Proc. Estonian Acad. Sci. Phys. Math., 2083,4, 394-412

Fairness in automata theoretic model checking

Tuomo Malinen and Matti Luukkainen

Department of Computer Science, University of Helsinki, P.O. Box 26 (Teollisuuskatu 23),
FIN-00014 University of Helsinki, Finland; {tamaline,mluukkai}@cs.helsinki.fi

Received 10 February 2003, in revised form 13 June 2003

Abstract. We describe and perform empirical evaluation of two different methods for taking
fairness assumptions into account in automata theoretic model checking. Both of the methods
are known from the literature, even though they have not been presented in this form before.
One of these methods is based on incorporating the fairness assumption into the system model,
in the other one the fairness assumption is taken care of algorithmically. The goal of this work
is to put these methods together, present them in a unified formal framework, and to compare
their relative usefulness in some problems.

Key words: automata theory, model checking, Biichi automata, fairness, verification.

1. INTRODUCTION

We study techniques for takirfgirnessinto account in automatic verification
of finite-state systems. Fairness of a computer system means informally that the
different processes of the system each get a fair share of processor time if they
wish and thus can advance in their computation. Fairness is needed to secure the
livenessproperties of the verified system. Obviously, fairness of the real system
needs to be taken into account in formal verification of these properties.

Our context is, more specifically, automata theoretic model checkihg [
In automata theoretic model checking the verified system is modelled as a
composition of several automata, typically describing the processes and shared
memory of the system. Automata are also used to describe the correct behaviour of
the system. The actual verification can be reduced to checking the emptiness of the
language accepted by an automaton.

There exist different notions of fairnesseak fairnesandstrong fairnessWe
study methods for verification under both of these.

394

Two general approaches to dealing with fairness have been proposed. Lichten-
stein and Pnueli?] present algorithms for model checking of LTL formulae under
(both kinds of) fairness assumptions. These are based on dividing the system model
into its strongly connected components and studying their properties. In a certain
kind of strongly connected component, a fair run of the system is guaranteed to
exist. The model checking problem with fairness assumptions can thus be solved.
In this approach, the supposed fairness of the verified system is taken into account
algorithmically, i.e., in the model checking algorithm. The system model needs not
be altered.

The other approach is to embed the fairness assumption into the system model.
In our context, this is done by adding monitor automata to the composition of the
system model. The idea is that these automata limit the system to only its fair
computations{~°]. The model checking is then usually performed with nested
depth first search of the modél][The studies mentioned above are, however,
limited to studying only weak (or some closely related form of) fairness. In
automata theory based LTL model checkifd-f], essentially the same effect as
the above is obtained by incorporating the fairness assumption into the property,
i.e., instead of doing the model checking for a formylat is done for implication
Prair — @ Whereys,;, is an LTL formula which evaluates true for fair paths only.

In this study, we wish to give rigorously defined methods for both approaches
lined out above, and for both kinds of fairness. The main contribution is the
empirical comparison of the computational complexity of these metidds [

The article is structured as follows. In Section 2 we first discuss the basic
setting of automata theoretic verification. In Section 3 we give definitions needed
to give the model checking problem with fairness assumptions. In Section 4 we first
discuss the algorithmic aspects of the two different approaches mentioned above.
In Section 5 we discuss the relative theoretical and empirical performance of these
methods. Finally, in Section 6, we draw some conclusions and propose future work.

2. AUTOMATA THEORETIC VERIFICATION

In this section we define the notation and basic concepts needed to formulate
the automata theoretic verification in the context of fairness requirements.

2.1. Buchi automaton

The systems to be verified as well as the verified properties are described with
Biichi automata'f'1].

Definition 1 (Blichi automaton).
A Bichi automaton is a tuplB = (S, X, A, s0, F'), where
e Sis afinite set of states
e Y is afinite alphabet

395

e A C S x ¥ x Sisthe transition relation
e 30 € Sisthe initial stateand
e F' C Sisthe set of accepting states

Definition 2. Consider a Biichi automatoR = (S, %, A, s0, F).

e Input of a Blichi automaton is an infinite strifig= a1azas - - - of symbols
in X, soa € ¥¥. In the sequel we call these infinite stringsrds.

¢ Anexecutionof an automatorB over the wordz is the infinite sequence of
statess = sgs1s9 - - - provided that

— s9 = s0,and
— foralli>0: (si,l,ai,si) e A.

e For an executiors let inf(5) be the set of states € S that occur in the
sequence infinitely ofteme. s € inf(3) iff s = s; for infinitely many; > 0. A
Biichi automatorB accepts wordg iff it has an executio® over the wordz such
thatinf(s) N F # 0.

e The set of all words that an automatdh accepts is called the&anguage
that it definesand we denote the language withiB), formally:

L(B)={ae€X¥|Bacceptsa }.

Thus Blchi automata are string acceptors that can be used to define languages
consisting of infinite words of some alphabet. In the automata theoretic verification,
a view is adopted where a Blichi automaton is seen as a way to define what are the
infinite computations that a system can take part in. States of automata naturally
describe the internal states of computation and transitions describe the execution
of commands. Thus the alphabet defines the “commands” that the system executes
during its lifetime.

