
Proc. Estonian Acad. Sci. Phys. Math., 2003,52, 4, 394–412

Fairness in automata theoretic model checking

Tuomo Malinen and Matti Luukkainen

Department of Computer Science, University of Helsinki, P.O. Box 26 (Teollisuuskatu 23),
FIN-00014 University of Helsinki, Finland; {tamaline,mluukkai}@cs.helsinki.fi

Received 10 February 2003, in revised form 13 June 2003

Abstract. We describe and perform empirical evaluation of two different methods for taking
fairness assumptions into account in automata theoretic model checking. Both of the methods
are known from the literature, even though they have not been presented in this form before.
One of these methods is based on incorporating the fairness assumption into the system model;
in the other one the fairness assumption is taken care of algorithmically. The goal of this work
is to put these methods together, present them in a unified formal framework, and to compare
their relative usefulness in some problems.

Key words: automata theory, model checking, Büchi automata, fairness, verification.

1. INTRODUCTION

We study techniques for takingfairnessinto account in automatic verification
of finite-state systems. Fairness of a computer system means informally that the
different processes of the system each get a fair share of processor time if they
wish and thus can advance in their computation. Fairness is needed to secure the
livenessproperties of the verified system. Obviously, fairness of the real system
needs to be taken into account in formal verification of these properties.

Our context is, more specifically, automata theoretic model checking [1].
In automata theoretic model checking the verified system is modelled as a
composition of several automata, typically describing the processes and shared
memory of the system. Automata are also used to describe the correct behaviour of
the system. The actual verification can be reduced to checking the emptiness of the
language accepted by an automaton.

There exist different notions of fairness:weak fairnessandstrong fairness. We
study methods for verification under both of these.

394

Two general approaches to dealing with fairness have been proposed. Lichten-
stein and Pnueli [2] present algorithms for model checking of LTL formulae under
(both kinds of) fairness assumptions. These are based on dividing the system model
into its strongly connected components and studying their properties. In a certain
kind of strongly connected component, a fair run of the system is guaranteed to
exist. The model checking problem with fairness assumptions can thus be solved.
In this approach, the supposed fairness of the verified system is taken into account
algorithmically, i.e., in the model checking algorithm. The system model needs not
be altered.

The other approach is to embed the fairness assumption into the system model.
In our context, this is done by adding monitor automata to the composition of the
system model. The idea is that these automata limit the system to only its fair
computations [3−5]. The model checking is then usually performed with nested
depth first search of the model [6]. The studies mentioned above are, however,
limited to studying only weak (or some closely related form of) fairness. In
automata theory based LTL model checking [1,7,8], essentially the same effect as
the above is obtained by incorporating the fairness assumption into the property,
i.e., instead of doing the model checking for a formulaϕ, it is done for implication
ϕfair → ϕ whereϕfair is an LTL formula which evaluates true for fair paths only.

In this study, we wish to give rigorously defined methods for both approaches
lined out above, and for both kinds of fairness. The main contribution is the
empirical comparison of the computational complexity of these methods [9].

The article is structured as follows. In Section 2 we first discuss the basic
setting of automata theoretic verification. In Section 3 we give definitions needed
to give the model checking problem with fairness assumptions. In Section 4 we first
discuss the algorithmic aspects of the two different approaches mentioned above.
In Section 5 we discuss the relative theoretical and empirical performance of these
methods. Finally, in Section 6, we draw some conclusions and propose future work.

2. AUTOMATA THEORETIC VERIFICATION

In this section we define the notation and basic concepts needed to formulate
the automata theoretic verification in the context of fairness requirements.

2.1. Büchi automaton

The systems to be verified as well as the verified properties are described with
Büchi automata [10,11].

Definition 1 (Büchi automaton).
A Büchi automaton is a tupleB = (S, Σ,∆, s0, F), where
• S is a finite set of states,
• Σ is a finite alphabet,

395

• ∆ ⊆ S × Σ× S is the transition relation,
• s0 ∈ S is the initial state, and
• F ⊆ S is the set of accepting states.

Definition 2. Consider a Büchi automatonB = (S, Σ,∆, s0, F).
• Input of a Büchi automaton is an infinite stringa = a1a2a3 · · · of symbols

in Σ, soa ∈ Σω. In the sequel we call these infinite stringswords.
• Anexecutionof an automatonB over the worda is the infinite sequence of

statess = s0s1s2 · · · provided that
– s0 = s0, and
– for all i > 0 : (si−1, ai, si) ∈ ∆.

• For an executions let inf(s) be the set of statess ∈ S that occur in the
sequence infinitely often, i.e., s ∈ inf(s) iff s = si for infinitely manyi ≥ 0. A
Büchi automatonB acceptsa worda iff it has an executions over the worda such
that inf(s) ∩ F 6= ∅.

• The set of all words that an automatonB accepts is called thelanguage
that it defines,and we denote the language withL(B), formally:

L(B) = { a ∈ Σω | B accepts a }.

Thus Büchi automata are string acceptors that can be used to define languages
consisting of infinite words of some alphabet. In the automata theoretic verification,
a view is adopted where a Büchi automaton is seen as a way to define what are the
infinite computations that a system can take part in. States of automata naturally
describe the internal states of computation and transitions describe the execution
of commands. Thus the alphabet defines the “commands” that the system executes
during its lifetime.

An automaton, where all the states are accepting states, is called a Büchi
automaton with atrivial acceptance condition.

