
Proc. Estonian Acad. Sci. Phys. Math., 2003,52, 4, 413–436

Global invariants for analysing multi-threaded
applications

Helmut Seidla, Varmo Veneb, and Markus Müller-Olmc

a Fachbereich IV– Informatik, Universität Trier, D-54286 Trier, Germany;
seidl@psi.uni-trier.de

b Institute of Computer Science, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia;
varmo@cs.ut.ee

c Fachbereich Informatik, Lehrgebiet Praktische Informatik 5, FernUniversität Hagen, D-
58084 Hagen, Germany; mmo@ls5.cs.uni-dortmund.de
On leave from Universität Dortmund

Received 28 January 2003, in revised form 16 July 2003

Abstract. We exhibit an interprocedural framework for the analysis of multi-threaded programs
based onpartial invariantsof a new kind of constraint systems which we callside-effecting.
We explore the formal properties of these constraint systems and provide general techniques
for computing partial invariants. The practicality of this approach is demonstrated by designing
and implementing a reasonably efficient flow- and context-sensitive interprocedural data-race
analyser of multi-threaded C.

Key words: program analysis, multi-threading, constraint solving.

1. INTRODUCTION

The DAEDALUS project is a joint European technology transfer project with
industrial and academic partners, which aims at applying techniques from abstract
interpretation in order to improve avionics software. Our particular goal is to
enhance reliability of multi-threaded C code by using program analyser technology
for obtaining sanity checks or even certificates stating the absence of certain
programming errors. This type of application does not demand analysers which run
in a few seconds but flag thousands of unnecessary warnings which later on must
be checked manually by highly paid software engineers. We are clearly willing
to spend some minutes analysing larger programs, provided that the number of
spurious errors is dramatically decreased. Therefore, we aim at a good balance
between precision and analysis time.

413



Fig. 1.An example control-flow edge and the effect of traversing the edge.

The analysis of multi-threaded programs has been considered as notoriously
difficult and expensive. In fact,preciseanalyses are known for some restricted
classes of parallel programs [1−3] but for very simple program properties only [4].
However, in order to arrive at the necessary precision for a nontrivial fragment
of C, we have, e.g., to resolve function pointers and integrate some form of
points-toanalysis. Also, we have to take into account the possible interference
between the execution of different threads. In this paper, we present the background
concepts which we have used in our generator for interprocedural analyses of multi-
threaded C in order to arrive at sufficiently precise and efficient analyses. The
key observation is that POSIX threads communicate through global variables. In
order to separate the analysis of the different threads, we attempt to infer for each
global variable one value which safely approximatesall possible states of the global
variable. This single invariant for the globals is then used for analysing each thread
individually. Consider, e.g., the control-flow edge shown on the left in Fig. 1.
There, the globalint variablez is updated to the sum of two local variables. The
desired result of applying the edge’s transfer function is shown on the right in Fig. 1.
Traversing the edge hastwo effects conceptually: first, the local state of the edge’s
target node receives the local variable assignment from the edge’s source node, and
second, the globalz receives the value of the expressionx + y. Given that some
global invariant forz safely approximates the second effect onto the global, the
analysis may proceed by tracking the local states only. In the presence of multi-
threading, this means that we can analyse each thread individually. The separation
is particularly successful in applications where the threads are only loosely coupled,
i.e., where the control flow mainly depends on the values of locals. We are left
with the task of inferring an as tight invariant as possible. The basic idea for
this approximation is to refine apartial invariant during the fixpoint iteration by
collecting theside-effectsof constraint evaluation.

In earlier work, we have successfully applied generallocal constraint solvers to
implementing interprocedural analyses [5−9]. The architectural idea is to separate
the fixpoint engine completely from the program analysis framework such that each
of these two software components can be developed, optimized, and exchanged

414



independently of the other. We may, e.g., experiment with interprocedural analyses
based on the functional approach or using call-strings of various lengths [10]
without changing the underlying fixpoint engine. This separation of concerns and
subdivision into small software components is even more desirable for a software
checking application, where not a single programming error can be tolerated.

In this paper, we generalize this approach to an analysis framework for multi-
threaded programs and partial invariants. This framework allows us to specify
and implement conveniently, e.g., data-race analysers for multi-threaded C. It is
based on partial invariants over a class of generalized constraint systems which
we call side-effecting. We give an application-independent characterization of
partial invariants by means of ordinary constraint systems and present a sufficient
condition guaranteeing the existence of a unique least partial invariant. Inferring
a least partial invariant means for the analysis that only those effects onto globals
are recorded, which occurred during tracking function calls. Finally, we show how
local constraint solving can be customized to infer partial invariants. We have
implemented this approach and report about our experimental results.

2. THE MULTI-THREADED INTERPROCEDURAL FRAMEWORK

In this section, we present our framework for interprocedural analysis of multi-
threaded programs. We do so by using the following C program as our running
example:

int z;
mutex A, B;

void inc(mutex* me) {
mutex_lock(me);
z = z + 1;
mutex_unlock(me);

}

void main() {
tid id;

z = 0;
create(&id,inc,&A);
inc(&A);

}

Here, create(), mutex_lock(), and mutex_unlock() are simplified versions of the
corresponding pthread library functions. The first argument ofcreate() is the
address of the variable where the thread id of the newly created thread is placed,
the second argument contains (a reference to) the function to be executed by the
new thread, and the third argument contains the actual parameter to the called
function. The mutex handling functions have been simplified to receive the address
of a mutex only.

In general, we assume that every input program consists of a finite setF of
functions, and that each functionp ∈ F is specified via a finite control-flow graph
representing the body of the function. The control-flow graphs corresponding to
our example program are depicted in Fig. 2.

415



Fig. 2.The example control-flow graph.

2.1. Specifying analyses

Assume that the abstract local state of a thread is described by elements from
a latticeD1, whereas the global state, i.e., the part of the program execution state
which is accessible to more than one thread, is described by elements from another
latticeD2. Typically, the latter is of the formD2 = G → D, whereG is the set of
global variables and abstract heap locations andD is a lattice of abstract values for
the globals.

Now, the analysis can be specified by assigning a transfer function to every
edge in the control-flow graph which implements the (abstract) effect of traversing
this edge during program execution. In the simplest case, when the edgee = (u, v)
performs a basic computation step (e.g., an assignment or calls of externally defined
functions), the abstract effect is described by a functiontranse:

transe : D1 × D2 → D1 × D2.

The functiontranse takes the local and global state and returns the new local state.
In principle, it additionally returns the complete new global state. However, in the
case thatD2 = G → D we will later also consider a “differential” formulation,
where we return only values of those globals which are potentially modified (the
“side-effect”).

Next, assume that the edgee = (u, v) represents a call of a locally defined
function. Then, the abstract effect is determined relative to two functions,entrye

andcombinee:

entrye : D1 × D2 → D1 × 2F

combinee : D1 × D1 → D1.

The functionentrye again takes the local state and global state as its arguments and
returns the starting local state for the body of the called function. This suffices if
the function to be called is statically known. In realistic C code, however, function
calls may happen through pointers implying that we do not necessarily know the
functions to be called in advance. Instead, they may depend on the local or global
state. Due to potential loss in precision, it may even happen that the best we can

416



tell is that the function is contained in a set ofpossiblycalled functions. In order to
take care of this, we let the functionentrye additionally return a set of functions
which are potentially called ate. The functioncombinee merges the effect of the
called functions with the local state of the caller.