An automaton, where all the states are accepting states, is called a Buchi
automaton with drivial acceptance condition

In addition to the concept of normal Blchi automaton, we also need an
extension of it, the generalized Biichi automaton, which is defined next.

Definition 3 (Generalized Blichi automaton).

e Ageneralized Buchi automaton is atu@é = (5, 3, A, s0, F), where the
rest of the components are the same as with normal Biichi automat is now
theset of acceptance states, i.£.C 25,

e An executionof generalized Bichi automaton over a wards defined
similarly as in the case of normal Biichi automata

e A generalized Blchi automatds¥ acceptsa worda iff it has an execution
s over the wordz such that for allF' € F: inf(s) N F # 0.

e The language of a generalized Blchi automafbdis defined as in the case
of normal Biichi automata

Generalized and normal Biichi automata have the same expressive pdwer [
and a normal Blchi automaton can be obtained from a generalized one with the
following construction ?].

396

Theorem 4. Let BY = (59,3, AY,s09,{F1,..., Fi}) be a generalized Buchi
automaton. NowB = (S, X, A, s0, F'), where
o S=59x%x{l,...,k},
e ((s1,1),a,(se2,7)) € Aifand only if
— (s1,a,s2) € A9, 51 € Fy andi = j,
— (s1,a,82) € AY,51 € Fyandj = (i+ 1) mod k&,
o s0e (s09,1),and
o [= F1 X {1},
is a Buchi automaton for which(B9) = L(B).

2.2. Product automaton

Usually the systems which are to be verified are described so that each
component is defined by means of a separate automaton, and the Biichi automaton
defining the composite behaviour of the system is then obtainegmsiactof the
components. Note that the components do not necessarily have the same alphabet.
The symbols that are shared between several automata denote the communication
events of the automata whereas such symbols that are used by only one automaton
denote some internal activity of the components.

Definition 5. Let B; = (S;, X;, A;, s0;, F;) be Bichi automata for e {1,...,n}.
The productB; x --- x B, is the (generalizeyd Blchi automatonB =
(5,3, A, s0, F), where
e S=5x---x8,,
Y=YX1U---UX,,
s0 = (s04,...,s0,),and
((815---,8n),a,(s},...,s,)) € Aifand only if foralli € {1,...,n}:
— if a € 3; then(s;, a, s) € Ay,
— ifa ¢ X, thens; = 5.
e For the acceptance state informatidhwe distinguish two different cases
—if F; = S;foralli € {1,...,n — 1} (only one of the componentke
component numbered:, possibly has a nontrivial acceptance
condition), then B is a normal Blchi automatgrand F' = S; x - --

XSnfl X Fna

—if F; # S; at least for two: € {1,...,n} (at least two of the
components have nontrivial acceptance condifjorteen B is a
generalized Buchi automatprand ' = {S; x .-+ x S,_1 X

F,,...,F1 xSy x---x8,}.

2.3. Verification by language inclusion

Assume that we model the system with a Blchi automalbrwhich is
obtained as a product of automa®a, . .., B,, which define the individual system

397

components. Now.(B), the language defined b§ corresponds to all possible
computations of the system which is to be verified. If we use yet another automaton
B, to describe all the correct computations with respect to the proggrthe
system meets the requirement if and only if all of its computations belong to the
onesB,, is accepting, i.e..(B) C L(B,).

The language inclusion problem of the Bichi automaton can be solved by
reducing it to the emptiness problem of the Biichi automaton in the following
way [']. Let B be the complement of automatds,, i.e., By is an automaton
accepting a word if and only iB, does not accept it. Now the following result can
be proven:

Theorem 6. L(B) C L(B,) iff L(B) N L(By) = 0 iff L(B x By) = 0.

Thus the verification is reduced to the emptiness problem of a single Buchi
automaton, and as shown in Section 3, the emptiness of an automaton can be
solved algorithmically (i.e., the emptiness of a Blichi automaton is a decidable
problem). The intuition behind the result is that siddg3) defines all the possible
computations of the system ard By) defines all the computations that do not
conform to the property, those sets should be disjoint. If there is a common
elementa in the sets, it is a computation of the system that fails to satisfy the
property.

Note that the set of languages definable with Blchi automataw(thegular
languages) is closed under set theoretical operations, thus it is knowB jen
be complemented{]. The automata theoretic verification method extends easily to
LTL model checking since every LTL formula can be translated to a corresponding
Biichi automaton'f?].

3. FAIRNESS

The productB defined in the previous section thus contains all the possible
computations of the system. However, some of the computations may not occur
in real life because of the scheduling mechanisms of the sysigi8.) contains
also computations where, for example, compongntwhich is always ready to
execute is never given a turn to execute. If we are verifyimgnessproperties,
such as “ifrequestis sent,responsehas to arrive within a finite amount of time”,
we should be able to filter out thesafair computations from our system model
Let us now formally define the conceptfairness['4!?].

Definition 7 (Fairness).