In addition to the concept of normal Büchi automaton, we also need an
extension of it, the generalized Büchi automaton, which is defined next.

Definition 3 (Generalized Büchi automaton).
• A generalized Büchi automaton is a tupleBg = (S, Σ,∆, s0,F), where the

rest of the components are the same as with normal Büchi automata, butF is now
theset of acceptance states, i.e.,F ⊆ 2S .

• An executionof generalized Büchi automaton over a worda is defined
similarly as in the case of normal Büchi automata.

• A generalized Büchi automatonBg acceptsa worda iff it has an execution
s over the worda such that for allF ∈ F : inf(s) ∩ F 6= ∅.

• The language of a generalized Büchi automatonB is defined as in the case
of normal Büchi automata.

Generalized and normal Büchi automata have the same expressive power [11],
and a normal Büchi automaton can be obtained from a generalized one with the
following construction [12].

396

Theorem 4. Let Bg = (Sg,Σ,∆g, s0g, {F1, . . . , Fk}) be a generalized Büchi
automaton. NowB = (S, Σ,∆, s0, F), where

• S = Sg × {1, . . . , k},
• ((s1, i), a, (s2, j)) ∈ ∆ if and only if

– (s1, a, s2) ∈ ∆g, s1 6∈ Fi andi = j,
– (s1, a, s2) ∈ ∆g, s1 ∈ Fi andj = (i + 1) mod k,

• s0 ∈ (s0g, 1), and
• F = F1 × {1},

is a Büchi automaton for whichL(Bg) = L(B).

2.2. Product automaton

Usually the systems which are to be verified are described so that each
component is defined by means of a separate automaton, and the Büchi automaton
defining the composite behaviour of the system is then obtained as aproductof the
components. Note that the components do not necessarily have the same alphabet.
The symbols that are shared between several automata denote the communication
events of the automata whereas such symbols that are used by only one automaton
denote some internal activity of the components.

Definition 5. LetBi = (Si,Σi,∆i, s0i, Fi) be Büchi automata fori ∈ {1, . . . , n}.
The product B1 × · · · × Bn is the (generalized) Büchi automatonB =
(S, Σ,∆, s0, F̂), where

• S = S1 × · · · × Sn,
• Σ = Σ1 ∪ · · · ∪ Σn,
• s0 = (s01, . . . , s0n), and
• ((s1, . . . , sn), a, (s′1, . . . , s

′
n)) ∈ ∆ if and only if for all i ∈ {1, . . . , n}:

– if a ∈ Σi then(si, a, s′i) ∈ ∆i,
– if a 6∈ Σi thensi = s′i.

• For the acceptance state information̂F we distinguish two different cases:

– if Fi = Si for all i ∈ {1, . . . , n− 1} (only one of the components, the
component numberedn, possibly has a nontrivial acceptance

condition), thenB is a normal Büchi automaton, and F̂ = S1 × · · ·
×Sn−1 × Fn,

– if Fi 6= Si at least for twoi ∈ {1, . . . , n} (at least two of the
components have nontrivial acceptance conditions), then B is a
generalized Büchi automaton, and F̂ = {S1 × · · · × Sn−1 ×
Fn, . . . , F1 × S2 × · · · × Sn}.

2.3. Verification by language inclusion

Assume that we model the system with a Büchi automatonB which is
obtained as a product of automataB1, . . . , Bn which define the individual system

397

components. NowL(B), the language defined byB corresponds to all possible
computations of the system which is to be verified. If we use yet another automaton
Bϕ to describe all the correct computations with respect to the propertyϕ, the
system meets the requirement if and only if all of its computations belong to the
onesBϕ is accepting, i.e.,L(B) ⊆ L(Bϕ).

The language inclusion problem of the Büchi automaton can be solved by
reducing it to the emptiness problem of the Büchi automaton in the following
way [1]. Let Bϕ be the complement of automatonBϕ, i.e., Bϕ is an automaton
accepting a word if and only ifBϕ does not accept it. Now the following result can
be proven:

Theorem 6.L(B) ⊆ L(Bϕ) iff L(B) ∩ L(Bϕ) = ∅ iff L(B ×Bϕ) = ∅.
Thus the verification is reduced to the emptiness problem of a single Büchi

automaton, and as shown in Section 3, the emptiness of an automaton can be
solved algorithmically (i.e., the emptiness of a Büchi automaton is a decidable
problem). The intuition behind the result is that sinceL(B) defines all the possible
computations of the system andL(Bϕ) defines all the computations that do not
conform to the propertyϕ, those sets should be disjoint. If there is a common
elementa in the sets, it is a computation of the system that fails to satisfy the
property.

Note that the set of languages definable with Büchi automata (theω-regular
languages) is closed under set theoretical operations, thus it is known thatBϕ can
be complemented [13]. The automata theoretic verification method extends easily to
LTL model checking since every LTL formula can be translated to a corresponding
Büchi automaton [1,8].

3. FAIRNESS

The productB defined in the previous section thus contains all the possible
computations of the system. However, some of the computations may not occur
in real life because of the scheduling mechanisms of the system.L(B) contains
also computations where, for example, componentB1 which is always ready to
execute is never given a turn to execute. If we are verifyinglivenessproperties,
such as “ifrequestis sent,responsehas to arrive within a finite amount of time”,
we should be able to filter out theseunfair computations from our system modelB.
Let us now formally define the concept offairness[14,15].