Finally, consider an edgee = (u, v) where new threads are created. Then the
abstract effect is determined relative to a functioncreatee:

createe : D1 × D2 → D1 × D2 × D1 × 2F .

The functioncreatee takes the local state and global state and returns a new local
state together with a new global state (e.g., storing the abstract id of the newly
created thread). Additionally, it provides the initial local state for the created
threads. Similar to the case of call edges, the function to be called by the newly
created thread, may depend on the local or global state. Accordingly, the function
createe provides us with a (safe super-)set of functions potentially executed by
threads created at this edge.

2.2. A simple data-race analysis

As an example, consider a simple data-race analysis for detection of potentially
unsafe accesses to global resources. In multi-threaded C, accesses to global
variables should be protected by mutexes. In the simplest case, each use of a
global variable should be protected by the same mutex. Thus, the analysis has
to determine which mutexes aredefinitely locked at a given point. However, at
the beginning of the execution of the program, when no threads are created yet,
it is safe to modify globals (e.g., for initialization purposes) without locking the
corresponding mutex. Hence, in order to minimize the number of false alarms, the
analysis should keep track of whether any thread has already been created or not. In
addition, the analysis needs a base constant propagation, at least for disambiguating
the address arguments. Therefore, the local state maintained during the analysis
consists of three components: the first holds the set of definitely held mutex locks,
the second contains a flag whether any thread has been created or not, and the third
records the (abstract) values of the local variables.

The domain of abstract values should (at least) provide abstract descriptions of
addresses of variables (for resolving function calls as well as variable assignments)
together with abstract descriptions of potential values. For our example program, it
suffices to consider a lattice of the following structure:

417



Addr andOther represent partial orderings for the description of addresses and
other values, respectively. We chooseAddr as the lattice of all subsets of some set
Base of base addresses. In our minimalistic example,Base is given by

Base = {null, &A, &B, & id, &x, &z, &main, & inc}.

We allow sets of addresses in order to avoid as many unknown pointer dereferences
as possible. The orderingv on the sublatticeAddr is subset inclusion⊆.

For the globals, we record at each variable the set of definitely held mutexes
when accessing the variable together with an abstract value. For collecting locked
mutexes, we use the same lattice as for ordinary addresses – this time, however,
with the ordering reversed (as we are interested in definite locks). In particular, the
least element of this lattice is given by the universal set of mutexes and the greatest
element equals∅.

Having specified the involved domains, we can now define the abstract
behaviour of our example program (see Fig. 3). Functionstrans(0,1) and
trans(5,6) correspond to assignments to the globalz. Asz is the only (either local or
global) variable affected by these transitions, the local state is returned unchanged
and the global state is updated forz. The new global state forz consists of the set of
definitely held mutexes at the current program point together with the new abstract
value (which “lives” in theOther sublattice of the domain of abstract values).
However, if there had been no thread creations before (i.e., the second component
of the local state isfalse), then we let the mutex set equal⊥ as the access forz is
guaranteed to be safe.

Functions trans(4,5) and trans(6,7) correspond to the calls of external
functionsmutex_lock() and mutex_unlock(), respectively. Both transfer functions
modify the current mutex setM and leave the other components of the local state
unchanged. As no global variable is affected by these transitions, the global state
is left unchanged. In the case ofmutex_lock(), the current abstract value of the
variableme is added to the setM using the auxiliary functionadd. As we are
interested in definitely held mutexes, the functionadd extends the setM only if the
abstract valueρ(me) consists of a singleton address set. Ifρ(me) consists of more
than one address,M is left unchanged. In the case ofmutex_unlock(), the abstract
valueρ(me) is subtracted from the setM using the auxiliary functionrem. In this
case, all addresses contained inρ(me) are removed fromM .

Functionsentry(2,3) andcombine(2,3) correspond to the call of the function
inc. The functionentry(2,3) returns the initial local state of the call which binds
the formal parameterme to the abstract value{&A}. In addition, it returns a set of
possibly called functions which containsinc as sole element. As the call toinc does
not modify any locals, the functioncombine(2,3) ignores these “modifications”
and returns the current local state.

Finally, the functioncreate(1,2) creates a new local state, where the mutex set
remains unchanged but the thread creation flag is set totrue and local variableid
receives the value>, since we do not know which thread id is created bycreate().

418



trans(0,1)(d, τ) = let 〈M,f, _〉 = d
M ′ = if f then M else ⊥

in (d, τ [z 7→ 〈M ′, 0〉])

create(1,2)(d, τ) = let 〈M,f, ρ〉 = d
d′ = 〈M, true, [id 7→ >]〉
d′′ = 〈∅, true, [me 7→ {&A}]〉

in (d′, τ, d′′, {inc})

entry(2,3)(d, τ) = let 〈M,f, _〉 = d
d′ = 〈M,f, [me 7→ {&A}]〉

in (d′, {inc})

combine(2,3)(d, d′) = d

trans(4,5)(d, τ) = let 〈M,f, ρ〉 = d
M ′ = add(M,ρ(me))
d′ = 〈M ′, f, ρ〉

in (d′, τ)

trans(5,6)(d, τ) = let 〈M,f, _〉 = d
M ′ = if f then M else ⊥
〈_, v〉 = τ(z)

in (d, τ [z 7→ 〈M ′, v + 1〉])

trans(6,7)(d, τ) = let 〈M,f, ρ〉 = d
M ′ = rem(M,ρ(me))
d′ = 〈M ′, f, ρ〉

in (d′, τ)

Fig. 3. Behavioural functions for the example program.

It also creates an initial local state for the newly created thread, where the mutex set
is empty and the formal parameterme is bound to{&A}. The global state remains
unchanged and the set of possible start functions executed by the created thread has
inc as only element.

2.3. The overall approach

The specification of the analysis still allows us to model the exact (abstract)
multi-threaded program execution with interleaving semantics – given that globals
are modified atomically at control-flow edges. For large programs or high degrees
of parallelism this, however, is not feasible. What is needed here is a technique
to decouple the analysis of the involved threads in order to avoid state explosion.
Therefore, we aim at replacing the inspection of the Cartesian product of state

419



spaces with their sum. The basic idea to achieve this is to approximate all possibly
occurring global states by one safeglobal invariant. Given this invariant, it suffices
for the analysis to maintain information only about the local states of program
points and procedure calls.

Accordingly, the setV of variables maintained by the analysis consists of:

Nodes: 〈v, d〉, v a program point of a function,d ∈ D1 the abstract entry value of
the currently analysed instance of the function;

Calls: 〈p, d〉, p a function,d ∈ D1 an abstract entry value.

The specification of an analysis induces a set of constraints on the values of these
variables. Given a correct invariant, these constraints should specialize to the
classical constraints of the functional approach for interprocedural analysis [9,10].
Thus, we choose constraints of the formx ← f , wherex ∈ V andf is of type

f : (V → D1)× D2 → D1 × D2 × 2V .