Let us consider automaty, . .., B, and B, whereB; = (S;, 3;, A, s0;, F})
andB = By x---x B, = (S,%, A, s0, F'), and an infinite computatiogyc;cs - - -
of B. Note thatc; is now a vector belonging to the sgt x - -- x S,,.

e B, is enabledin (si,...,s;...,8,) € S iff there exists a transition
((S15--+3Siy-vvySn),a,(8h,...,s5,...,s)) € A such thata € X; and

(siya,s) € A;, i.e., B; takes part in the transitian

398

e (ycics - - - isweakly fairwith respect taB; iff the following condition holds
if B; is enabled for allc;, starting from a statey,, £ > 0, then infinitely many of
the transitions(c;, a, ¢j+1) € A are such thatB; has taken part in the transition.

e cycice - -+ IS strongly fairwith respect toB; iff the following condition
holds if B; is enabled for infinitely many;, then infinitely many of the transitions
(¢j,a,cjy1) € A are such thaiB; has taken part in the transition.

e cocico -+ - Is aweakly faircomputation ofB if it is weakly fair with respect
to all of the automatas, ..., B,.

e c¢ocieo--- IS astrongly faircomputation ofB if it is strongly fair with
respect to all of the automat&y, ..., B,.

Some kind of a fairness assumption is usually needed if liveness properties are
verified. Taking fairness into account, the verification question can be formulated
in the following way:

L(B) N L(Bfair) - L(BSD)7
which is equivalent to
L(B X Biaiy X Bg) =0,

whereBy,;, is an automaton that accepts a computatignic, - - - of the system if

and only if the computation is fair. Thus it is enough that just the fair computations
of the system satisfy the property. Fairness depends on the enabledness of
individual system components, thus the automabgp, cannot be defined within

the framework we have so far. Thus, some additional notation has to be defined
first.

Definition 8 (Enabledness labelled Biichi automaton).

Let B; = (S;,%;, Ay, s0;, F;) be Buchi automata foi € {1,...,n}, and
B =(S,%,A,s0, F) the productB; x --- x B,. Theenabledness labelled Buchi
automatorof B is B! = (S, %, A, s0, F, E), whereE C S — 2{1-n} is defined
as follows

Vse S:E(s)={ie€{l,...,n} | B;isenabledin s }.

If the Blchi automatorB describes a system, the enabledness labelled version
ofit, B!, is the same automaton and in addition, each state is labelled with numbers
of those subcomponents that are enabled in that state.

In addition to enabledness labelled automata, we need another extension,
the monitor Blichi automata, which can use the enabledness information in the
transitions.

Definition 9 (Monitor Biichi automata).

Consider a system consisting of the componéhts . ., B,,, denote withEnc
the set{en;, disy,...en,,dis,}. The monitor Buchi automaton corresponding to
the component®;, ..., B, isatupleM = (S, %, A, s0, F),

e Sis afinite set of states

e Y is afinite alphabet

399

e ACSxXx2Ene « §isatransition relation
e 50 € S isthe initial state and
e [C Sisthe set of acceptance states
Let M; = (S;,%;, A4, s0;, F;) be monitor automata foi € {1,...,n}.
The productM; x --- x M, is the generalized monitor Biichi automatdh =
(S,3, A, s0, F), where
e S=5x---x8,,
o Y=X1U---UX,,
o ((s1,---y8n)a,l,(s],...,s,)) € Aifandonlyifforalli € {1,...,n}:
— ifaed; then(si,a,li,s;) e A,
— ifa & X; thens; = s/, and
— 1=l U---Ul,wherell = ; if a € ¥; and in other casé = ().
e 350 = (s01,...,80,),andF = {S] X -+ X Sp_1 X Fpp,..., F} x Sy X

A generalized monitor Blichi automaton can be transferred to a normal monitor
automaton with the method described in Theorem 4.

Finally, let us define the product of monitor and enabledness labelled automata,
yielding a generalized Blchi automaton.

Definition 10. Let B! = (S', %, Al, s0', F!, E') be the enabledness labelled Biichi
automaton of the produd®; x - - - x B, andM = (5™, %, A™, s0™, F™) monitor

automaton corresponding to automa®, . .., B,,. The productB’ x M is now
defined as the generalized Blichi automatén:, A, s0, F), where
e S=25x8m,

e 50 = (s0!,50™),
o ((s1,5)),a,(s2,85)) € Aifand only if

- (slvaa 82) S Al:

- (s),a,l,85) € A™, and

— forall z € I :if z = en; theni € E(sy), if x = dis; theni & E(s1).
o F={SxFm Flxgsm}.

With an enabledness labelled automaton we can represent a system which is to
be verified in such a way that monitor automata can be used to define the fairness
constraints. Thus, we have defined all the machinery needed to represent fairness
constraints in a uniform manner within automata theoretic verification. Next, let us
define monitor automata for weak and strong fairness.

Definition 11.Let Bi,..., B, be the automata defining the system under
verification and denote the alphabet of automatBpwith 3;. Monitor for weak
fairness isBys = (5, X, A, s0, F'), where

e S=1{0,1,...,n},
e X=XU---UX,,
e s0=0,

e F={0},and

400

e A={(0,a,0,1)|aeX}U
Uie{l,...,n} ({(Z7 a, eny, Z) ’ aeX \ ZZ}
U{(,a,0,(i+1)modn)|ac;}
U{(i,a,dis;, (i+ 1) modn)|a € X\ %;})
Monitor for strong fairnessBg; is the productBg, x --- x Bg,. Forall i €
{1,...,n}, the components are defined as folloWg, = (5;, %, A, s0;, F;),
where

e S;=1{0,1,2},

e s0=0,

° F:{I,Q},

e A;=1{(0,a,0,0)|acX}uU{(0,a,0,2),(2,a,0,2)|ac %}

U{(0,a,dis;, 1), (1,a,dis;, 1),(2,a,0,0) | a € X\ X;}.