Definition 7 (Fairness).
Let us consider automataB1, . . . , Bn andB, whereBi = (Si,Σi,∆i, s0i, Fi)

andB = B1×· · ·×Bn = (S, Σ,∆, s0, F), and an infinite computationc0c1c2 · · ·
of B. Note thatci is now a vector belonging to the setS1 × · · · × Sn.

• Bi is enabledin (s1, . . . , si, . . . , sn) ∈ S iff there exists a transition
((s1, . . . , si, . . . , sn), a, (s′1, . . . , s

′
i, . . . , s

′
n)) ∈ ∆ such that a ∈ Σi and

(si, a, s′i) ∈ ∆i, i.e.,Bi takes part in the transition.

398

• c0c1c2 · · · is weakly fairwith respect toBi iff the following condition holds:
if Bi is enabled for allcj , starting from a stateck, k ≥ 0, then infinitely many of
the transitions(cj , a, cj+1) ∈ ∆ are such thatBi has taken part in the transition.

• c0c1c2 · · · is strongly fair with respect toBi iff the following condition
holds: if Bi is enabled for infinitely manycj , then infinitely many of the transitions
(cj , a, cj+1) ∈ ∆ are such thatBi has taken part in the transition.

• c0c1c2 · · · is aweakly faircomputation ofB if it is weakly fair with respect
to all of the automataB1, . . . , Bn.

• c0c1c2 · · · is a strongly fair computation ofB if it is strongly fair with
respect to all of the automataB1, . . . , Bn.

Some kind of a fairness assumption is usually needed if liveness properties are
verified. Taking fairness into account, the verification question can be formulated
in the following way:

L(B) ∩ L(Bfair) ⊆ L(Bϕ),

which is equivalent to
L(B ×Bfair ×Bϕ) = ∅,

whereBfair is an automaton that accepts a computationc0c1c2 · · · of the system if
and only if the computation is fair. Thus it is enough that just the fair computations
of the system satisfy the property. Fairness depends on the enabledness of
individual system components, thus the automatonBfair cannot be defined within
the framework we have so far. Thus, some additional notation has to be defined
first.

Definition 8 (Enabledness labelled Büchi automaton).
Let Bi = (Si,Σi,∆i, s0i, Fi) be Büchi automata fori ∈ {1, . . . , n}, and

B = (S, Σ,∆, s0, F) the productB1 × · · · ×Bn. Theenabledness labelled Büchi
automatonof B is Bl = (S, Σ,∆, s0, F, E), whereE ⊆ S → 2{1,...,n} is defined
as follows:

∀s ∈ S : E(s) = { i ∈ {1, . . . , n} | Bi is enabled in s }.

If the Büchi automatonB describes a system, the enabledness labelled version
of it, Bl, is the same automaton and in addition, each state is labelled with numbers
of those subcomponents that are enabled in that state.

In addition to enabledness labelled automata, we need another extension,
the monitor Büchi automata, which can use the enabledness information in the
transitions.

Definition 9 (Monitor Büchi automata).
Consider a system consisting of the componentsB1, . . . , Bn, denote withEnc

the set{en1, dis1, . . . enn, disn}. The monitor Büchi automaton corresponding to
the componentsB1, . . . , Bn is a tupleM = (S, Σ,∆, s0, F),

• S is a finite set of states,
• Σ is a finite alphabet,

399

• ∆ ⊆ S × Σ× 2Enc × S is a transition relation,
• s0 ∈ S is the initial state, and
• F ⊆ S is the set of acceptance states.
Let Mi = (Si,Σi,∆i, s0i, Fi) be monitor automata fori ∈ {1, . . . , n}.

The productM1 × · · · × Mn is the generalized monitor Büchi automatonM =
(S, Σ,∆, s0,F), where

• S = S1 × · · · × Sn,
• Σ = Σ1 ∪ · · · ∪ Σn,
• ((s1, . . . , sn), a, l, (s′1, . . . , s

′
n)) ∈ ∆ if and only if for all i ∈ {1, . . . , n}:

– if a ∈ Σi then(si, a, li, s
′
i) ∈ ∆i,

– if a 6∈ Σi thensi = s′i, and
– l = l′1 ∪ · · · ∪ l′n, wherel′i = li if a ∈ Σi and in other casel′i = ∅.

• s0 = (s01, . . . , s0n), andF = {S1 × · · · × Sn−1 × Fn, . . . , F1 × S2 ×
· · · × Sn}.

A generalized monitor Büchi automaton can be transferred to a normal monitor
automaton with the method described in Theorem 4.

Finally, let us define the product of monitor and enabledness labelled automata,
yielding a generalized Büchi automaton.

Definition 10. LetBl = (Sl,Σ,∆l, s0l, F l, El) be the enabledness labelled Büchi
automaton of the productB1×· · ·×Bn andM = (Sm,Σ,∆m, s0m, Fm) monitor
automaton corresponding to automataB1, . . . , Bn. The productBl × M is now
defined as the generalized Büchi automaton(S, Σ,∆, s0,F), where

• S = Sl × Sm,
• s0 = (s0l, s0m),
• ((s1, s

′
1), a, (s2, s

′
2)) ∈ ∆ if and only if

– (s1, a, s2) ∈ ∆l,
– (s′1, a, l, s′2) ∈ ∆m, and
– for all x ∈ l : if x = eni theni ∈ E(s1), if x = disi theni 6∈ E(s1).

• F = {Sl × Fm, F l × Sm}.