We call constraint systems of this formside-effecting. In our application, the right-
hand sidef takes an assignmentσ : V → D1 for program points and procedure
calls together with a global stateτ : D2 and returns a triple(b, η, s) consisting of a
local stateb for the left-hand side together with an updated global stateη and a set
s of calls which are executed by possibly spawned threads.

The constraints are determined relative to the behavioural functions for the
edges of the control-flow graph. Every edgee = (u, v) induces one constraint
for every local stated ∈ D1, as follows:

– If e is a basic edge,
〈v, d〉 ← λ(σ, τ). let (b, η) = trans(u,v) (σ〈u, d〉, τ)

in (b, η, ∅)
– If e is a call edge,
〈v, d〉 ← λ(σ, τ). let (b1, F ) = entry(u,v) (σ〈u, d〉, τ)

b =
⊔
{combine(u,v) (σ〈u, d〉, σ〈p, b1〉) | p ∈ F}

in (b, λz.⊥, ∅)
– If e is a create edge,
〈v, d〉 ← λ(σ, τ). let (b, η, b1, F ) = create(u,v) (σ〈u, d〉, τ)

s = {〈p, b1〉 | p ∈ F}
in (b, η, s)

We also have a constraint to make the local state of a call available to the
computation inside the instance of the called function. This means for every entry
pointu of some function, we have:

〈u, d〉 ← λ(σ, τ). 〈d, τ, ∅〉.

420



Finally, we have the following constraint for each call variable〈p, d〉, wherer is
the return point of functionp:

〈p, d〉 ← λ(σ, τ). 〈σ〈r, d〉, τ, ∅〉.

In the next section, we make precise what we mean by the notions “(partial)
invariant” and “solution” of such constraint systems.

3. SIDE-EFFECTING CONSTRAINT SYSTEMS

For the following, letV denote a set of constraint variables. Letx← f denote
a constraint, where the right-hand side is a function of type

f : (V → D1)× D2 → D1 × D2 × 2V .

We say that the assignmentσ : V → D1 satisfiesthe constraintx ← f relative
to a global stateτ ∈ D2 iff for f (σ, τ) = (d, η, s), d v σ x, and alsoη v τ .
Accordingly, acompletesolution of a setC of constraints relative to a global state
τ is a mappingσ : V → D1 satisfyingall constraints inC relative toτ . A global
stateτ is called aninvariant of C if there exists a complete solution ofC relative
to τ . Using invariants and complete solutions is adequate if we use call-strings of
finite length to distinguish function calls. In this case, approximations to possibly
occurring actual parameters are propagated from the call sites to the entry points of
functions.

If we use, however, the functional approach to interprocedural analysis (i.e.,
function bodies are analysed for every possible argument independently), such
invariants andcompletesolutions are no longer sufficient. The only invariant of
our example system from Section 2, e.g., maps the variablez to 〈∅,>〉, since this
value must be safe forall calls of the functioninc. Note that the variables fromV
represent the set of allformally possiblelocal program configurations – even those
which are in fact unreachable (like callinginc with the mutexB). The invariant,
though, is only needed for configurations which are reachable. The smaller the set
of program configurations we must consider, the more precise we can choose the
invariant of the system, i.e., the more precise a result we return.

Reachability has been considered, e.g., in [6,8] for “ordinary” constraint
systems, i.e., those where right-hand sides return values. There it was observed
that the set of reachable program configurations closely corresponds to the set of
fixpoint variables of the “natural” constraint system of the program when locally
explored through ademand-drivenfixpoint algorithm which returns apartial
solution only. Here, we generalize this approach to side-effecting constraint
systems with global invariants.

Let D1 denote the complete lattice, which we obtain fromD1 by adding⊥ as
a new least element (“superbottom”). Thepartial variable assignmentsfrom V to

421



D1 are given as the set of assignmentsV → D1. Thedomain, dom σ, of a partial
assignment is given by the set of all variablesx ∈ V with σ x 6= ⊥.

We extend the functionf to operate also on partial variable assignments. In
order to do so, we need to determine the set variablesaccessedduring the evaluation
of f . In general, this set itself may depend on the values of variables. Therefore, it
is described by a function

Df : (V → D1)× D2 → 2V .

This function describes a property of the operational behaviour when evaluatingf
and therefore cannot (easily) be extracted from the denotational semantics off .
It is straightforward, however, to extractDf if f is specified in some kind of
expression language as in our framework or, even, to determine its values “at
runtime”, i.e., by instrumenting the evaluation off – this is what we will do when
constructing a local constraint solver. The functionDf has the following property:
if Df (σ, τ) = X ⊆ V , thenf returns the same value on every pair(σ1, τ), where
σ1 x = σ x for x ∈ X (andσ1 x arbitrary otherwise).

When applyingf to a partial variable assignment which is “underspecified”,
i.e., does not provide non-⊥-values for as many variables as necessary to evaluate
f , we return⊥. Thus, f (σ, τ) = (⊥,⊥, ∅), wheneverσ(x) = ⊥ for some
x ∈ Df (σ, τ).

Let (τ,X) denote a pair consisting of a global stateτ ∈ D2 and a subset
X ⊆ V . A partial variable assignmentσ : V → D1 is called apartial solution
of the constraint systemC relative to(τ,X) iff X is the domain ofσ and for every
constraintx← f with (d, η, s) = f (σ, τ) the following holds:
• d v σ x, η v τ , and also
• s ∪Df (σ, τ) ⊆ X.

In particular,σ must be defined for all variables froms.
The pair(τ,X) is called apartial invariantof C if there exists a partial solution

of C relative to(τ,X). Every constraint system withV 6= ∅ has at least two partial
invariants. The first one holds for anempty setof reachable variables only and is
given by(⊥, ∅). The second extreme considersall fixpoint variables as reachable
and provides no information about the global state, i.e., is given by(>, V ). Both
invariants are not very interesting. In our applications, we are given a subset
I ⊆ V of initial configurations which are trivially reachable and therefore must
be included into the set of reachable configurations. In our framework, the set
I is given by all possible initial calls of the programmain. Thus, the goal is to
determine an as small partial invariant(τ,X) as possible such thatI ⊆ X. Note
that, the smaller the invariant, the more precise an information is provided for the
globals.

In our example, the setI is given by {〈main,>〉}, and there is a partial
invariant(τ,X) such thatτ maps the globalz to 〈{&A},>〉. Note that the second
component of this value still is not very informative – quite in contrast to the
extra property recorded in the first component, which assures that accesses toz
are always protected by the mutexA.

422



In order to reason about the possible existence and uniqueness of partial
invariants, we define for a given side-effecting constraint systemC and a subset
I ⊆ V of initial variables the correspondingcombined constraintEC,I :

(σ, τ) w F (σ, τ) t (σI ,⊥).

Here,σI x = ⊥ if x ∈ I and⊥ otherwise, and the function

F : (V → D1)× D2 → (V → D1)× D2

is given byF (σ, τ) = (σ1, τ1), where

σ1 x =
⊔
{d | σ x 6= ⊥ ∧ ∃x← f ∈ C : (d, _, _) = f (σ, τ)}

t
⊔
{⊥ | ∃ y ← f ∈ C : σ y 6= ⊥

∧ (_, _, s) = f (σ, τ) ∧ (x ∈ s ∪Df (σ, τ))},
τ1 =

⊔
{η | ∃ y ← f ∈ C : σ y 6= ⊥ ∧ (_, η, _) = f (σ, τ)}.