The intuition behind the monitor automaly,; and By becomes clear from the
proof of the following theorem which formulates the automata theoretic verification
under a fairness assumptiotj.|

Theorem 12.Let B denote the produdB; x - -- x By, which describes the system
to be verifiegdand let B be the automaton describing the negation of the property
o which is to be verifiedand let By and By be the fairness automata of the
previous definition.

1. B satisfiesp assuming weak fairness iff((B! x Byt) x By) = 0.

2. B satisfiesp assuming strong fairness iff((B' x By) x By) = 0.

Proof. In both of the cases the theorem follows directly from the fact that the
fairness automaton accepts a computation if and only if the computation is fair.

1. Consider a weakly fair computatieGn Now for each automatoB;, either
the automaton is disabled infinitely often, or infinitely many of the transitions in
the computation are such whel is taking part. This implies that the automaton
B, can only wait a finite number of steps in its stateThus, the weakly fair
computatiors causes3,,; to enter its acceptance state infinitely often.

Consider then a computatiohthat causes3,,s to enter its acceptance state
infinitely often. This means that computation passes infinitely often through state
7, which in turn means that the automatBphas either taken part in infinitely many
transitions or has been disabled infinitely many times. Thus, the compukaition
weakly fair.

2. Consider a strongly fair computati@nNow for each automatom;, either
the automaton is disabled from some state on, or infinitely many of the transitions in
the computation are such whel is taking part. This implies that the automaton
Bgs; passes infinitely many times through an accepting state. Obviously the
automatonB,; then passes infinitely many times through each of its acceptance
sets, and thud3,; too accepts the strongly fair computation.

Consider then a computatienthat By accepts. Equivalent is thd,; visits
some component from each of its acceptance sets infinitely many times. This
implies that the automatoB;;; passes infinitely many times through an accepting

401

state. So, the automatds has either taken part in infinitely many transitions, or
has been disabled from some state on. Thus, the computasatrongly fair. [

Note that we can easily modify the monitaBs,; and B such that fairness
is assumed from just a subset of the procegses. ., B,. In By waiting states
are needed only for those processes for which fairness is required, dhg &
componentBy; is needed only if fairness is assumed for the prodess

4. ALGORITHMS FOR CHECKING THE EMPTINESS

In the previous section we showed how Blichi automata can be used in
verification under fairness assumptions. Theorem 12 showed that verification under
fairness can be reduced to the emptiness problem of a single automaton. Let us now
consider the algorithmic aspects of the emptiness checking. The following result
(see, e.g.,'I?]) is the key to the algorithmic solvability of the emptiness problem.

Theorem 13.Let B = (S, %, A, s0, F') be a Buichi automaton. The following are
equivalent
1. L(B) # 0.
2. There exists; € F' such that
e dsi,...,sp, €S,a1,...,an—1 € ¥ suchthatvi € {1,...,n—1}:
(siya4,8i41) € A, s1 = s0 ands,, = sy, and
e dsi,...,sp, €S,a1,...,ap—1 € ¥ suchthatvi € {1,...,n—1}:
(siya4,8i41) € A, s1 = sy ands,, = sy, wheren > 1.
3. There exists a strongly connected comporgeirt the state space a8 such
that
e dsi,...,sp € S,a1,...,ap—1 € ¥suchthatvi € {1,...,n—1}:
(siyai, 8i41) € A,ands; = s0 ands, € C.
e CNF#0.
e ds,s’ € C suchthatforsome € X : (s,a,s’) € A.

Intuitively, the language defined by an automaton is nonempty if there exists
an accepting state which is reachable from the initial state and from the state itself
(using at least one transition). Since the number of states in an automaton is finite,
the emptiness problem is clearly decidable. In the following we will describe
two different types of algorithms for the emptiness problem. The first one uses
nested depth first search in order to find an above mentioned type of acceptance
state. The second algorithm first constructs the strongly connected components of
the automaton. Then the existence of the above mentioned type of state can be
checked by observing the properties of the strongly connected components. In the
context of the latter algorithm, the verification under fairness assumptions can be
treated directlywithoutthe need to employ the monitor automaton. This is a clear
advantage since the usage of the monitor causes the memory (and time) usage of
the emptiness check to be multiplied.

402

4.1. Nested depth first search approach

Theorem 12 showed that verification under fairness assumptions can be reduced
to checking the emptiness of a language accepted by a Biichi automaton. The
Bichi automaton in this case is, using the notation from Theorem 12, the product
(B! x Byt) x Bz or (B! x Bg) x Bg, i.e., the automaton with embedded
monitor automata for either weak or strong fairness. Theorem 13 on the other
hand shows that this problem of language emptiness can be decided by finding a
cycle containing an accepting state. $hén efficient algorithm was presented for
this purpose. We review it briefly here.