With an enabledness labelled automaton we can represent a system which is to
be verified in such a way that monitor automata can be used to define the fairness
constraints. Thus, we have defined all the machinery needed to represent fairness
constraints in a uniform manner within automata theoretic verification. Next, let us
define monitor automata for weak and strong fairness.

Definition 11. Let B1, . . . , Bn be the automata defining the system under
verification, and denote the alphabet of automatonBi with Σi. Monitor for weak
fairness isBwf = (S, Σ,∆, s0, F), where

• S = {0, 1, . . . , n},
• Σ = Σ1 ∪ · · · ∪ Σn,
• s0 = 0,
• F = {0}, and

400

• ∆ = {(0, a, ∅, 1) | a ∈ Σ} ∪⋃
i∈{1,...,n} ({(i, a, eni, i) | a ∈ Σ \ Σi}

∪ {(i, a, ∅, (i + 1) mod n) | a ∈ Σi}
∪ {(i, a, disi, (i + 1) mod n) | a ∈ Σ \ Σi})

Monitor for strong fairnessBsf is the productBsf1 × · · · × Bsfn. For all i ∈
{1, . . . , n}, the components are defined as followsBsf i = (Si,Σ,∆i, s0i, Fi),
where

• Si = {0, 1, 2},
• s0 = 0,
• F = {1, 2},
• ∆i = {(0, a, ∅, 0) | a ∈ Σ} ∪ {(0, a, ∅, 2), (2, a, ∅, 2) | a ∈ Σi}

∪ {(0, a, disi, 1), (1, a, disi, 1), (2, a, ∅, 0) | a ∈ Σ \ Σi}.

The intuition behind the monitor automataBwf andBsf becomes clear from the
proof of the following theorem which formulates the automata theoretic verification
under a fairness assumption [9].

Theorem 12.LetB denote the productB1 × · · · ×Bn, which describes the system
to be verified, and letBϕ be the automaton describing the negation of the property
ϕ which is to be verified, and let Bwf and Bsf be the fairness automata of the
previous definition.

1. B satisfiesϕ assuming weak fairness iffL((Bl ×Bwf)×Bϕ) = ∅.
2. B satisfiesϕ assuming strong fairness iffL((Bl ×Bsf)×Bϕ) = ∅.

Proof. In both of the cases the theorem follows directly from the fact that the
fairness automaton accepts a computation if and only if the computation is fair.

1. Consider a weakly fair computations. Now for each automatonBi, either
the automaton is disabled infinitely often, or infinitely many of the transitions in
the computation are such whereBi is taking part. This implies that the automaton
Bwf can only wait a finite number of steps in its statei. Thus, the weakly fair
computations causesBwf to enter its acceptance state infinitely often.

Consider then a computations that causesBwf to enter its acceptance state
infinitely often. This means that computation passes infinitely often through state
i, which in turn means that the automatonBi has either taken part in infinitely many
transitions or has been disabled infinitely many times. Thus, the computations is
weakly fair.

2. Consider a strongly fair computations. Now for each automatonBi, either
the automaton is disabled from some state on, or infinitely many of the transitions in
the computation are such whereBi is taking part. This implies that the automaton
Bsf i passes infinitely many times through an accepting state. Obviously the
automatonBsf then passes infinitely many times through each of its acceptance
sets, and thus,Bsf too accepts the strongly fair computation.

Consider then a computations that Bsf accepts. Equivalent is thatBsf visits
some component from each of its acceptance sets infinitely many times. This
implies that the automatonBsf i passes infinitely many times through an accepting

401

state. So, the automatonBi has either taken part in infinitely many transitions, or
has been disabled from some state on. Thus, the computations is strongly fair.

Note that we can easily modify the monitorsBwf andBsf such that fairness
is assumed from just a subset of the processesB1, . . . , Bn. In Bwf waiting states
are needed only for those processes for which fairness is required, and inBsf a
componentBsf i is needed only if fairness is assumed for the processBi.

4. ALGORITHMS FOR CHECKING THE EMPTINESS

In the previous section we showed how Büchi automata can be used in
verification under fairness assumptions. Theorem 12 showed that verification under
fairness can be reduced to the emptiness problem of a single automaton. Let us now
consider the algorithmic aspects of the emptiness checking. The following result
(see, e.g., [1,3]) is the key to the algorithmic solvability of the emptiness problem.

Theorem 13. Let B = (S, Σ,∆, s0, F) be a Büchi automaton. The following are
equivalent:

1. L(B) 6= ∅.
2. There existssf ∈ F such that:

• ∃s1, . . . , sn ∈ S, a1, . . . , an−1 ∈ Σ such that∀i ∈ {1, . . . , n− 1} :
(si, ai, si+1) ∈ ∆, s1 = s0 andsn = sf , and

• ∃s1, . . . , sn ∈ S, a1, . . . , an−1 ∈ Σ such that∀i ∈ {1, . . . , n− 1} :
(si, ai, si+1) ∈ ∆, s1 = sf andsn = sf , wheren > 1.

3. There exists a strongly connected componentC in the state space ofB such
that:

• ∃s1, . . . , sn ∈ S, a1, . . . , an−1 ∈ Σ such that∀i ∈ {1, . . . , n− 1} :
(si, ai, si+1) ∈ ∆, ands1 = s0 andsn ∈ C.

• C ∩ F 6= ∅.
• ∃s, s′ ∈ C such that for somea ∈ Σ : (s, a, s′) ∈ ∆.