Only those constraints have a nontrivial contribution onto the output(σ1, τ1) whose
left-hand sides have already a value6= ⊥. Accordingly, whenever a constraintf
contributes to the result, all variables accessed during this evaluation receive a non-
⊥-value. These two features will allow us to design a local solver which explores
fixpoint variables backward through variable dependences.

The right-hand side of the constraintEC,I returns non-⊥-values for allx ∈ I.
Hence, the (trivial) least solution(λ x.⊥,⊥) is ruled out wheneverI 6= ∅.

Proposition 1. For a global stateτ ∈ D2 and a partial variable assignmentσ with
a domainX subsumingI, the following are equivalent:

1. σ is a partial solution ofC relative to(τ,X);
2. (σ, τ) is a partial solution ofEC,I .

For later use, let us observe that the set of partial invariants as well as the set of
relative partial solutions of a side-effecting constraint systemC remains the same
if we replace the treatment of the global state by a “differential” one. In particular,
when a constraint does not affect the global state, we can simply return⊥ in the
second component. More generally, assume we are given another constraint system
C′ whose constraints are in one-to-one correspondence with those ofC such that the
constraintx′ ← f ′ ∈ C′ corresponding tox← f ∈ C has the following properties:
x′ = x, and

f(σ, τ) = let (d, η, s) = f ′(σ, τ)
in (d, η t τ, s).

Then the following holds:

Proposition 2. For any partial variable assignmentσ : V → D1 with domain
X ⊇ I and global stateτ ∈ D2, the pair(σ, τ) is a partial solution ofEC,I iff it is
a partial solution ofEC′,I .

423



While Proposition 2 will help us to construct efficient algorithms, Proposition 1
is the justification for applying fixpoint methods and provides sufficient conditions
for the existence of unique least partial invariants.

Obviously, if F is monotonic, then it has a least solution by the Knaster–
Tarski fixpoint theorem. In particular, this is the case when all functionsf and
Df are monotonic (with respect to the obvious orderings). As observed in [6,8],
however, interprocedural analyses usually donot introduce monotonic constraints.
The abstract effect of a functionp conceptually can be thought of as described
by a (monotonic) function. Only in very simple cases, though, this function can
be treated as a whole. Following, e.g., [10] we have replaced this function in our
framework by theset of variables〈p, a〉, a ∈ D1, each of which describes the
results of theabstract function callof p on the abstract valuea. The hope here is
that only few of these (potentially many) calls are actually queried during fixpoint
iteration. The constraint system for these variables is no longer monotonic – even if
all behavioural functionstranse, entrye, combinee, andcreatee are. Instead,
it is just weaklymonotonic.

Weak monotonicity is defined relative to a partial ordering on the set of
variablesV . In case of the variable set used by our framework, this ordering is
given by

〈r1, a1〉 ≤ 〈r2, a2〉 iff r1 = r2 and a1 v a2.

A systemC of constraints (overV , D1, andD2) is calledweakly monotonicwith
respect to the partial ordering “≤” iff the following properties hold:

1. For every constraintx ← f in C and every two variable assignmentsσ1, σ2,
where at least one of theσi is monotonic, and global statesτi ∈ D2, thenσ1 v σ2

andτ1 v τ2 implies

f (σ1, τ1) v f (σ2, τ2) and Df (σ1, τ1) v Df (σ2, τ2).

2. For every constraintx1 ← f1 in C andx2 ∈ X with x1 ≤ x2, there is
some constraintx2 ← f2 in C such thatf1 v f2, i.e., for every pair of variable
assignments(σ, τ),

f1 (σ, τ) v f2 (σ, τ) and Df1 (σ, τ) v Df2 (σ, τ),

wheneverσ is monotonic.
These two properties enforce the natural conditions on monotonic assignments.

Moreover, they allow us to relate the results on nonmonotonic assignments to
comparable monotonic ones. Some remarks are appropriate here.
• A partial variable assignmentσ, i.e., a mappingσ : V → D1, is considered

as monotonic iff for allx1 ≤ x2, σ x2 6= ⊥ impliesσ x1 ≤ σ x2 (i.e., we demand
nothing ifσ x2 = ⊥).
• The pre-ordering on subsetsX1, X2 ⊆ V of variables is given byX1 v X2

iff for all x1 ∈ X1, x1 ≤ x2 for somex2 ∈ X2.

424



This is the pre-ordering induced by the subset ordering on the corresponding
downward closed subsets of variables. In particular:
•We view two monotonic assignmentsσ1, σ2 : V → D1 asequivalentif

1. for any x1 ∈ V , there is somex2 ∈ V with x1 ≤ x2 such that
σ1 x1 v σ2 x2, and also

2. for any x1 ∈ V , there is somex2 ∈ V with x1 ≤ x2 such that
σ2 x1 v σ1 x2.

If V has finite height, then monotonic assignments are equivalent iff theyagree
on variables which are maximal with respect to “≤” in the union of their domains.

For a subsetc of variables, letc ↓ denote itsdownward closure, i.e., the set of
variablesx′ such thatx′ ≤ x for somex ∈ c. Let D′ denote the set of monotonic
variable assignments inV → D1 whose domain is downward closed. For later use,
we make the following observation which essentially allows us to restrict attention
to assignments fromD′ and downward closed sets:

Proposition 3. AssumeC is weakly monotonic, and σ is a partial solution ofC
relative to(τ,X). Then we can construct some partial solutionσ ∈ D′ ofC relative
to (τ,X↓) with σ v σ.

The variable assignmentσ is given by

σ x =u{σ x′ | x′ ∈ X, x ≤ x′}.

Since we are only interested in as small invariants and solutions as possible, this
means that we may restrict ourselves to monotonic variable assignments with
downward closed domains. LetC ↓ denote the constraint system obtained from
C by replacing every constraintx ← f with x ← f ′ where for(d, η, c) = f(σ, τ),
f ′(σ, τ) = (d, η, c ↓), andDf ′(σ, τ) = (Df (σ, τ)) ↓. Thus, the new constraint
system differs from the original one in that all sets of spawned variables as well
as all occurring sets of variables on which a constraint may depend are downward
closed. Let then̄EC,I denote the constraint system

(σ, τ) w F̄ (σ, τ)

overD′ × D2, where the new right-hand sidēF is the function which first applies
the right-hand sideF ′ of EC↓,I↓ and returns(σ′′, τ ′) where, given thatF ′ returns
(σ′, τ ′), the new variable assignmentσ′′ is defined by

σ′′ x =
{
⊥ if σ′ x′ = ⊥
t{σ′ x′ | x′ ≤ x} otherwise.

Note that by definition,σ′′ is monotonic and has a downward closed domain. We
observe:

Proposition 4. AssumeC is weakly monotonic. Then the following holds:
1. C↓ is weakly monotonic.

425



2. The following three statements are equivalent forσ ∈ D′ with domainX:
(a)σ is a partial solution ofC relative to(τ,X);
(b) σ is a partial solution ofC↓ relative to(τ,X);
(c) (σ, τ) is a solution ofĒC,I .

