
Proc. Estonian Acad. Sci. Phys. Math., 2003,52, 4, 378–393

Extracting high-level information from Petri nets:
a railroad case

Thor Kristoffersena, Anders Moenb, and Hallstein Asheim Hansenc

a Norwegian Computing Center, P.O. Box 114 Blindern, N-0314 Oslo, Norway; thor@nr.no
b Department of Informatics, University of Oslo, P.O. Box 1080 Blindern, N-0316 Oslo,

Norway; andersmo@ifi.uio.no
c Department of Computer Science, Buskerud University College, P.O. Box 251, N-3603

Kongsberg, Norway; Hallstein.Asheim.Hansen@hibu.no

Received 10 February 2003, in revised form 21 May 2003

Abstract. We show how useful simulation and control applications can be built on Petri
nets by adding an object-oriented transformation framework called “views”. Petri nets were
integrated into the Common Lisp Object System in such a way that the usual object-oriented
features, such as classes, object creation, encapsulation, and inheritance, also work for Petri
nets. This modified object system allows views to be implemented as collections of methods
on the modified classes. Views are used to extract and present relevant domain-specific aspects
of a Petri net model. This functionality was implemented in our prototype Petri net engine
called Andromeda. As a test case we modelled the Oslo subway as a hierarchy of railroad
specific components, and built a composite view showing train and passenger movements.

Key words: coloured Petri nets, simulation, object-orientation, formal modelling.

1. INTRODUCTION

Coloured Petri nets (CPNs) have been demonstrated useful in simulating,
visualizing, modelling, executing, monitoring, and analysing concurrent systems,
including workflow and logistic processes. In this paper we suggest an integration
architecture that can make CPNs suitable for use in large and complex real life
applications. We show how to construct domain specific components and observe
their behaviour using CPNs1. In particular, railroad systems are decomposed into
their constituents and investigated in a precise way using CPNs.

1 An earlier discussion of the modelling of railroad systems using a CPN-based approach
can be found in [1].

378



The paper presents work in progress, with special focus on two problems in
dealing with large Petri net systems: observation and construction. Manageable
ways to observe the structure and behaviour of large-scale simulations in a
systematic way are calledviews. To support the construction of large-scale systems,
our approach is object-oriented, providing tools to define domain-specific classes,
and support for inheritance, encapsulation, and interfaces.

2. PETRI NETS

Petri nets were introduced by Carl Adam Petri in 1962 [2]. Many variations of
Petri nets exist, but we have based our work on CPNs [3] with slight modifications.

There are many calculi and languages that model concurrent behaviour,
both symbolic and graphical2. Petri nets provide perhaps the simplest graphical
formalism, and are also one of formal frameworks that have been investigated most
extensively.

Petri nets are a well understood theory for modelling concurrent systems. It
has a graphical notation which makes it possible to build Petri nets with graphical
tools. Petri nets are Turing complete, so they are exactly as powerful as programs
but much easier to analyse, since both states and transitions between states are
explicitly modelled. General introductions to Petri nets are given in [4,5].

In this section we give an informal introduction to some of the key concepts in
Petri nets. For a full and formal description of CPNs, see [3,6,7].

A Petri net is a directed graph in which each node is either aplace or a
transition, and each edge is anarc that connects one place to one transition. A
place represents a state and may contain a collection oftokens, each being an
object representing a process in that state. A token may be any data object, and
possibly a composite one. A transition represents changes in process state. A
particular distribution of tokens in the places of a Petri net is called amarking.
A transition hasinput andoutputarcs from input and output places, respectively.
When certain conditions (to be explained below) are met, the transition isenabled.
If the transition is enabled, it mayoccur. When a transition occurs, tokens may be
removed from the places on its input arcs, and other tokens may be added to places
on its output arcs.

Each arc has anarc expression. The set of arc expressions on the input arcs of a
transition govern whether that transition is enabled or not. If it is enabled, those arc
expressions may bind a set of variables to objects consisting of tokens in the input
places, or parts of these tokens. When a transition occurs, the arc expression on an
input arc determines which tokens are removed from the input place, and the arc
expression on an output arc determines which tokens are added to the output place.

2 Examples of symbolic calculi are Pi-calculus, ambients, CSP, and communicating auto-
mata. Among the best-known graphical languages are SDL, UML, MSC, and flow charts.

379



Fig. 1.Occurrence of a transition.

A transition may have aguard function which evaluates to a Boolean value,
and the transition is enabled only if this value is true. The arc expressions and the
guard may contain variables that are bound as described above.