Intuitively, the language defined by an automaton is nonempty if there exists
an accepting state which is reachable from the initial state and from the state itself
(using at least one transition). Since the number of states in an automaton is finite,
the emptiness problem is clearly decidable. In the following we will describe
two different types of algorithms for the emptiness problem. The first one uses
nested depth first search in order to find an above mentioned type of acceptance
state. The second algorithm first constructs the strongly connected components of
the automaton. Then the existence of the above mentioned type of state can be
checked by observing the properties of the strongly connected components. In the
context of the latter algorithm, the verification under fairness assumptions can be
treated directly,without the need to employ the monitor automaton. This is a clear
advantage since the usage of the monitor causes the memory (and time) usage of
the emptiness check to be multiplied.

402

4.1. Nested depth first search approach

Theorem 12 showed that verification under fairness assumptions can be reduced
to checking the emptiness of a language accepted by a Büchi automaton. The
Büchi automaton in this case is, using the notation from Theorem 12, the product
(Bl × Bwf) × Bϕ or (Bl × Bsf) × Bϕ, i.e., the automaton with embedded
monitor automata for either weak or strong fairness. Theorem 13 on the other
hand shows that this problem of language emptiness can be decided by finding a
cycle containing an accepting state. In [6] an efficient algorithm was presented for
this purpose. We review it briefly here.

The algorithm is based on two nested depth first searches. The idea can be
described as follows. The first search finds all the reachable accepting states and
sorts them in post-orderf1, . . . , fn. In this order, the “nested search” is started
from each of the statesfi and looks for cycles includingfi. The existence of
such a cycle can be determined easily; a cycle exists iffi is reachable from
itself. It can be shown that both searches need to visit each state of the product
automaton at most once, and thus the algorithm works in linear time in the size of
the automaton mentioned above. The searches can also be interleaved, i.e., when
the first accepting statef1 is found, the first nested search is started. Thus the
emptiness can be checked on-the-fly. A pseudo-code is given in Algorithm 14.

Algorithm 14. Find accepting cycles. SupposeB = (S, Σ,∆, s0, F) is a Büchi
automaton. The following algorithm reports the existence of an accepting cycle
in B.

program 2dfs(B)
begin

S0 := ∅;
S1 := ∅;
dfs(s0);

end.

proceduredfs(s)
begin

S0 := S0 ∪ s;
for eachs′ for which (s, a, s′) ∈ ∆ for somea ∈ Σ do

if s′ 6∈ S0 then
dfs(s’);

if s ∈ F then
begin

seed := s;
ndfs(s);

end;
end;

403

procedurendfs(s)
begin

S1 := S1 ∪ s;
for eachs′ for which (s, a, s′) ∈ ∆ for somea ∈ Σ do

begin
if s′ 6∈ S1 then

ndfs(s’);
else ifs’ = seedthen

report cycle;
end;

end;

For proof of correctness, see [6].

2

4.2. Strongly connected component approach

Theorem 13 states that the emptiness of the language accepted by a Büchi
automaton can be decided by checking if it contains a strongly connected
component with at least one transition and one accepting state. Thus this is a
solution to the model checking problem of Theorem 6. It turns out that thefairness
assumption, as well, can be included in thealgorithm that looks for the strongly
connected components.

Lichtenstein and Pnueli [2] present an algorithm for deciding whether a strongly
connected component in the reachability graph of a concurrent system includes a
fair cycle. In the following, we give a brief description of the algorithm, which was
originally described in a somewhat different setting. We do not discuss actually
finding the strongly connected components, as Tarjan’s algorithm [16] is the well-
known standard solution for this.

Note that in Section 4.1, the Büchi automaton given as input to the nested search
algorithm was the one with embedded monitor automaton. Here, it is important to
note that the Büchi automaton given as input to the algorithms described in this
section is, using the notation from Theorem 12,Bl ×Bϕ, i.e., without the monitor
automaton.

In the following, by a strongly connected component of a Büchi automaton
Bl = (S, Σ,∆, s0, F, E) we mean any subset ofS that is strongly connected
by transitions in∆. Also, we call a strongly connected componentnontrivial
if it contains at least one transition andmaximal if no state can be added to it
so that it remains strongly connected. When meaning is clear from the context,
we address different parts of the tuple that makes up a Büchi automaton without
explicit reference to the automaton.

404

We review the algorithms separately for the cases of weak and strong fairness.
In both cases, it turns out we can give simple conditions under which there exists a
fair cycle in a given strongly connected component. In the case of weak fairness,
this condition is exclusive. The use of this condition is more complex in the case
of strong fairness.

4.2.1. Weak fairness

In the case of weak fairness, the condition can be employed in a straightforward
manner. Assume we want to find out whether a Büchi automatonBl×Bϕ contains a
weakly fair cycle with an acceptance state. LetC be a nontrivial strongly connected
component ofBl ×Bϕ such thatF ∩ C 6= ∅. C contains an accepting weakly fair
cycle if and only if the following holds for allBi: if i ∈ E(s) holds for alls ∈ C,
then∃s, s′ ∈ C : (s, a, s′) ∈ ∆ for somea ∈ Σ such thatBi takes part in the
transition(s, a, s′) ∈ ∆.

Let us consider the correctness of the above condition. The backward
implication is clear. Now suppose there is an automatonBi such thati ∈ E(s)
for all s ∈ C and none of whose transitions are included inC. Then in any
infinite executions = s0s1s2 . . . , wheresi ∈ C holds for all i, the automaton
Bi always has an enabled transition. But as there is no transition(s, a, s′) ∈ ∆ of
the automatonBi such thats, s′ ∈ C, Bi cannot take part in any transition ofs.
Thus no weakly fair cycle can exist inC.