3. The right-hand side of̄EC,I is monotonic onD′ × D2.

The main result of this section is:

Theorem 1. Let C denote a constraint system over complete latticesD1, D2 with
fixpoint variables fromV , and assume thatC is weakly monotonic. Then for every
I ⊆ V the following holds:

1. Given any partial invariant(τ,X), I ⊆ X, there exists a partial solutionσ
of C relative to(τ,X) which is least up to equivalence.

2. There exists a least partial invariant(τ,X) for C with I ⊆ X and X
downward closed.

3. If V is finite andD1, D2 are of finite height, then the triple(τ,X, σ)
consisting of the least partial invariant(τ,X) of C with I ⊆ X = X↓ and a(up to
equivalence) least partial solutionσ of C with respect to(τ,X) can be computed
through joint fixpoint iteration forEC,I .

Proof. We only prove assertions 1 and 2. By Propositions 3 and 4, we can prove
our main theorem by applying ordinary least fixpoint theory to the constraint system
E = ĒC↓,I . E can be considered as a system of inequalities of the form

σ w F1(σ, τ),
τ w F2(σ, τ).

Consider a partial invariant(τ,X) whereX is downward closed. SinceD′ is a
complete lattice andF1 is monotonic, standard fixpoint theory guarantees that there
is a leastσ′ in D′ satisfying

σ′ w F1(σ′, τ) t σX ,

whereσX returns⊥ for everyx ∈ X and⊥ otherwise. Since(τ,X) is a partial
invariant, we haveτ w F2(σ′, τ). Henceσ′ is a partial solution relative to(τ,X).
On the other hand, every other partial solutionσ ∈ D′ of C is also a solution of the
above inequality. Thereforeσ′ v σ, implying statement 1 of the theorem.

Now consider the second assertion. Since the setD′ × D2 forms a complete
lattice (with respect to the componentwise ordering) and the right-hand side ofE is
monotonic onD′×D2, E has a unique least solution(σ0, τ0). We claim that(τ0, X)
is the least partial invariant forC ↓ (and hence also forC), whereX is given by the
domain ofσ. Note that, by construction,X is downward closed. Consider any other
partial invariant(τ1, X1), whereX1 is downward closed. It follows that there is
someσ1 ∈ D′ which is a partial solution ofC relative to(τ1, X1). By construction,
(σ1, τ1) is also a solution ofE. By minimality of (σ0, τ0), we conclude thatτ0 v τ1

and alsoX ⊆ X1, proving minimality of(τ0, X). This completes the proof.

426



In order to apply the results of this section to our analysis framework, we
observe that every partial invariant(τ,X) of the constraint system constructed for
a given program (relative to an initial setI consisting of all initial calls tomain)
consists of a safe approximationτ to all possibly occurring global states and a safe
super-setX of all reachable program configurations. Since the constraint system
is weakly monotonic (given that all behavioural functions are monotonic), there is
a least partial invariant which under some finiteness assumptions can be computed
effectively.

4. SOLVING SIDE-EFFECTING CONSTRAINT SYSTEMS

Instead of presenting a new algorithm for computing partial invariants, we
prefer here to explain how off-the-shelf local solvers for ordinary constraint
systems can be customized to serve our needs. Assume we are given a local solver
for anordinary constraint system. Such a constraint system is given as a setC0 of
constraintsx← f , where the right-hand sides are of type

f : (V → D1)→ D1.

Following [8], we call an algorithm a (local) solver for (ordinary) constraint systems
if it realizes a functionΦ which, given a constraint systemC0 together with a set
I of initially reachable variables, returns anI-stablepartial solution ofC0, i.e., a
partial variable assignmentσ such that
• σ x is defined for everyx ∈ I;
• if σ is defined forx andx ← f is a constraint inC0, thenσ is defined for all

variables accessed during the evaluation off onσ, andσ x w f σ.
Such solvers are, e.g., studied in [7,8,11]. For computing a partial invariant
for a side-effecting constraint systemC and a given setI of initially reachable
variables, we proceed as follows (see Fig. 4). We compute an increasing sequence
of approximations to a partial invariant. We start this sequence with the global
state⊥ ∈ D2. From an approximationτ to the partial invariant and the side-
effecting systemC, we construct anordinary constraint system (without side
effects). This constraint system is obtained fromC by partial application to the
givenτ . Additionally, every constraint is instrumented in such a way that

1. the set of spawned variables is added to the set of variables accessed by this
constraint (in order to trigger their evaluation);

2. the impacts on the global state are monitored. If these impacts are not
covered by the currentτ , we increaseτ .

This instrumented constraint system is then solved byΦ. If no change to
the global state has occurred during evaluation ofΦ, the iteration terminates.
Otherwise, another round with the modified global state is triggered. In this
algorithm, whenever the global state is modified, the complete constraint system
is scheduled for re-evaluation. Often, however, the global state is of the form

427



fun wrap(f, σ)
begin

let 〈d, η, s〉 = f(σ, τ) in
if η 6v τ then

stable := false;
fi;
τ := τ t η;
foreach v ∈ s do σ(v) od;
return d;

end;

begin
τ := ⊥;
repeat

stable := true;
C0 := {x← λσ.wrap(f, σ) |

x← f ∈ C};
σ := Φ(C0, I);

until stable
end

Fig. 4. The solving scheme.

D2 = G → D, whereG is a finite set of global variables (and abstract heap
locations). Thus, the global state does not (explicitly) track relations between
globals but captures the abstract properties of different globals independently. If
the evaluation of a right-hand side leads to a global state which differs from the
original one on the values of just few globals, then re-evaluation of all right-hand
sides is overly pessimistic. Instead, it is safe to initiate re-evaluation just of those
right-hand sides which depend on the affected globals.

As a corollary of Proposition 2, it is safe for the behavioural functions and,
accordingly, also for the constraints to return only that part of the global state which
has been modified. This “difference” can be represented by a set of pairs〈z, a〉,
wherez ∈ G is a modified global anda is its new abstract value. Furthermore,
we record for every globalz, the set of all constraints accessingz in order to
trigger their re-evaluation whenever the value ofz changes. For completeness,
a corresponding extension of the fixpoint solver from [8] together with an example
run are presented in Appendices A and B.

5. EXPERIMENTAL EVALUATION

On the basis of the interprocedural framework from Section 2 and an instance of
the solver from Section 4, we have implemented a program analyser generator for
C programs with pthreads. The implementation was done in Standard ML using the
ckit [12] as our C frontend. We used the framework to implement various analyses
for the detection of data-races. For efficiency reasons we organized the analysis as
a multi-stage procedure. In the first stage, we determine approximate data values
for all globals. This first invariant is then used in the following stages that also track
acquired mutex locks.

The implemented analyses handle most of the Posix threads library interface.
It must be emphasized that our example analysis from Section 2 is only correct
under the assumption that mutex locking and unlocking never fails, which is
not necessarily true for the corresponding pthread functions [13]. The locking of
mutexes, e.g., may fail due to external interrupts or because the lock already is
held by the current thread. Therefore, only in an environment which guarantees

428



the absence of interrupts, the nonfailure assumption is justified, given that potential
repetitions of locks are flagged as errors. For the case where interrupts cannot be
excluded, we have generated another variant of the analysis which does not rely on
the non-failure assumption for locks but extracts certainty about locking only from
checks on the return values of the calls topthread_mutex_lock().