The net in Fig. 1 consists of four places,P1, P2, P3, andP4, and one transi-
tion, T1. In this net the input places ofT1 areP1 andP2, containing one token
each. In the arc expressions,x is a variable, and the other symbols are constants.
ForT1 to be enabled,P1 must contain ana token, andP2 must contain an integer,
x. Since this is the case, the transition may occur. When it occurs,x is bound to
3, and both the tokens are removed. Then output tokens are placed into the output
placesP3 andP4 as specified by the output arc expressions. The expressionx + 1
evaluates to4, which is added toP3, and the constantb is added toP4.

Petri nets may be extended with time in order to model processes with actions
that take a certain amount of time on a given timescale. In timed Petri nets, every
token has a timestamp, and a global quantity called themodel timeis introduced.
A token may be consumed by an occurring transition if and only if its timestamp is
less than or equal to the model time, in which case it is said to beready. When a
transition occurs, the timestamp of a token put into an output place may be incre-
mented by a specified amount, thus making it unavailable for that amount of model
time. The total effect of this mechanism is that in the context of the occurrence
of one transition there is a delay between removal of a token from an input place
and the disposal of a token into an output place. Since this delay is a part of an
arc expression, it may be specified so that it depends on the values of the bound
variables. It may also be given a random component, resulting in a stochastic delay.

3. THE ANDROMEDA SYSTEM

The main idea behind our work was to take a CPN framework and extend it with
object-orientation and a type of simplifying transformations called “views”, so that
useful applications can be built on top of it. In order to achieve full integration of
CPNs and views, we built our own CPN framework from the ground up in Common
Lisp. This framework provides all the functionality of CPNs and adds object-

380



orientation. We first explain object-orientation and views, and then we describe
the Andromeda architecture.

3.1. Object-orientation

We have called the Andromeda systemobject-orientedbecause it has three
features that have been associated with object-oriented programming languages.
First, net classescan be defined, and then at a later point instances can be
created from them. Second, a net class providesencapsulationof a net and
supports definition of an interface of externally visible places. Third,inheritanceis
supported in the sense that it is possible to define subclasses of an existing class by
adding parts to the collection of parts defined by its superclasses.

In Andromeda, the Common Lisp object system was extended to allow defini-
tion of net classes. A net class is like a standard class in every way, but it has the
additional property that it contains atemplatefor a Petri net, i.e., a textual specifica-
tion of its constituent parts (places, transitions, and arcs). This specification is
sufficient that an executable Petri net can be created from it. When an instance of
a net class is created, an associated Petri net is also created by creating parts in the
engine according to the template of that net class. The Petri net semantics of the
resulting Petri net is independent of the semantics of the object system, though.

By default, all the Petri net parts in an instance of a net class are externally
inaccessible, but this can be overridden in the template by indicating specific places
(and only places) asexternal, meaning that they will be externally accessible in an
instance. This feature provides encapsulation and definition of external interfaces.

The usual class inheritance protocol was extended so that inheritance works
not only for classes, but also for their templates. Given a particular net class, new
parts can be added to its Petri net template by creating a subclass that defines those
additional parts in its template.

In Andromeda, hierarchical Petri nets are supported through the use ofsubnets
in templates. A subnet is an instance of a net class with a subset of its places
externally accessible, so that it can be used in a template as an opaque module with
a collection of associated places. The creation of a net class instance is recursive:
if the template contains a subnet, an instance of the class of that subnet will be
created. Thus, the result of a recursive instance creation is a hierarchical Petri net.

The tight integration of Petri nets with the object system was important in order
to support views, which we will discuss next.

3.2. Views

In Andromeda, the modelled system contains information that can be divided
into two categories. First, there is the object model, just as in any object-oriented
program. This includes information stored in the slots of the objects, as well as

381



information about the hierarchical relationships between the objects. Second, for
each object there is an associated Petri net containing tokens. Thus, if we have
information that is specific to a particular subnet, but not directly relevant to its
Petri net semantics, we put that information into the slots of that subnet. Aview
is, in the abstract sense, a function that maps both of these types of information
into some simpler data structure that captures a particular aspect of the modelled
system.

A graphical representation of a view is called avisual view. Visual views
can make a Petri net system user-friendly. Even though CPNs provide abstraction
mechanisms over low-level Petri nets, this does not guarantee that it will be easy
to understand the operation of the system as a whole. Since a Petri net model of
a system is precise, it is possible to extract, as views to the observer, any kind of
information about the behaviour that is represented in the model.