The algorithm is based on two nested depth first searches. The idea can be
described as follows. The first search finds all the reachable accepting states and
sorts them in post-ordefy, ..., f,. In this order, the “nested search” is started
from each of the stateg; and looks for cycles including;. The existence of
such a cycle can be determined easily; a cycle exists is reachable from
itself. It can be shown that both searches need to visit each state of the product
automaton at most once, and thus the algorithm works in linear time in the size of
the automaton mentioned above. The searches can also be interleaved, i.e., when
the first accepting stat¢, is found, the first nested search is started. Thus the
emptiness can be checked on-the-fly. A pseudo-code is given in Algorithm 14.

Algorithm 14. Find accepting cycles. Suppoge= (S, %, A, s0, F) is a Bichi
automaton. The following algorithm reports the existence of an accepting cycle
in B.

program 2dfs(B)
begin
So :=0;
S1 = 0;
dfs(s0);
end.

procedure dfs(s)
begin
So = So U s;
for eachs’ for which (s, a, s") € A for somea € ¥ do
if s’ ¢ Spthen
dfs(s”);
if s € F'then
begin
seed ;= s;
ndfs(s);
end;
end,

403

procedure ndfs(s)
begin
S1:=5,Us;
for eachs’ for which (s, a, s’) € A for somea € 3 do
begin
if s ¢ Sy then
ndfs(s");
else ifs’ = seedhen
report cycle;
end,
end,

For proof of correctness, se§ [

4.2. Strongly connected component approach

Theorem 13 states that the emptiness of the language accepted by a Buchi
automaton can be decided by checking if it contains a strongly connected
component with at least one transition and one accepting state. Thus this is a
solution to the model checking problem of Theorem 6. It turns out th&aihsess
assumptionas well, can be included in thegorithm that looks for the strongly
connected components.

Lichtenstein and Pnuel] present an algorithm for deciding whether a strongly
connected component in the reachability graph of a concurrent system includes a
fair cycle. In the following, we give a brief description of the algorithm, which was
originally described in a somewhat different setting. We do not discuss actually
finding the strongly connected components, as Tarjan’s algoritfjis[the well-
known standard solution for this.

Note that in Section 4.1, the Blichi automaton given as input to the nested search
algorithm was the one with embedded monitor automaton. Here, it is important to
note that the Blichi automaton given as input to the algorithms described in this
section is, using the notation from Theorem B2,x B, i.e., without the monitor
automaton.

In the following, by a strongly connected component of a Blchi automaton
B! = (5,%,A, sy, F,E) we mean any subset ¢f that is strongly connected
by transitions inA. Also, we call a strongly connected componeantrivial
if it contains at least one transition amdaximalif no state can be added to it
so that it remains strongly connected. When meaning is clear from the context,
we address different parts of the tuple that makes up a Bichi automaton without
explicit reference to the automaton.

404

We review the algorithms separately for the cases of weak and strong fairness.
In both cases, it turns out we can give simple conditions under which there exists a
fair cycle in a given strongly connected component. In the case of weak fairness,
this condition is exclusive. The use of this condition is more complex in the case
of strong fairness.

4.2.1. Weak fairness

In the case of weak fairness, the condition can be employed in a straightforward
manner. Assume we want to find out whether a Biichi automatens; contains a
weakly fair cycle with an acceptance state. Cdbe a nontrivial strongly connected
component ofB! x By such thatt" N C # (0. C contains an accepting weakly fair
cycle if and only if the following holds for alB;: if i € E(s) holds for alls € C,
thends,s’ € C : (s,a,s’) € A for somea € X such thatB; takes part in the
transition(s, a, s') € A.

Let us consider the correctness of the above condition. The backward
implication is clear. Now suppose there is an automdgprsuch thati € F(s)
for all s € C and none of whose transitions are includeddin Then in any
infinite executions = spsy1s2..., wheres; € C holds for all, the automaton
B; always has an enabled transition. But as there is no transitiens’) € A of
the automatorB; such thats, s’ € C, B; cannot take part in any transition &f
Thus no weakly fair cycle can exist {l.

We have seen thdt contains an accepting weakly fair cycle if and only if all
the automata that are enabled in every staté chn execute some transition within
C. And thus,B" x Bz contains a weakly fair cycle if and only if the above condition
holds for any one of its nontrivial strongly connected components that contain at
least one accepting state. Of course, it is enough to go through all the maximal
strongly connected componerts as these include all the cycles of their subsets.

The condition described above can clearly be checked by going through a
strongly connected component once. This is described in algorithm 15.

Algorithm 15. Find accepting cycles assuming weak fairness. Supptse-
(S,%, A, so, F, E) is an enabledness labelled Biichi automaton@nd S forms

a strongly connected componentdfincludes an accepting weakly fair cycle, the
following algorithm reports it.

procedure WHC)
begin
if As,s' € C:(s,a,s') € Aforsomea € X orCNF = then
report no cycle;
else
begin
Er:={i|3s,s € C: (s,a,s") € Aforsomea € &
such thatB; takes part in the transitiofs, a, s’) € A};
En:={i|ie E(s)foralls € C};
if En C Exthen

405

report cycle;
end;
end;

The correctness of the algorithm follows from the above discussion.