We have seen thatC contains an accepting weakly fair cycle if and only if all
the automata that are enabled in every state ofC can execute some transition within
C. And thus,Bl×Bϕ contains a weakly fair cycle if and only if the above condition
holds for any one of its nontrivial strongly connected components that contain at
least one accepting state. Of course, it is enough to go through all the maximal
strongly connected componentsC, as these include all the cycles of their subsets.

The condition described above can clearly be checked by going through a
strongly connected component once. This is described in algorithm 15.

Algorithm 15. Find accepting cycles assuming weak fairness. SupposeBl =
(S, Σ,∆, s0, F, E) is an enabledness labelled Büchi automaton andC ⊆ S forms
a strongly connected component. IfC includes an accepting weakly fair cycle, the
following algorithm reports it.

procedureWF(C)
begin

if 6 ∃s, s′ ∈ C : (s, a, s′) ∈ ∆ for somea ∈ Σ or C ∩ F = ∅ then
report no cycle;

else
begin

Ex := {i | ∃s, s′ ∈ C : (s, a, s′) ∈ ∆ for somea ∈ Σ
such thatBi takes part in the transition(s, a, s′) ∈ ∆};

En := {i | i ∈ E(s) for all s ∈ C};
if En ⊆ Ex then

405

report cycle;
end;

end;

The correctness of the algorithm follows from the above discussion.

2

4.2.2. Strong fairness

Let us now proceed to consider the case of strong fairness. LetBl × Bϕ and
C be as above. The condition now takes the following form:C contains a strongly
fair accepting cycle if the following holds for allBi: if ∃s ∈ C such thati ∈ E(s),
then∃s, s′ ∈ C : (s, a, s′) ∈ ∆ for somea ∈ Σ such thatBi takes part in the
transition(s, a, s′) ∈ ∆.

This is quite clear, as assuming the condition holds, one can construct an infinite
executions = s0s1s2 . . . , wheresi ∈ C holds for alli, and where all the processes
that become enabled at some point can execute their transition guaranteed to exist
within C. Now consider the case when the condition does not hold. Then there
must exist some set of statesR ⊆ C, where some automatonBi is enabled whose
transitions are not included inC. It is clear that a strongly fair cycle inC cannot
pass through any of these states. But we still cannot deduce that no strongly fair
cycle exists, as there may be cycles avoiding these so called “bad” states. In
algorithm 16, the idea is simply to remove the setR of bad states fromC and
processC \R recursively.

Algorithm 16. Find accepting cycles assuming strong fairness. SupposeBl =
(S, Σ,∆, s0, F, E) is an enabledness labelled Büchi automaton andC ⊆ S forms a
strongly connected component. IfC includes an accepting strongly fair cycle, the
following algorithm reports it.

procedureSF(C)
begin

if 6 ∃s, s′ ∈ C : (s, a, s′) ∈ ∆ for somea ∈ Σ or C ∩ F = ∅ then
report no cycle;

else
begin

Ex := {i | ∃s, s′ ∈ C : (s, a, s′) ∈ ∆ for somea ∈ Σ
such thatBi takes part in the transition(s, a, s′) ∈ ∆};

En := {i | i ∈ E(s) for somes ∈ C};
if En⊆ Ex then

report cycle;
else

begin
R := {s | s ∈ C where∃i ∈ En \ Ex : i ∈ E(s)};

406

C := C \R;
for maximal strongly connected componentsC ′ in C do

if C ′ ∩ F 6= ∅ then
SF (C ′);

end;
end;

end;

First note that ifC contains no transitions or no accepting state, obviously no
accepting cycle exists. From the above discussion it is clear that ifEn ⊆ Ex
holds, there exists a strongly fair cycle. In both these cases the algorithm is correct.

Now consider the case whenEn ⊆ Ex does not hold. As a fair cycle cannot
pass through any of the statess ∈ R, it is enough to look at the cycles ofC \ R.
These are all included in the maximal strongly connected components ofC \ R.
From this it follows that deciding the existence of a strongly fair accepting cycle
for all of these components decides also the existence of a strongly fair accepting
cycle inC.

For eachC ′ ∈ C, the recursion terminates when either the above condition
holds for some strongly connected component or no transitions are left in the
component.

2

5. COMPARISON OF THE METHODS

In this section, we perform some empirical tests [9] of the methods described in
this paper. For sake of brevity, we call the method based on monitor automata and
depth first search the 2DFS method and the method based on strongly connected
components the SCC method. In the following, we first take a look at the theoretical
performance of the two methods and then compare this with the empirical results.
The empirical comparison is performed on two protocols for mutual exclusion.

5.1. Theoretical evaluation

There are two issues that are of interest to us in the performance of the
compared methods. Clearly, one is the time complexity of the actual algorithm
for model checking, i.e., in the case of 2DFS the nested depth first search
(Algorithm 14) and in the case of SCC the algorithm used for finding the strongly
connected components and the algorithm of Lichtenstein and Pnueli (Algorithms
15, 16).

The complexity of 2DFS in this sense is easily determined. The nested depth
first search is linear in the size of the product automaton. The worst case is that
both of the searches go through all of the automaton once.

407

The SCC method is a bit less straightforward. Finding strongly connected
components, in the first place, is easy and can be done in linear time, e.g. with
Tarjan’s algorithm. Also, it is easy to see that the cycle finding algorithm employed
in SCC is linear in the case of weak fairness. Whether the condition discussed in
Section 4.2 is fulfilled for a strongly connected componentC can be determined by
going through the component once.