As a test case for our Andromeda system, we implemented a simulation of
the Oslo subway, with stations, lines, trains, and passengers (further described in
Section 4). In this application, the top-level Petri net models the entire railroad
network, and within this net each station and line segment is modelled by one
subnet, and within each station subnet, each platform is modelled by one subnet.

We define three net classes:station , which models a railroad station,
segment , which models a stretch of tracks connecting a pair of stations, and
platform , which models a platform. The top-level net consists of a collection of
instances ofstation andsegment .

The slots in thestation class include information irrelevant to Petri net
semantics, such as the name of the station and its coordinates on the map. When
a specificstation subnet is created, the name and coordinates are supplied in
order to initialize its slots. The Petri net in thestation class contains instances
of theplatform class.

The slots in thesegment class include the length of the segment and the time
used by a train driving through it.

Given the above railroad model, the following are typical applications for
views:

– Extract information about a given subnet at that hierarchical level.For
example, a view that extracts station relevant data for each station and line segment
subnet, including the name of a station, the names of the lines it belongs to, the
position of the station on the map, the length of a line segment, and whether a train
token is currently in the station or in a segment. The graphical representation of this
view would be a high-level map with names and some kind of marker to represent
the presence of a train.

– Flatten several hierarchical levels of subnets.For example, a view that
flattens two levels of the hierarchy in order to show a more detailed version of
the above-mentioned map with individual platforms.

– Compute a scalar value for a given subnet.For example, a view that returns
the total number of passenger tokens within a line segment subnet. The graphical

382



representation of this value could be a bar graph on each line segment in the map,
or a colour coding of the segments, showing the passenger density in that segment
at any given point in time.

In practice, a view is made up of a collection of methods on the classes of the
constituent objects. This kind of organization of views is facilitated by the fact that
Petri net classes are just like standard classes. When a method that implements a
view is called on an object, it may read the values of the slots of that object, just
as in any object-oriented system. In addition, it may inspect any places that are
directly contained in its net, and it may call methods on any of its subnets.

For instance, suppose that the presence of a train at a platform is indicated
by a train token in any one of three different places. Then we write a
contains-train method on theplatform class, such that it returns true
when one of those three places contains a train token. Now, if we want a
contains-train method on thestation class, it is written so that it returns
true when thecontains-train method returns true for any of its two contained
platform objects. Finally, at the highest abstraction level, a visual map view
displays a marker on a station when thecontains-train method returns true
for thatstation subnet.

3.3. Architecture

The Andromeda core architecture consists of three parts: class system, engine,
and communication server.

The class system takes care of everything concerned with the definition of
classes and computation of templates sufficient to create instances of classes. For
example, when an instance of a class is created, it is necessary to compute an
effective templatebased on all the templates in the superclasses of that class. The
class system also handles the implementation of views since views are made up of
methods that are specialized on net classes.

The engine executes Petri nets according to the standard rules of timed CPNs,
except that dynamic typing is used instead of static typing. The interface to the
class system is through an API that supports creation of Petri net parts (places,
transitions, and arcs). Thus, when the class system is about to create an instance
of a class, it reads the effective template and creates Petri net parts in the engine.
If the effective template contains subnets, this process is recursive, as described in
Section 3.

The communication server interacts with clients via the Andromeda application
protocol over TCP/IP. Through the Andromeda protocol it is possible for external
agents to connect to an executing subnet and observe its tokens, add tokens to it, and
to remove tokens from it. A Petri net that is connected to the external environment
in this way is called anopenPetri net. The common application protocol makes
it possible to create so-calledadaptersin order to interface Andromeda with other
systems and technologies, like web and mail.

383



Andromeda also includes support tools, such as the Net Editor, in which it is
possible to edit net classes graphically, and the Engine Visualizer, which supports
visual inspection of executing Petri nets.

4. THE RAILROAD CASE

As a sufficiently complex test case for the Andromeda system, we chose to
model the Oslo subway system. The Oslo subway consists of 101 stations and 5
lines, where trains run at 15 min intervals. In particular, we wanted to investigate
two mechanisms of abstraction,object-orientationandviews.

As part of our work with the Oslo subway application, we have designed and
tested a number of selected railroad elements: segments, switches, and signalling
systems.

4.1. Railroad components

In a realistic model of train systems, both planned and unplanned delays must
be simulated. In the model, delays are specified in the railroad segments between
stations, and also how much time the train spends in each station.