4.2.2. Strong fairness

Let us now proceed to consider the case of strong fairnessBlet B and
C be as above. The condition now takes the following fo€ircontains a strongly
fair accepting cycle if the following holds for al;: if 3s € C such that € E(s),
thends, s’ € C : (s,a,s') € A for somea € X such thatB; takes part in the
transition(s, a, s') € A.

This is quite clear, as assuming the condition holds, one can construct an infinite
executiors = sgs1s2 ..., Wheres; € C holds for alli, and where all the processes
that become enabled at some point can execute their transition guaranteed to exist
within C'. Now consider the case when the condition does not hold. Then there
must exist some set of stat&C C, where some automatads; is enabled whose
transitions are not included i@0. It is clear that a strongly fair cycle i@ cannot
pass through any of these states. But we still cannot deduce that no strongly fair
cycle exists, as there may be cycles avoiding these so called “bad” states. In
algorithm 16, the idea is simply to remove the $&bf bad states fron€ and
proces<' \ R recursively.

Algorithm 16. Find accepting cycles assuming strong fairness. Suppbse
(S,%, A, so, F, E) is an enabledness labelled Biichi automaton@nd S forms a
strongly connected component.dfincludes an accepting strongly fair cycle, the
following algorithm reports it.

procedure SHC)
begin
if As,s' € C:(s,a,s') € Aforsomea € X orCNF = then
report no cycle;
else
begin
Ex:={i|3s,s € C: (s,a,s') € Aforsomea € 2
such thatB; takes part in the transitiofs, a, s’) € A};
En:={i|i € E(s) for somes € C};
if EnC Exthen
report cycle;
else
begin
R:={s|seCwheredi € En\ Ex:i¢€ E(s)};

406

C:=C\R;
for maximal strongly connected componeé6tsin C' do
if C' N F # (then
SF(C");
end,
end;
end,

First note that ifC' contains no transitions or no accepting state, obviously no
accepting cycle exists. From the above discussion it is clear thahifC FEx
holds, there exists a strongly fair cycle. In both these cases the algorithm is correct.
Now consider the case wheiin C Ex does not hold. As a fair cycle cannot
pass through any of the states R, it is enough to look at the cycles 6f \ R.
These are all included in the maximal strongly connected componeidts\ak.
From this it follows that deciding the existence of a strongly fair accepting cycle
for all of these components decides also the existence of a strongly fair accepting
cycleinC.
For eachC’ € C, the recursion terminates when either the above condition
holds for some strongly connected component or no transitions are left in the
component.

|

5. COMPARISON OF THE METHODS

In this section, we perform some empirical te$if the methods described in
this paper. For sake of brevity, we call the method based on monitor automata and
depth first search the 2DFS method and the method based on strongly connected
components the SCC method. In the following, we first take a look at the theoretical
performance of the two methods and then compare this with the empirical results.
The empirical comparison is performed on two protocols for mutual exclusion.

5.1. Theoretical evaluation

There are two issues that are of interest to us in the performance of the
compared methods. Clearly, one is the time complexity of the actual algorithm
for model checking, i.e., in the case of 2DFS the nested depth first search
(Algorithm 14) and in the case of SCC the algorithm used for finding the strongly
connected components and the algorithm of Lichtenstein and Pnueli (Algorithms
15, 16).

The complexity of 2DFS in this sense is easily determined. The nested depth
first search is linear in the size of the product automaton. The worst case is that
both of the searches go through all of the automaton once.

407

The SCC method is a bit less straightforward. Finding strongly connected
components, in the first place, is easy and can be done in linear time, e.g. with
Tarjan’s algorithm. Also, it is easy to see that the cycle finding algorithm employed
in SCC is linear in the case of weak fairness. Whether the condition discussed in
Section 4.2 is fulfilled for a strongly connected compor@rmian be determined by
going through the component once.

Now let us consider strong fairness. Lebe the number of the automata for
which fairness is assumed and#ebe the size of a strongly connected component
to be checked for cycles. Determining if the condition holds and, if this is not the
case, finding the bad states can easily be implement@gintime. On every level
of the recursion, all the states that have out transitions with some éfabheomata
are removed as bad. Thus the depth of the recursion is bouhdTyis makes the
time complexity of the algorithn® (nk).

The other issue concerning the overall performance is what effect the method
has on the size of the product automaton. In the SCC method, the product
automatonB’ x By forms the input of the algorithm as is, i.e., there is no extra
factor. In the 2DFS method, monitor automata are embedded which multiply the
product automaton with some factor. This comes from incorporating the monitor
automata and the use of the construction fréfffor turning a generalized Biichi
automaton into a normal one. In the case of weak fairness, this factor is linear in
k. In the case of strong fairness, however, this factad (). In the empirical
study, it is of interest to us to what extent these theoretical factors show up in real
life problems. From above, it is clear that the relative performance of the methods
mostly depends on the factbr

5.2. The empirical study

Now let us proceed with the description of the empirical study. The mutual
exclusion problem is stated as follows: make sure that no two processes execute
commands from a critical section at the same time, and also make sure that any
process can execute the code of the critical section eventually if it wants to. A
mutual exclusion protocol is said to fige if the latter condition is fulfilled. We
look at two mutual exclusion protocols, Peterson’s and a simple solution employing
a semaphore. Both of these generalize to the case of arbitrarily many processes, for
all of which we assume fairness; thus we can evaluate the effects of the increasing
parameterk. We give the results in the number of states encountered during
verification and the time that the verification took. The tests were run on a Pentium
computer with 256 MB of central memory.