Now let us consider strong fairness. Letk be the number of the automata for
which fairness is assumed and letn be the size of a strongly connected component
to be checked for cycles. Determining if the condition holds and, if this is not the
case, finding the bad states can easily be implemented inO(n) time. On every level
of the recursion, all the states that have out transitions with some of thek automata
are removed as bad. Thus the depth of the recursion is bound byk. This makes the
time complexity of the algorithmO(nk).

The other issue concerning the overall performance is what effect the method
has on the size of the product automaton. In the SCC method, the product
automatonBl × Bϕ forms the input of the algorithm as is, i.e., there is no extra
factor. In the 2DFS method, monitor automata are embedded which multiply the
product automaton with some factor. This comes from incorporating the monitor
automata and the use of the construction from [12] for turning a generalized Büchi
automaton into a normal one. In the case of weak fairness, this factor is linear in
k. In the case of strong fairness, however, this factor isO(2k). In the empirical
study, it is of interest to us to what extent these theoretical factors show up in real
life problems. From above, it is clear that the relative performance of the methods
mostly depends on the factork.

5.2. The empirical study

Now let us proceed with the description of the empirical study. The mutual
exclusion problem is stated as follows: make sure that no two processes execute
commands from a critical section at the same time, and also make sure that any
process can execute the code of the critical section eventually if it wants to. A
mutual exclusion protocol is said to belive if the latter condition is fulfilled. We
look at two mutual exclusion protocols, Peterson’s and a simple solution employing
a semaphore. Both of these generalize to the case of arbitrarily many processes, for
all of which we assume fairness; thus we can evaluate the effects of the increasing
parameterk. We give the results in the number of states encountered during
verification and the time that the verification took. The tests were run on a Pentium
computer with 256 MB of central memory.

Peterson’s protocol is a well-known solution to the problem at hand. It employs
a queuing system for the processes wanting to enter the critical section and is live
assuming weak fairness. The results are displayed in Fig. 1 (upper part). Note that
for the 2DFS method and 4 processes the figures are just lower bounds, as the
program ran out of memory after2× 106 states.

408

409

Generally, the graphs show a very clear edge in performance for the SCC
method; with the 2DFS method we could not solve the case of 4 processes. This is
best explained by the high complexity of the protocol in itself: with 4 processes, it
has over105 states, which contributes to the high number of states in the product
automaton of the 2DFS method. The verification times show this directly. One must
note here that the extremely high time curve is mostly due to the paging involved.
The worst case scenario seems realistic for 2DFS in the sense that the number of
states is close to the theoretical maximum implied by the constructions used. One
notes that the curves of the SCC method overlap here in the cases of weak and
strong fairness. Thus in this case, no extra work needs to be done if one assumes
strong fairness without actually needing it.

The next protocol we consider is a simple semaphore solution to the problem.
The system consists of a number of processes which wait for their entry to the
critical section at a semaphore. Weak fairness is not enough in this case as, waiting
at the semaphore, the processes do not have any transitions enabled. Strong fairness
guarantees the liveness of the protocol. Again, the results are shown in Fig. 1 (lower
part). As the protocol is not live under the assumption of weak fairness, the figures
show the number of states found and time spent before the first counterexample was
found (except for the times of the SCC method for reasons discussed later). Again,
the results for the case of 12 processes and weakly fair 2DFS and from 8 processes
on and strongly fair 2DFS are only lower bounds, which explains the surprising
lessening gradient. The sharp increase in time is again explained by paging.

In this case, SCC does not outperform 2DFS as clearly as with Peterson’s
protocol. The case of 10 processes could be found not live assuming weak fairness
and the case of 6 processes verified using strong fairness. Because the system
is essentially very simple, with only c. 77 000 states in the case of 12 processes,
the insurmountable growth of the automaton in 2DFS takes place later than with
Peterson’s.

Let us then consider the performance of the SCC method. The times in the
lower right graph in Fig. 1 and the case of weak fairness are the times it took to
find all the counterexamples, i.e., all of the automaton was examined. This enables
us to directly compare the time complexity of theO(n) weak case and theO(nk)
strong case. Now consider the worst case scenario in the case of strong fairness. It
will only take place when, for each strongly connected component to be checked,
the recursion goes to its full depthk. As it may be that one removes the “bad”
states from which there are transitions with several of thek automata, the recursion
reaches depthk only when for each of thek automata the bad states are removed
separately. Because of this, one would not expect the time to be multiplied quite
with k, but still to be substantially worse than the linear weak case. Surprisingly,
in our test runs, the performance of SCC is almost the same with both fairnesses.
Thus, in the light of these experiments the factork seems to be a theoretical worst
case scenario.

410

6. DISCUSSION AND FUTURE WORK

We have described and performed empirical evaluation of two different
methods for taking fairness assumptions into account in automata theoretic model
checking. Both of the methods are known from the literature. We wanted to put
together these methods, present them in a unified formal framework and to compare
their usefulness in some problems.

Weak fairness is recognized as a practically applicable assumption. Indeed,
widely used LTL model checkers such as SPIN [7] include verification under
weak fairness as a standard option. Essentially, the method for weak fairness
implemented in SPIN is the same as the 2DFS and monitor based method described
in Section 3. As this paper also shows, the case of strong fairness is computationally
harder. Thus, it is not surprising that this case is not so commonly implemented.

