli and) is an F-seminormed (paranormed) solid sequence space, then the
linear space\(F') may be topologized by an F-seminorm (paranorm) under some
restrictions on the sequenée= (f;,) or on the spacé), g) (see {~°]). Kolk ([*],
Theorem 1) proved the following statement about the topologizatio B .

Theorem 1.1. If g is an absolutely monotone F-seminorm on a solid sequence
space) and the sequence of modili= ( f;) satisfies the condition

t
(M1) lim, 04 sup;~q supy M =0,

fr(t)

then the functionayr, where

gr(x) = g(F(z])) (z € AF)),
is an absolutely monotone F-seminormXF’).

In this note we describe the topologization of the sequence sp@€g gene-
ralizing in this way Theorem 1.1. As an application we consider the topologizatio
of the spacesv’,[B, ] and w}[B, F] and give a correction of the theorem of
Esi ["] about the topologization of the spaceg|A, p, F].

2. TOPOLOGIZATION OF A(F)

Let A be a double sequence space ang le¢ an F-seminorm oA.

Definition 2.1. An F-seminormy on a double sequence spadeis said to be
absolutely monotoni for all X = (zy;) andY = (yg;) from A with |yg;| < |z
(k,i € N) we havgy(Y) < g(X).

Now we can describe the topology of the sequence spafe defined by a
matrix of moduliF = (fx;).

Theorem 2.2.Let (A, g) be a solid F-seminormed double sequence spacgislf
absolutely monotone and the matrix of modkili= ( fx;) satisfies the condition

fri(ut)
fri(t)

then the functionay + defined by

(M2) limy,—0+ Sup;~q Supy; =0,
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g9r(x) = g(F(|z])) (x € A(F))
is an absolutely monotone F-seminorm/®(iF).

Proof. Let g be an absolutely monotone F-seminorm/oand letF = ( fx;) satisfy
(M2).

First we prove thayr is an F-seminorm, i.egs satisfies the axioms (N1)—
(N4). Sinceg is an F-seminorm, (N1) holds by (i). The axiom (N2) follows
immediately from the subadditivity of and fx; (k,i € N) becausey is an
absolutely monotone F-seminorm and the functigips (k,i € N) satisfy the
property (iii).

If |o] <1 (o € K), then|axy| < |zx| (k€ N)and by (iii) we may write

fwi (loxk]) < fii (|zk]) (ki € N).
So, sinceg is absolutely monotone, we get

gr(ax) = g(F(lex])) = g ((fri (lexk]))) < g ((fri (J2x)) = g(F(|2]) = g7 (2),

i.e., (N3) is valid.

To prove (N4), letlim, o, = 0 (o, € K) andz = (z) € A(F). Since
fri(t) >0 (k,i € N)fort > 0andf;(|anz|) =0fork € Ko ={k e N:z, =
0}, ¢ € N, we have

fri (anzi]) < hnfri (lzkl)  (k,i,n € N), (1)
where f ( )
h, = sup su Jki \|%nTk])
k&]lgo P f ()
While

hy, < sup sup sup M7
>0 kgKo i ki (|zk])

by condition (M2) we see that, — 0, asn — oo. Sinceg is absolutely
monotone, we get

9(F(lomz])) = g ((fri (lonzi]))) < g (hn (fri (7)) = g(hnF (1)) (2)
by (1). Now, using thay satisfies (N4), we have
Tim g(hnF(|2])) = 0,
which, together with (2), gives
lim gr(anz) = lim g(F(Jana])) = 0.

Thusgr is an F-seminorm ot (F).
Finally, letx = (zx), v = (yx) beinA(F) and|yx| < |zx| (k€ N). Then

Fei (lyel) < fri (Jzl) - (ki € N),
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and since is an absolutely monotone F-seminorm,

97 () = g(F(ul) = g ((fri (ye))) < g ((fri (k) = 9(F(|z)) = g7 (2).

Henceg r is absolutely monotone and the proof is completed. O

3. SPACES OF STRONGLY B-SUMMABLE SEQUENCES

For a sequenc& = (B;) of infinite scalar matriced3; = (b, (7)) with
bni(i) > 0 (n,k,i € N) we consider the spacéB%,[B] and W[ [B] of strongly
%B-bounded and strongl§B-summable to zero double sequences, respectively,
which were defined in Section 1.

It is easy to prove that fgy > 1 the functionalgh,, where

go(X) = sup (0,(X))"/7,

n,t

is an absolutely monotone seminorm B, (B8] and W' [B].

Let F = (fx;) be a matrix of moduli ang > 1. We define the sequence spaces
who[B, F| = {x = (xr) : F(|z]) € WE[B]}

and
wh[B, F) = {& = (x1) € wl,[%B, F] : F(|z]) € WE[B]}.