Peterson’s protocol is a well-known solution to the problem at hand. It employs
a queuing system for the processes wanting to enter the critical section and is live
assuming weak fairness. The results are displayed in Fig. 1 (upper part). Note that
for the 2DFS method and 4 processes the figures are just lower bounds, as the
program ran out of memory aftérx 10° states.

408

"UOISNOXd [erynw dsoydewas pue [090301d §,U0S1919J JOF s3NsaI [eourtdwd Ay, °T *S1q

s9ss0001d Jo 1RqUINN
8 L 9 g |4 €

I-..m:o:mOOm
eam DDS .
-+« 3uons SJa .

qeam S0

]] |]] | I ! |

uoIsn[ox3 [enjnui 310ydeuIas J0j SWIT} UOIYEIYLIIA

$9889001d Jo JoquIny

uors DOS
yeam DS
L~ /. - Suons gja
Heam SAd

0s
001
0S1
00T
052
00¢€
0se
00v
147

0¢

00t

081

002

(114

[000301d $,U0SI919J 10§ SWIIY UOIIRIYLIIA

00€

s ‘aurry,

s ‘auun,

$9859001d Jo Jequun N
L

II.] Fuons D0S
o e YBIM DDS
Suons SJ4qa
. .oyeam SJdd
S9889001d

I I | S | | I

UOISN[OXd [eNINUI 3 I0ydBwas 10} SIZIS BIRWIOINY

59859001d JO Iaquun

Suons SJq
. . yeom SJQ
— S0853001J

300€

1008

004

3006

H00¢e

[000301d $,U0S1819 10} SOZIS BIRWOIY

1008

NN

$97®15

409

Generally, the graphs show a very clear edge in performance for the SCC
method; with the 2DFS method we could not solve the case of 4 processes. This is
best explained by the high complexity of the protocol in itself: with 4 processes, it
has overl0° states, which contributes to the high number of states in the product
automaton of the 2DFS method. The verification times show this directly. One must
note here that the extremely high time curve is mostly due to the paging involved.
The worst case scenario seems realistic for 2DFS in the sense that the number of
states is close to the theoretical maximum implied by the constructions used. One
notes that the curves of the SCC method overlap here in the cases of weak and
strong fairness. Thus in this case, no extra work needs to be done if one assumes
strong fairness without actually needing it.

The next protocol we consider is a simple semaphore solution to the problem.
The system consists of a number of processes which wait for their entry to the
critical section at a semaphore. Weak fairness is not enough in this case as, waiting
at the semaphore, the processes do not have any transitions enabled. Strong fairness
guarantees the liveness of the protocol. Again, the results are shown in Fig. 1 (lower
part). As the protocol is not live under the assumption of weak fairness, the figures
show the number of states found and time spent before the first counterexample was
found (except for the times of the SCC method for reasons discussed later). Again,
the results for the case of 12 processes and weakly fair 2DFS and from 8 processes
on and strongly fair 2DFS are only lower bounds, which explains the surprising
lessening gradient. The sharp increase in time is again explained by paging.

In this case, SCC does not outperform 2DFS as clearly as with Peterson’s
protocol. The case of 10 processes could be found not live assuming weak fairness
and the case of 6 processes verified using strong fairness. Because the system
is essentially very simple, with only c. 77 000 states in the case of 12 processes,
the insurmountable growth of the automaton in 2DFS takes place later than with
Peterson’s.

Let us then consider the performance of the SCC method. The times in the
lower right graph in Fig. 1 and the case of weak fairness are the times it took to
find all the counterexamples, i.e., all of the automaton was examined. This enables
us to directly compare the time complexity of thén) weak case and th@(nk)
strong case. Now consider the worst case scenario in the case of strong fairness. It
will only take place when, for each strongly connected component to be checked,
the recursion goes to its full depth As it may be that one removes the “bad”
states from which there are transitions with several okthatomata, the recursion
reaches depth only when for each of thé automata the bad states are removed
separately. Because of this, one would not expect the time to be multiplied quite
with &, but still to be substantially worse than the linear weak case. Surprisingly,
in our test runs, the performance of SCC is almost the same with both fairnesses.
Thus, in the light of these experiments the fadtmeems to be a theoretical worst
case scenario.

410

6. DISCUSSION AND FUTURE WORK

We have described and performed empirical evaluation of two different
methods for taking fairness assumptions into account in automata theoretic model
checking. Both of the methods are known from the literature. We wanted to put
together these methods, present them in a unified formal framework and to compare
their usefulness in some problems.

Weak fairness is recognized as a practically applicable assumption. Indeed,
widely used LTL model checkers such as SPIl ihclude verification under
weak fairness as a standard option. Essentially, the method for weak fairness
implemented in SPIN is the same as the 2DFS and monitor based method described
in Section 3. As this paper also shows, the case of strong fairness is computationally
harder. Thus, it is not surprising that this case is not so commonly implemented.