A railroad net is composed of railroad segments, switches, end segments, and
platforms. A railroad system contains a railroad net, trains moving in the net,
passengers travelling in the trains, signalling system, and power supply. The basic
entity, the train, is represented as a composite coloured token, with four attributes:
train number, main directiondeciding the main direction the train moves,local
directionreferring to the current state of the train, moving either forward, backward
or in stop state, and finally a set ofpassengersinside the train.

The railroad components consist ofsegment places, places representing
physical positions andmove transitions, transitions for moving a train from one
segment place to the next. Figure 2 shows two basic railroad segments connected,
consisting of three segment statess1, s2, ands3, representing three physical points
on the railroad, andmovetransitionst1 andt3 for moving the train forward, and
t2 and t4 for moving the train backward. Since trains are vectors, with a main
direction, we use+ and− to denote whether the train is moving forward or
backward.

Fig. 2.Railroad segments.

384



Switch components consist of three segment places,join, left, and right,
semaphore places L and R, controlling the routing of the tokens over the switch,
as depicted in Fig. 3. The switch component must have an initial position, either
left or right as indicated by the mutex pair of states L and R, either L or R carries
a semaphore token initially. To change the switch position, one token is added by
the user to theChangeplace.

We say that arailroad line is a connected graph of vertices and edges such that
the vertices contain end line nodes, line segments, switches, and platform segments
that connect the behaviour of the railroad line to the behaviour at the station and
railroad segments. The edges contain segment transitions for moving trains. A
basic railroad netis a set of railroad lines. In Fig. 4 we show a simple railroad
circuit as a graph.

The switch places that permit input from the user are denoted by open circles.
This graph can be directly translated to a corresponding Petri net, where each node
in the graph is translated to a segment place, each arc is mapped to a pair of move
transitions, and the switches are inserted directly, as can be seen in Fig. 5.

Fig. 3.The switch component.

Fig. 4.A railroad graph.

385



386



The railroad graph is depicted in Fig. 4 as a Petri net, with two trains moving in
opposite direction. The rightmost switch is changed by the user, causing a change
of the switch position in the next state.

4.2. Signalling system

A signalling system is modelled over the railroad net, extracting information
from the segment states. In real railway systems there are several kinds of signals,
dependent on the role the train is in at a particular moment. The signals at the station
area differ from the signals used on a single railroad track to prevent train collision.
There are also significant differences in the signalling system of the railways in
Russia, Germany, and the United States.

A simplified HV system signal light, used to implement block sections in
German railways, is modelled as two mutex nets, with upper signal lightsgreenand
red, meaning respectively drive and stop, and lower signal lightsyellowandgreen.
The lower signal lights have three states:green, yellow, andno light, indicating
ready to drive, warning drive careful, and full stop (see Fig. 6).

To give a full presentation of actual signalling systems and how they can be
represented using Petri nets is outside the scope of this paper. But as Fig. 6
indicates, signal components are easily augmented to the railroad graph through
the five Push-connector places, for acting with the signal, and the state of the lights:
green, red, yellow, and no light.

Fig. 6.Signal light.

387



4.3. Safety of the railroad

Note that in our simplified nets neither the line segment nor the switch
represented in Figs. 2 and 3 providecollision detection, since trains might pass
each other on the same physical line without noticing that two trains have crashed.
Techniques to discover possible collisions and accidents, locally in the net, can be
obtained in several ways by introducing either semaphore places, critical regions
the trains run into before they enter the logical position in a line segment, or by
other combined techniques.

A fundamental concept in railroad technology is the concept of block section
(see e.g. [8]). An example of a fully automated signal light implementing block
sections on the railroad is demonstrated in Fig. 7. As the train enters the block
section (in Fig. 7 the block section starts at the places1) the light changes from
green to red on the upper signal, and from green to no light on the lower signal.
When the train leaves the block section, the light changes back to green on the
upper signal, and from no light to yellow on the lower signal. Since the train is now
in states2, this configuration indicates a warning to the next train to drive carefully,
since the distance between the trains is so small that a collision can occur. The final
state is when the train has left the block section, corresponding to states3. The
signal now indicates to the next train that the block section is cleared, and it might
drive at full speed.

Fig. 7.Block section with signal light.

388



4.4. Views on railroads

One problem of simulating and monitoring railroad systems is to understand
their behaviour. This is a good example to illustrate the usefulness of views.
Relevant information should be provided so that supervisors could discover where
the trains are, trains that are too late, alarms for detection of malfunctioning
equipment and possible collisions, etc.