A sequencer = (zy) from w5, [B, F] (wf[B, F]) is calledstronglyB8-bounded
(stronglyB-summable to zejavith respect to the matrix of moduft.

Our purpose is to characterize the F-seminormability«df[®B, F] and
wj|B, F| by Theorem 2.2.

For the topologization of%,[B, ] andw} [B, F] we introduce the functional
g%f defined by

o] 1/p
9o, () = sup (Z bnk(i)(fm(lxkl))”> -
mn, k=1
The sequence space&,[B, F| andw{[B, F| are the spaces of typgF) with
A = WE[B] andA = W[[B], respectively. In additiongh, » = (g4)#. Since
every seminorm is also an F-seminorm, from Theorem 2.2 we immediately get

Corollary 3.1. Letp > 1. If the matrix of moduliF = (fx;) satisfies the condi-
tion (M2), then gg, - is an absolutely monotone F-seminorm of,[%B, 7] and

wg[%7f].
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Let A = (ank) be an infinite matrix of non-negative numbegs= (px) a
bounded sequence of positive numbers ard max{1, sup, px}. For a sequence
of moduli I = (f%), following Esi ['], we consider the sequence spaces

Weol|A,p, F] = {:U = (zg) : sup spi(x) < oo}

n,%

and
wolA, p, F] = {x € Woo|A, p, F] : lim s,,;(x) = 0 uniformly in z} ,
where
sni(®) = Y ank (fr(lnria )P =Y anpinr (feoira(Jog]))P+
k=1 k=i

Nanda f] examined similar tav..[4, p, F] andwy[A, p, F'] sequence spaces.
Theorem 3 of EsiT] asserts that the functional , », where

gap () = sup(sni(z)'/",

n,t

is a paranorm omy[A4, p, F'] for an arbitrary sequence of moduli = (fi). But it
seems that this is not true in general. In factdi= C, the matrix of arithmetical
means,F' = (fi) is a constant sequence of moduli, i.¢,= f (k € N) and
pr = 1 (k € N), then Corollary 2 of ] shows that the functionaj4 , r is not
a paranorm onwg[A, p, F'] wheneverf is bounded. Consequently, the theorem of
Esi cannot be true without restrictions on the sequence of médei( f;,).

The sequence spaee)[A, p, F] can be considered as a space of tyger).
Indeed, defining the matrix of moduli” = (f}.) by

L ()P k>
f,i’i<t>={§f" ) o )

we can write
wolA, p, F] = (Wi [B]) (F7),
whereB; are matrices with the elements

. Un—iv1 IF k>,
by, = ’ )
(@) {o if k< i.

Since, moreovew , r = (9’) »,» from Theorem 2.2 we get

Fp?
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Corollary 3.2. If the sequence of moduli = ( f},) satisfies the condition

Pk
(M3) limy .0+ sup;~q supy <f;:ét))> =0,

thenga p 7 is an absolutely monotone F-seminormwogl A, p, F.

Our Corollary 3.2 shows thatwg[A,p, F] can be topologized by the F-
seminormg 4 ,, r if the sequence of modul’ = ( f;) satisfies the restriction (M3).
Since every F-seminorm is also a paranorm, Corollary 3.2 can be ceegidera
correction of Theorem 3 of Esi[.

Example. Let (A, g) be a solid F-seminormed double sequence space. Defining
pr =3 (1+ #) andfi(t) = t (k € N), we getr = max{1, sup px} = 1. By (3)
we have the matrix of modulf? = (f7.) with the elements
t1/3(1+1/(k’—’i+1)) If k > ?:7
fo(t) = e
t if k<.
Since
sup sup f’;:l(Ut)
>0 ki Jp(t)

the condition (M2) is fulfilled. Therefore, the functionaj» is an absolutely
monotone F-seminorm on the sequence spgde’) by Theorem 2.2.

= max{u?/3,u},
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Moodulite maatriksi abil defineeritud
jadaruumide topologiseerimine

Annemai Molder

Olgu A soliidne topeltjadade ruum. Artiklis kirjeldatakse moodulite maatrik-
sigaF = ( fr;) maaratud jadaruunti(F) = {z = (zx) : (fri(|zx|)) € A} F-pool-
normeeritavust. Naidetena vaadeldakse moodulite maatriksi abil defingegerd
valt B-summeeruvate ja tugevah-tdkestatud jadade ruumide topologiseerimist.
Lisaks uuritakse jadaruumiy[A, p, F] F-poolnormeeritavust, néidates ara the
vOimaluse A. Esi analoogilise teoreemi parandamiseks.
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