In the practical experiments reported below, the analysis DR1 assumes
that mutex locks always succeed, while the analysis DR2 does not make this
assumption.

In collaboration with AIRBUS FRANCE, the implemented analysers were
tested on preliminary versions of a large (nonsafety critical) on-board program.
The whole system consists of seven components ranging in size from 23 000
to 80 000 LOC (before pre-processing and excluding header files). The analysis
was performed on a 1 GigaHertz Athlon with 1 GB memory using SUSE Linux
and the SML compiler smlnj-110.0.7. Some characteristics of our experiments
are reported in Table 1. The first column of the table enumerates the analysed
software components, the next three columns provide code statistics (lines of C
code, number of threads and mutexes, respectively). Then we report the numbers
for the three stages of our analysis. In all three cases, we report the time (in minutes
and seconds) and the number of evaluated constraints. In addition, we list for the
last two stages the number of reported warnings of potential data-races.

The analysis times for these components varied from a few minutes to less
than half an hour. The numbers of flagged potential data-race errors (at most 38
for bench 5) is small enough to be manually inspected by humans. The analysis
could not be performed for the componentbench 7 as this benchmark uses arrays
of threads and mutexes – which is not yet supported by our analyser. Since our
analyses computesafe supersetsof data-race errors, these experiments clearly
indicate the high quality of the analysed software. They also demonstrate that the
global invariant approach is sufficiently efficient to deal with real-world software
components and still precise enough to flag relatively few alarms.

429



6. RELATED WORK AND FUTURE DIRECTIONS OF RESEARCH

A good overview of the state of the art in the analysis of multi-threaded
programs can be found in [14]. Quite a few analyses have recently been developed
for optimizing synchronizations in Java [15−18]. In [19], Whaley and Rinard present
a combined analysis of pointers and multi-threading for Java. That analysis, though,
considersevery accessto a global as potentially harmful. In [20], Jagannathan
and Weeks analyse parallel higher-order functional languages but merge all calling
contexts to the same function into one.

Cousot [21] considers systems consisting of a finite number of threads, each
having a finite number of program points, and concentrates on exhaustive search
through all (possibly exponentially many) parallel program configurations. His
framework is not (easily) applicable to systems with dynamic creation of threads
and recursive procedures. Another approach is to take classical dataflow analysis
and extend it to multi-threaded programs by enriching the original control-flow
graph with further edges corresponding to interactions of threads which possibly
might run in parallel. This approach is proposed by Rugina and Rinard [22] for the
construction of a context-sensitive pointer analysis for Cilk. It is also advocated
by Naumovich et al. in [23]. Based on apossibly runs in parallelanalysis [24],
they construct an enriched control-flow graph for Java on top of which they model
the dynamic thread behaviour viaproperty automata. The practicality of such
an approach relies on the “density” of the enriched control-flow graph. Recently,
Yahav [25] has presented a framework for analysing properties of multi-threaded
Java programs based on three-valued logic. His analyses are both extremely precise
and extremely inefficient. At least currently, it is open whether his framework can
be scaled up to medium-sized programs as well.

The idea of using global invariants for the analysis of multi-threaded systems
has also been advocated by Flanagan et al. [26,27]. Their approach is based on
an assume-guarantee decomposition, where the invariant is provided by user
annotations. They rely on automatic theorem proving and do not provide means
of inferring such an invariant.

Presently in our implementation, we assume that all global data potentially
can be accessed and modified by all threads which have already been created.
Sometimes, this is overly conservative. Salcianu and Rinard [28] introduce the
concept ofparallel interaction graphs(for Java) in order to determine which
threads and which functions may have access to certain shared data and thus,
potentially, obtain more precise information about globals. It remains for future
work to integrate a corresponding analysis into our approach.

ACKNOWLEDGEMENTS

This work was supported by the RTD project IST-1999-20527 “DAEDALUS”
of the European FP5 programme. The second author was also partially supported
by the Estonian Science Foundation (grant No. 5279).

430



APPENDIX A

THE FIXPOINT ALGORITHM

We present the abstract version of the solving algorithm we have implemented
in Fig. 5. The algorithm is an extension of (a constraint version of) the worklist
solver from [8]. It explores the variable space in a demand-driven fashion:
Whenever during evaluation of a constraint(x, f) the value of a variabley is
accessed, we beforehand try to compute as good a value fory as possible.
Furthermore, we dynamically record that the value ofy may influence the constraint
(x, f). If such constraint evaluation has modified the current value for the left-hand
side x, we trigger re-evaluation of all constraints we have recorded as possibly
influenced byx.

The algorithm proceeds as follows. The set of variables yet to be evaluated is
kept in data structureX : 2V . It is initialized with the setI of fixpoint variables in
which we are interested. The mappingsσ : V → D1 andτ : G → D return the
current values of fixpoint variables and globals, respectively. Initially, we assume
thatσ is undefined everywhere, andτ(z) equals the least element ofD for every
global z : D. The mappingsinfl1 : V → 2V×R andinfl2 : G → 2V×R (where
R = ((V → D1) × (G → D) → D1 × 2V × (G → D)) is the type of right-hand
sides) represent the (dynamically tracked) variable dependences. More precisely,
infl1 (x) returns the list of all constraints during whose evaluation the value ofx
has been accessed (analogously forinfl2 ). Initially, both mappings are empty. The
mappingtodo : V → R returns for every variablex, the list of right-hand sides
which still are to be (re-) evaluated for this variable. Initially,todo(x) collectsall
right-hand sides of constraints inC for x. During fixpoint computation, these lists
may be removed or re-installed. Finally, the data structureunsafe : 2V×R collects
constraints whose evaluation has been postponed. Initially, it is empty.

After initialization of global data structures, the algorithm iteratively evaluates
all variables inX using the proceduresolve. As a result, the data-structureunsafe
may contain constraints whose evaluation has been postponed. The right-hand sides
of these constraints are merged into the mappingtodo, while at the same time the
corresponding variables occurring as left-hand sides are collected toX. If X is
empty (i.e. no constraints had been postponed), the fixpoint iteration is completed.
Otherwise, the algorithm proceeds with a next iteration.

The main work of the algorithm is done by the proceduresolve. When called
with a variablex, it first checks whetherx has been already considered, and if
not, thenσ(x) and infl1 (x) are initialized. Then all constraints forx, which are
currently scheduled for (re-)evaluation, are extracted from the data-structuretodo
and are evaluated. Note that if the constraint(x, f) depends on some fixpoint
variable y, this dependency is stored by the functioneval1 into infl1 (y). In
addition, the variabley is recursively evaluated bysolve. Similarly, if the constraint
depends on some globalz, then the dependency is stored by the functioneval2 into
infl2 (z).