In the case of weak fairness, both approaches are rather efficient, though the
SCC method performs better in both case studies. This is because of the extra
states due to the monitor automaton and the constructiod]ofllhe case of strong
fairness provides more distinction between the methods. The nondeterminism of
the monitor automaton in the case of strong fairness causes an exponential blow-
up of the product automaton; this happens as the number of automata for which
fairness is assumed grows. This exponential growth showed to be insurmountable
rather early in our experiments. On the other hand, the SCC method performed
surprisingly well; this considering the fact that also in this case, theoretically one
would have to pay a penalty of an added linear factor to the running time. This
factor hardly showed in our experiments.

These results seem interesting, as the nested depth first search has been the
main algorithm implemented in LTL model checking tools, such as SPIN. All in
all, it would seem that strong fairness could be a more widely implemented option
in automata theoretic verification.

Looking at the figure in Section 5, it is striking how differently the 2DFS and
SCC methods perform in the case of strong fairness, this despite the fact that the
same problem is solved in both cases. This proposes some future work: it would
be interesting to know whether the strong fairness assumption can be somehow
incorporated into nested depth first search, as it has been done in SPIN for weak
fairness. Also, approaching the problem from another perspective, there might be
ways to traverse and store the states of the product automaton in a more subtle
manner. The authors wish to thank Bengt Jonsson for pointing out these ideas.
Other future work could include a more thorough empirical evaluation of the SCC
method, on some realistic communication protocol, for instance.

REFERENCES

1. Vardi, M. and Wolper, P. An automata-theoretic approach to automatic program
verification. In Proc. of 1st Annual IEEE Symp. on Logic in Computer Science,

411

LICS’86 (Cambridge, Mass., June 1988FEE CS Press, Washington, DC, 1986,
322-331.

2. Lichtenstein, O. and Pnueli, A. Checking that finite state concurrent programs satisfy their
linear specification. InConference Record of 12th ACM Symposium on Principles
of Programming Languages, POPL'85 (New Orleans, Louisiana, Jan. 1985yl
Press, New York, 1985, 97-107.

3. Thayse, A. (ed.)From Modal Logic to Deductive Databases: Introducing a Logic Based
Approach to Artificial IntelligenceWiley, Chichester, 1989.

4. Walker, D. Automated analysis of mutual exclusion algorithms using G6$n. Asp.
Comput, 1989,1, 279-292.

5. Aggarwal, S., Courcoubetis, C. and Wolper, P. Adding liveness properties to coupled finite-
state machineA\CM Trans. Program. Lang. Sys1990,12, 303-339.

6. Courcoubetis, C., Vardi, M., Wolper, P. and Yannakakis, M. Memory-efficient algorithms
for the verification of temporal propertieBorm. Methods Syst. Desl992,1, 275—

288.

7. Holzmann, G. The model checker SPINEE Trans. Softw. Eng1997,23, 279-295.

8. Gerth, R., Peled, D., Vardi, M. and Wolper, P. Simple on-the-fly automatic verification
of linear temporal logic. InProc. of 15th IFIP WG6.1 Int. Symp. on Protocol
Specification, Testing and Verification (Warsaw, June 19®¥mbinski, P. and
Sredniawa, M., eds.). Chapman and Hall, London, 1995, 3-18. (IFIP Conference
Proceedings38.)

9. Malinen, T. Taking fairness into account in automata theoretic verification algorithms of
concurrent systems (in Finnish). Master’s thesis, Department of Computer Science,
University of Helsinki, October 2001.

10. Bichi, J. On a decision method in restricted second-order arithmefzotn of 1st Int.
Congr. on Logic, Methodology and Philosophy of Science (Stanford, Calif., 1960)
(Nagel, E., ed.). Stanford University Press, Stanford, Calif., 1962, 1-12.

11. Thomas, W. Automata on infinite objects Handbook on Theoretical Computer Science
Vol. A Algorithms and Complexitfvan Leeuwen, J., ed.). Elsevier, Amsterdam, 1990,
133-192.

12. Choueka, Y. Theories of automata on omega-tapes: a simplified appro@omput. Syst.

Sci, 1974,8, 117-141.

13. Sistla, A. P., Vardi, M. T. and Wolper P. The complementation problem for Blichi automata
with appplications to temporal logi@heor. Comput. Sgi1987,49, 217-237.

14. Francez, NFairness Texts and Monographs in Computer Science. Springer-Verlag,
Berlin, 1986.

15. Manna, Z. and Pnueli, AThe Temporal Logic of Reactive and Concurrent Systems:
SpecificationSpringer-Verlag, Berlin, 1992,

16. Tarjan, R. Depth-first search and linear graph algoriti8tsM J. Comput.1972,1, 146—

160.

Oiglus automaaditeoreetilises mudelkontrollis
Tuomo Malinen ja Matti Luukkainen

On kirjeldatud ja empiiriliselt hinnatud kaht meetodit 8igluseelduste arvesta-
miseks automaaditeoreetilises mudelkontrollis. MGlemad meetodid on kirjandu-
sest tuntud, kuigi sel kujul pole neid esitatud. Uks meetoditest pdhineb Giglus-
eelduse kaasamisel sisteemimudelisse; teisel juhul arvestatakse digluseeldust
algoritmiliselt. Artikli eesmark on panna meetodid kokku, esitada need unifitseeri-
tud formaalses raamistikus ning vorrelda nende suhtelist tdhusust méne néite najal.

412