In the case of weak fairness, both approaches are rather efficient, though the
SCC method performs better in both case studies. This is because of the extra
states due to the monitor automaton and the construction of [12]. The case of strong
fairness provides more distinction between the methods. The nondeterminism of
the monitor automaton in the case of strong fairness causes an exponential blow-
up of the product automaton; this happens as the number of automata for which
fairness is assumed grows. This exponential growth showed to be insurmountable
rather early in our experiments. On the other hand, the SCC method performed
surprisingly well; this considering the fact that also in this case, theoretically one
would have to pay a penalty of an added linear factor to the running time. This
factor hardly showed in our experiments.

These results seem interesting, as the nested depth first search has been the
main algorithm implemented in LTL model checking tools, such as SPIN. All in
all, it would seem that strong fairness could be a more widely implemented option
in automata theoretic verification.

Looking at the figure in Section 5, it is striking how differently the 2DFS and
SCC methods perform in the case of strong fairness, this despite the fact that the
same problem is solved in both cases. This proposes some future work: it would
be interesting to know whether the strong fairness assumption can be somehow
incorporated into nested depth first search, as it has been done in SPIN for weak
fairness. Also, approaching the problem from another perspective, there might be
ways to traverse and store the states of the product automaton in a more subtle
manner. The authors wish to thank Bengt Jonsson for pointing out these ideas.
Other future work could include a more thorough empirical evaluation of the SCC
method, on some realistic communication protocol, for instance.

REFERENCES

1. Vardi, M. and Wolper, P. An automata-theoretic approach to automatic program
verification. In Proc. of 1st Annual IEEE Symp. on Logic in Computer Science,

411

LICS’86 (Cambridge, Mass., June 1986). IEEE CS Press, Washington, DC, 1986,
322–331.

2. Lichtenstein, O. and Pnueli, A. Checking that finite state concurrent programs satisfy their
linear specification. InConference Record of 12th ACM Symposium on Principles
of Programming Languages, POPL’85 (New Orleans, Louisiana, Jan. 1985). ACM
Press, New York, 1985, 97–107.

3. Thayse, A. (ed.).From Modal Logic to Deductive Databases: Introducing a Logic Based
Approach to Artificial Intelligence. Wiley, Chichester, 1989.

4. Walker, D. Automated analysis of mutual exclusion algorithms using CCS.Form. Asp.
Comput., 1989,1, 279–292.

5. Aggarwal, S., Courcoubetis, C. and Wolper, P. Adding liveness properties to coupled finite-
state machines.ACM Trans. Program. Lang. Syst., 1990,12, 303–339.

6. Courcoubetis, C., Vardi, M., Wolper, P. and Yannakakis, M. Memory-efficient algorithms
for the verification of temporal properties.Form. Methods Syst. Des., 1992,1, 275–
288.

7. Holzmann, G. The model checker SPIN.IEEE Trans. Softw. Eng., 1997,23, 279–295.
8. Gerth, R., Peled, D., Vardi, M. and Wolper, P. Simple on-the-fly automatic verification

of linear temporal logic. InProc. of 15th IFIP WG6.1 Int. Symp. on Protocol
Specification, Testing and Verification (Warsaw, June 1995)(Dembinski, P. and
Sredniawa, M., eds.). Chapman and Hall, London, 1995, 3–18. (IFIP Conference
Proceedings,38.)

9. Malinen, T. Taking fairness into account in automata theoretic verification algorithms of
concurrent systems (in Finnish). Master’s thesis, Department of Computer Science,
University of Helsinki, October 2001.

10. Büchi, J. On a decision method in restricted second-order arithmetic. InProc. of 1st Int.
Congr. on Logic, Methodology and Philosophy of Science (Stanford, Calif., 1960)
(Nagel, E., ed.). Stanford University Press, Stanford, Calif., 1962, 1–12.

11. Thomas, W. Automata on infinite objects. InHandbook on Theoretical Computer Science,
Vol. A: Algorithms and Complexity(van Leeuwen, J., ed.). Elsevier, Amsterdam, 1990,
133–192.

12. Choueka, Y. Theories of automata on omega-tapes: a simplified approach.J. Comput. Syst.
Sci., 1974,8, 117–141.

13. Sistla, A. P., Vardi, M. T. and Wolper P. The complementation problem for Büchi automata
with appplications to temporal logic.Theor. Comput. Sci., 1987,49, 217–237.

14. Francez, N.Fairness. Texts and Monographs in Computer Science. Springer-Verlag,
Berlin, 1986.

15. Manna, Z. and Pnueli, A.The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, Berlin, 1992.

16. Tarjan, R. Depth-first search and linear graph algorithms.SIAM J. Comput., 1972,1, 146–
160.

Õiglus automaaditeoreetilises mudelkontrollis

Tuomo Malinen ja Matti Luukkainen

On kirjeldatud ja empiiriliselt hinnatud kaht meetodit õigluseelduste arvesta-
miseks automaaditeoreetilises mudelkontrollis. Mõlemad meetodid on kirjandu-
sest tuntud, kuigi sel kujul pole neid esitatud. Üks meetoditest põhineb õiglus-
eelduse kaasamisel süsteemimudelisse; teisel juhul arvestatakse õigluseeldust
algoritmiliselt. Artikli eesmärk on panna meetodid kokku, esitada need unifitseeri-
tud formaalses raamistikus ning võrrelda nende suhtelist tõhusust mõne näite najal.

412