In the screenshot taken from our Oslo subway application (see Fig. 8) we
present two distinct views, one showing the subway map and the other displaying a
list of trains currently in traffic. The map view is updated dynamically, with trains
shown as moving circles on the subway map. Both views are clickable: clicking
on a station brings up a textual station view in a different window, and similarly,
clicking on a train in the train list brings up a textual view with more detailed
information about the train.

5. DISCUSSION

As noted by van der Aalst [9], and demonstrated more extensively in a number
of papers, for instance [10−12], Petri nets can be used to implement the concepts
of both logistics and workflow. Our work is inspired by van der Aalst in the way
we decompose an application domain into its constituent parts and analyse it in a
precise way using high-level Petri nets. With respect to views, there are some ideas
that seem to be overlapping in the work of Basten and van der Aalst [13].

The entire subway net totalled around 12 000 parts (places, transitions, and
arcs), but we were still able to simulate it faster than real time on a 2.5 GHz
Pentium 4 machine. Our current implementation of views is dynamic in the sense
that if we, for instance, delete a station object from the Petri net in the editor, that
station will disappear from the map, or if we change its position data, it will be
relocated on the map. However, it is static in the sense that redefining how train
tokens are detected, or changing the shape of a station, for instance, has to be done
in code.

5.1. Related work

There has not been much interest in the Petri net community in representing
railroad systems in Petri nets except some work described in [14]. The authors
present a system written in Design/CPN for controlling a model train system. Every
train is equipped with a travelling plan that is locally synchronized with the plans
of the other trains. Our work differs from theirs in that we provide techniques
and tools for constructing executable models of real railroad systems, used for
simulation and control. We separate the various aspects of the model, like the
railroad net, the signalling system, and the behaviour at the station.

389



390



Our Petri net tool has some features that overlap with Design/CPN3, Renew4,
and Jfern5. In [15] various techniques for obtaining information from a simulation
are discussed. The concept of view weakly overlaps with the concept of “dashboard
object” in ExSpect, or “business chart” in Design/CPN, although neither seems to
provide the full generality and flexibility of views.

5.2. Future work

Since we report work in progress, there are several remaining tasks. A
formalization of views would be important to clarify the concept and indicate how
one can build tool support for constructing views. To use events from the external
environment as input, and save histories of executions, and then use these histories
to simulate behaviour with the external environment in a faithful way, is something
not investigated yet. As noted previously, issues of safety have not been addressed
thoroughly in the paper. A solution to this would be to construct a library of railroad
components for collision detection and collision alarms, and investigate how we can
make use of the verification and formal analysis techniques that Petri nets provide.

6. CONCLUSIONS

A prototype of Andromeda has been implemented, on which we can carry
out simulations and some simple performance analysis. Like any Petri net based
system, the prototype supports formal analysis [6] and systematic treatment of
performance analysis [16], although we have not built tools for advanced analysis
yet. A set of views is implemented on top of the net. The main view shows the
subway map with trains moving.

Object-orientation turned out to be useful while constructing railroad
components, and the inheritance mechanism applied to nets reduced the time spent
on modelling railroad components, since we used variants of Petri net patterns
several times by subclassing components, specializing them for various purposes.

This project has demonstrated to us how to exploit the best in the two worlds of
formal methods and state of the art computing power, by taking a well understood
and classic theory, in our case CPNs, and making use of them as an integral part of
a running practical application. We see the goal of our work to show that formal
methods can play the key role, in building and reasoning about systems of practical
importance.

3 The canonical implementation of CPNs, see http://www.daimi.au.dk/designCPN/.
4 An object-oriented Petri net tool, where Petri nets can implement methods and can be

treated as first-class Java objects and Java code can be accessed from nets in Renew
http://www.informatik.uni-hamburg.de/TGI/renew/.

5 A Java-based light weight Petri net tool, see http://sourceforge.net/projects/jfern/.

391



ACKNOWLEDGEMENTS

The Andromeda project was funded by the Norwegian Computing Center.
Thanks go to Yuri Gurevich, Olaf Owe, Bjarte M. Østvold, Arild Torjusen, Einar
B. Johnsen, Bent Foyn, Wolfgang Leister, Pål Enger, Ingrid Yu, and Joackim Bjørk
for comments and discussions on earlier drafts of the paper. The authors would also
like to thank an anonymous referee for very useful comments on the final version
of the paper.