431



proc solve(x : V )
begin

if x 6∈ dom(σ) then σ(x) := ⊥;
infl1 (x) := ∅ fi;

W := todo(x); todo(x) := ∅;
new := σ(x);
foreach f ∈W do

let (d, η, s) = f (λy. eval1 ((x, f), y) ,
λz. eval2 ((x, f), z) ) in

foreach z ∈ G where η(z) 6= ⊥ do
if τ(z) 6= τ(z) t η(z) then

τ(z) := τ(z) t η(z);
unsafe := unsafe ∪ infl2 (z);
infl2 (z) := ∅;

fi;
od;
foreach y ∈ s do solve(y) od;
new := new t d;

end;
od;
if σ(x) 6= new then

σ(x) := new ; U := ∅;
foreach (y, f) ∈ infl1 (x) do

todo(y) := todo(y) ∪ {f};
U := U ∪ {y}

od;
infl1 (x) := ∅;
foreach y ∈ U do solve(y) od;

fi;
end;

fun eval1 (c : V ×R, y : V ) : D1

begin
solve(y); infl1 (y) := infl1 (y) ∪ {c};
return σ(y)

end;

fun eval2 (c : V ×R, z : G) : D
begin

infl2 (z) := infl2 (z) ∪ {c};
return τ(z)

end;

begin
X := I; σ := ∅; τ := ⊥;
infl1 := ∅; infl2 := ∅;
todo := C; unsafe := ∅;
while X 6= ∅ do

foreach x ∈ X do solve(x) od;
X := ∅;
foreach (y, f) ∈ unsafe do

todo(y) := todo(y) ∪ {f};
X := X ∪ {y}
od;

unsafe := ∅;
end;

end

Fig. 5.The solving algorithm.

Evaluating each of these constraints results in a contributiond : D1 to a value
of x together with a sets : 2V of new variables to be considered (i.e. spawned
threads) and a side-effect to globalsη : G → D. For every globalz whose
valueτ(z) is modified by the side-effect, we move all constraints which depend
on z from infl2 (z) into unsafe for later re-evaluation. Then, all variables ins are
evaluated recursively bysolve and the contributiond is accumulated to the new
valuenew : D1 of x.

If the accumulated valuenew for x is the same as the old one, we are done and
the proceduresolve exits. Otherwise, the valueσ(x) is updated. Moreover, we must
re-evaluate all other constraints whose evaluation has accessedx. These constraints
have been accumulated in the entryinfl1 (x). We remove these constraints from
infl1 (x) and merge their right-hand sides with the mappingtodo. Then the
variables corresponding to left-hand sides of these constraints are recursively
evaluated bysolve.

432



APPENDIX B

EXAMPLE RUN OF THE SOLVER

As an illustration, consider the C program from Section 2. The corresponding
control-flow graphs are depicted in Fig. 2.

Initially, all fixpoint variables inV and all globals have the value⊥. Then
fixpoint iteration starts with variable〈main, a〉, wherea = 〈∅, false, [id 7→ >]〉,
meaning that initially the set of held mutex locks is empty, no threads have been
created yet, and the localid of main has an unknown value.

In order to determine the result value of the call, the solver tries to evaluate the
variable〈3, a〉 which in turn successively demands the evaluations of〈2, a〉, 〈1, a〉,
and〈0, a〉. Eventually, the constraint for〈0, a〉 is evaluated without further descent
into solving other variables. The single constraint for〈0, a〉 returns(a, ∅, ∅). Given
this value, the solver proceeds to the evaluation of the constraint for〈1, a〉 which
returns the triple(a, [z 7→ 〈⊥, 0〉], ∅). Thus, the variables〈1, a〉 andz receive the
valuesa and 〈⊥, 0〉, respectively. Here,⊥ represents the bottom element in the
lattice of definitely held mutex locks, i.e., the universal set of mutex locks.

The solver proceeds with the evaluation of the constraint for〈2, a〉. Here, we
have to take the effect of thecreate edge into account. The corresponding constraint
returns the triple(a1, ∅, {〈inc, b〉}), wherea1 = 〈⊥, true, [id 7→ >]〉 represents the
new local state ofmain, i.e., the value for〈2, a〉, andb = 〈∅, true, [me 7→ {&A}]〉
is the new local state of the newly created thread.

Before ascending to the variable〈3, a〉, the solver triggers the evaluation of the
variable〈inc, b〉. Thus, it descends into solving the variables〈7, b〉 down to〈4, b〉,
respectively. As 4 is the entry point of the procedureinc, the variable〈4, b〉 receives
the valueb. Proceeding to the variable〈5, b〉, the solver executes the locking of the
mutex at address &A. This results in the new local stateb1 = 〈{&A}, true, [me 7→
{&A}]〉. Now, the solver executes the constraint corresponding to the edge(5, 6).
This edge modifies the globalz through the side effect[z 7→ 〈{&A}, 1〉]. The new
abstract value forz is

〈⊥, 0〉 t 〈{&A}, 1〉 = 〈{&A},>〉.

Since the value ofz has been changed, all constraints which depend on it (i.e.
the edge(5, 6)) have to be marked as “unsafe” and collected for re-evaluation
during next iteration. The local state for〈6, b〉 remainsb1. Finally, the solver
ascends to the variable〈7, b〉 where the unlock is performed yielding the local state
b2 = 〈∅, true, [me 7→ {&A}]〉 = b. Finally, the solver ascends to the variable
〈inc, b〉 for which it returnsb.

Having finished this detour, the solver continues with the analysis ofmain by
evaluating the constraint for〈3, a〉, which is another call of functioninc with the
same abstract actual parameterb. Looking up the value of〈inc, b〉 returns the value
b. Combining this value with the local statea1 before the call results in the same

433



valuea1. This value is then also returned for the call〈main, a〉, which completes
the first round of iteration.

In the next round, all collected “unsafe” constraints are scheduled for re-
evaluation. In our case, this is just the constraint corresponding to the edge(5, 6).
Calling the solver for〈6, b〉 re-evaluates this constraint, resulting in no new value
for 〈6, b〉 but in the side-effect[z 7→ 〈{&A},>〉]. As this is already the current
value ofz, the fixpoint computation terminates.

In our example, we find that all accesses to the globalz which happen after
thread creation are protected by the same mutexA, although the functioninc in
principle also could have been called with the address ofB as actual parameter.
So, only a small finite portion of the potentially quite large constraint system has
actually been explored. Only this partial exploration allowed us to ensure that it is
always the mutexA which is locked when the variablez is incremented. In fact,
this also makes our fixpoint engine reasonably efficient and enables us often to have
termination, even in the presence of infinite value domains and recursion, where the
functional approach in general is no longer guaranteed to terminate.

REFERENCES

1. Knoop, J., Steffen, B. and Vollmer, J. Parallelism for free: efficient and optimal bitvector
analyses for parallel programs.ACM Trans. Program. Languages and Systems, 1996,
18, 268–299.

2. Knoop, J. Parallel constant propagation. InProc. of 4th Int. European Conf. on Parallel
Processing, Euro-Par ’98 (Southampton, Seot. 1998)(Pritchard, D. and Reeve, J.,
eds.).LNCS, 1998,1470, 445–455.

3. Seidl, H. and Steffen, B. Constraint-based inter-procedural analysis of parallel programs.
Nord. J. Comput., 2000,7, 375–400.

4. Müller-Olm, M. and Seidl, H. On optimal slicing of parallel programs. InProc. of 33rd
ACM Symp. on Theory of Computing, STOC’01 (Heraklion, July 2001). ACM Press,
New York, 2001, 647–656.

5. Fecht, C. GENA – a tool for generating Prolog analyzers from specifications. InProc. of
2nd Int. Symp. on Static Analysis, SAS’95 (Glasgow, Sept. 1995)(Mycroft, A., ed.).
LNCS, 1995,983, 418–419.