REFERENCES

1. Kristoffersen, T., Moen, A. and Hansen, H. A. Simulating the Oslo subway by hierarchic,
coloured, object-oriented, timed Petri nets with viewpoints. InAbstracts from 14th
Nordic Workshop on Programming Theory, NWPT’02 (Tallinn, November 2002)
(Vain, J. and Uustalu, T., eds.). Institute of Cybernetics, Tallinn, 2002, 57–60.

2. Petri, C. A. Kommunikation mit Automaten. Schriften des IIM Nr. 2, Institut für
Instrumentelle Mathematik, 1962.

3. Jensen, K.Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,
Vol. 1: Basic Concepts. 2nd ed. Monographs in Theoretical Computer Science: An
EATCS Series. Springer-Verlag, Berlin, 1997.

4. Reisig, W. and Rozenberg, G. (eds.). Lectures on Petri Nets: Advances in Petri Nets,
Vol. 1: Basic Models.LNCS, 1998,1491.

5. Reisig, W. and Rozenberg, G. (eds.). Lectures on Petri Nets II: Advances in Petri Nets,
Vol. 2: Applications.LNCS, 1998,1492.

6. Jensen, K.Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,
Vol. 2: Analysis Methods. 2nd ed. Monographs in Theoretical Computer Science: An
EATCS Series. Springer-Verlag, Berlin, 1997.

7. Jensen, K.Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,
Vol. 3: Practical Use. 2nd ed. Monographs in Theoretical Computer Science: An
EATCS Series. Springer-Verlag, Berlin, 1997.

8. Pachl, J.Railway Operation and Control. VTD Rail Publishing, 2002.
9. van der Aalst, W. M. P.Timed Coloured Petri Nets and Their Application to Logistics. PhD

thesis, Eindhoven University of Technology, 1992.
10. van der Aalst, W. M. P., van Hee, K. M. and Houben, G. J. Modelling and analyzing

workflow using a Petrinet based approach. InProc. of the Second Workshop
on Computer-Supported Cooperative Work, Petri Nets and Related Formalisms
(Michelis, G. D., Ellis, C. and Memmi, G., eds.). 1994, 31–50.

11. van der Aalst, W. M. P. Three good reasons for using a Petrinet based workflow manage-
ment system. InInformation and Process Integration in Enterprises: Rethinking
Documents(Wakayama, T., Kannapan, S., Khoong, C. M., Navathe, S. and Yates, J.,
eds.).Kluwer Int. Series Engineering and Comp. Sci., 1998,428, 161–182.

12. van der Aalst, W. M. P. The application of Petri nets to workflow management.J. Circuits
Systems Computers, 1998,8, 21–66.

13. Basten, T. and van der Aalst, W. M. P. Inheritance of behavior.J. Logic Algebr. Program.,
2001,47, 47–145.

14. Hielscher, W., Urbszat, L., Reinke, C. and Kluge, W. On modelling train traffic in a model
train system. InProc. of 1st Workshop and Tutorial on Practical Use of Coloured Petri
Nets and Design/CPN (Aarhus, June 1998)(Jensen, K., ed.). University of Aarhus,
Denmark, 1998.

392



15. Jensen, K. An introduction to the practical use of coloured Petri nets. InLectures on Petri
Nets: Advances in Petri Nets, Vol. 2: Applications(Reisig, W. and Rozenberg, G.,
eds.).LNCS, 1998,1492, 237–292.

16. Ajmone Marsan, M., Bobbio, A. and Donatelli, S. Petri nets in performance analysis: an
introduction. InLectures on Petri Nets: Advances in Petri Nets, Vol. 1: Basic Models
(Reisig, W. and Rozenberg, G., eds.).LNCS, 1998,1491, 211–256.

Kõrgema taseme informatsiooni tuletamine
Petri võrkudest raudtee näitel

Thor Kristoffersen, Anders Moen ja Hallstein Asheim Hansen

On kirjeldatud süsteemi modelleerimise metoodikat, mis põhineb objekt-
orienteeritud laiendustega värvilistel Petri võrkudel. Metoodika olulisemaid ise-
ärasusi on objekt-orienteeritud teisendusskeem, mida nimetatakse vaateks. Vaa-
ted on vajalikud mudeli uurimise all olevate aspektide väljatoomiseks ning kasu-
tajale kuvamiseks ebaolulisi detaile varjates. Metoodika on realiseeritud proto-
tüüptööriistal Andromeda, mis võimaldab süsteeme objekt-orienteeritud laien-
dustega värviliste Petri võrkudena modelleerida ning teha simulatsioone ja lihtsat
jõudlusanalüüsi. Artiklit läbiv näide on Oslo metroo.

393