6. Fecht, C.Abstrakte Interpretation logischer Programme: Theorie, Implementierung,
Generierung. PhD thesis, Universität des Saarlandes, Saarbrücken, 1997.

7. Fecht, C. and Seidl, H. Propagating differences: an efficient new fixpoint algorithm for
distributive constraint systems.Nord. J. Comput., 1998,5, 304–329.

8. Fecht, C. and Seidl, H. A faster solver for general systems of equations.Sci. Comput.
Program., 1999,35, 137–161.

9. Seidl, H. and Fecht, C. Interprocedural analyses: a comparison.J. Logic Program., 2000,
43, 123–156.

10. Sharir, M. and Pnueli, A. Two approaches to interprocedural data flow analysis. In
Program Flow Analysis: Theory and Applications(Muchnick, S. S. and Jones, N. D.,
eds.). Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981, 189–234.

11. Charlier, B. L. and Hentenryck, P. V. A Universal Top-Down Fixpoint Algorithm.
Technical Report CS-92-25, Brown University, Providence, RI, 1992.

12. Heintze, N., Oliva, D. and MacQueen, D. ckit 1.0, March 2000. Available from:
http://www.smlnj.org/doc/ckit/.

434



13. Butenhof, D.Programming with POSIX Threads. Addison-Wesley, 1997.
14. Rinard, M. Analysis of Multithreaded Programs. InProc. of 8th Int. Symp. on Static

Analysis, SAS 2001 (Paris, June 2001)(Cousot, P., ed.).LNCS, 2001,2126, 1–19.
15. Diniz, P. and Rinard, M. Lock coarsening: eliminating lock overhead in automatically

parallelized object-based programs.J. Parallel Distrib. Comput., 1998,49, 218–244.
16. Bogda, J. and Hoelzle, U. Removing unnecessary synchronization in Java. InProc. of

14th ACM SIGPLAN Conf. on Object-Oriented Programming Systems, Languages
and Applications, OOPSLA’99 (Denver, Colo., Nov. 1999). SIGPLAN Notices, 1999,
34, 10, 35–46.

17. Aldrich, J., Chambers, C., Sirer, E. and Eggers, S. Static analysis for eliminating
unnecessary synchronization from Java programs. InProc. of 6th Int. Symp. on Static
Analysis, SAS’99 (Venice, Sept. 1999)(Cortesi, A. and Filé, G., eds.).LNCS, 1999,
1694, 19–38.

18. Ruf, E. Effective synchronization removal for Java. InACM SIGPLAN Conf. on
Programming Language Design and Implementation, PLDI’00 (Vancouver, BC, June
2000). SIGPLAN Notices, 2000,35(5), 208–218.

19. Whaley, J. and Rinard, M. Compositional pointer and escape analysis for Java. InProc.
of 14th ACM SIGPLAN Conf. on Object-Oriented Programming Systems, Languages
and Applications, OOPSLA’99 (Denver, Colo., Nov. 1999). SIGPLAN Notices, 1999,
34, 10, 187–206.

20. Jagannathan, S. and Weeks, S. Analyzing stores and references in a parallel symbolic
language. InProc. of 1994 ACM Conf. on LISP and Functional Programming, LFP’94
(Orlando, Fla., June 1994). ACM Press, New York, 1994, 294–305.

21. Cousot, P. Invariance proof methods and analysis techniques for parallel programs.
In Automatic Program Construction Techniques(Biermann, A., Guiho, G. and
Kodratroff, Y., eds.). Collier Macmillan Publishers, London, 1984, 243–271.

22. Rugina, R. and Rinard, M. Pointer analysis for multithreaded programs. InProc. of
1999 ACM SIGPLAN Conf. on Programming Language Design and Implementation,
PLDI’99 (Altanta, Ga., May 1999). SIGPLAN Notices, 1999,34, 5, 77–90.

23. Naumovich, G., Avrunin, G. and Clarke, L. An efficient algorithm for computing
MHP information of concurrent Java programs. InProc. of 7th European Software
Engineering Conf. / 7th ACM SIGSOFT Symp. on Foundations of Software Engin-
eering, ESEC/FSE’99 (Toulouse, Sept. 1999)(Nierstrasz, O. and Lemoine, M., eds.).
LNCS, 1999,1687, 338–354.

24. Naumovich, G., Avrunin, G. and Clarke, L. DataFlow analysis for checking properties
of concurrent Java programs. InProc. of 21th Int. Conf. on Software Engineering,
ICSE’99 (Los Angeles, Calif., May 1999). ACM Press, New York, 1999, 399–410.

25. Yahav, E. Verifying safety properties of concurrent Java programs using 3-valued logic. In
Conf. Record of 28th ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages, POPL’01 (London, Jan. 2001). SIGPLAN Notices, 2001,36, 3, 27–40.

26. Flanagan, C., Freund, S. and Qadeer, S. Thread-modular verification for shared-memory
programs. InProc. of 11th European Symp. on Programming, ESOP 2002 (Grenoble,
Apr. 2002)(Le Métayer, D., ed.).LNCS, 2002,2305, 262–277.

27. Flanagan, C., Qadeer, S. and Seshia, S. A modular checker for multithreaded programs.
In Proc. of 14th Int. Conf. on Computer-Aided Verification, CAV 2002 (Copenhagen,
July 2002)(Brinksma, E., Larsen, K. G., eds.).LNCS, 2002,2404, 180–194.

28. Salcianu, A. and Rinard, M. Pointer and escape analysis for multithreaded programs.
In Proc. of 8th ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming, PPOPP’01 (Snowbird, Utah, June 2001. SIGPLAN Notices, 2001,36,
7, 12–23.

435



Globaalinvariandid mitmelõimeliste rakenduste analüüsiks

Helmut Seidl, Varmo Vene ja Markus Müller-Olm

Mitmelõimeliste programmide staatilise analüüsi põhiraskuseks on lõimede
paralleelsemantikast tingitud olekuruumi eksponentsiaalne kasv, mistõttu tradit-
sioonilised analüüsimeetodid on nende korral tihti liiga ebaefektiivsed praktikas
kasutamiseks. Artiklis on programmide abstraktseks esitamiseks kasutatud uut
tüüpi, nn kõrvalefektidega kitsendussüsteeme, kus programmi globaalolek on lõi-
mede lokaalsetest olekutest otseselt eristatud. Sellise kitsendussüsteemi lahen-
damiseks leitakse kõigepealt globaalolekut abstraktselt kirjeldav minimaalne
ohutu globaalinvariant, mille suhtes siis ülejäänud kitsendussüsteem lahendatakse.
Tulemusena hoitakse olekuruumi kasv lõimede arvu suhtes lineaarne. On kir-
jeldatud kõrvalefektidega kitsendussüsteemide formaalseid omadusi ja esitatud
baasmeetodid globaalinvariantide arvutamiseks. Samuti on antud ülevaade toodud
lähenemise praktilisuse demonstreerimiseks välja töötatud ja realiseeritud suhte-
liselt efektiivsest analüsaatori prototüübist, mis võimaldab kontrollida kriitiliste
ressursside kasutamise korrektsust mitmelõimelistes C-programmides.

436


