Proc. Estonian Acad. Sci. Phys. Math., 2083,4, 337-355

On the category of data dependency algebras
and embeddings

Alexa Anderlik and Magne Haveraaen

Department of Informatics, University of Bergen, P.O. Box 7800, N-5020 Bergen, Norway;
{Alexa.Anderlik, Magne.Haveraaen}@ii.uib.no

Received 7 April 2003, in revised form 27 June 2003

Abstract. Programming a parallel computer is basically embedding the data dependency
pattern of the program into the space-time pattern of the computer. In general this is a
technically demanding task. By considering these patterns as algebraic structures — data
dependency algebras and space-time algebras (a special case of data dependency algebras), we
get a means for doing formal reasoning about the embedding problem, detached from concrete
programs and machines. In this paper we show that it is possible to factorize data dependency
algebras so that the embedding of a program into a parallel computer may be broken down

to embeddings of simpler data dependency algebras into simpler space-time algebras. These
simpler embeddings are then automatically combined to form a full embedding of the parallel
program on the machine.

Key words: data dependency algebras, space-time embeddings, modularity, parallel
programming, category of data dependency algebras.

1. INTRODUCTION

There are many approaches to programming high performance computers
(HPCs). Most HPCs are parallel in one way or another, ranging from loosely
coupled networks of independent computers to specialized vector processors. This
spans from distributed memory machines, where data may have to be transmitted
across some communication network to be accessed by the appropriate processor,
to shared memory machines where all processors may directly access each data
item.

Programming these machines is difficult, and several models exist. The simplest
to reason about is the single program, multiple data model (SPMD) model, as
embodied in HPF]] or in many functional languages (seg for an overview).

337

More complicated to program are variations of the multiple program, multiple data
model (MPMD). Such programs are prone to errors such as deadlock in addition
to the normal sequential programming errors. MPMD programming is achieved by
adding communication primitives, such as MP1], to a sequential language.

The concept of data dependencies is central to the efficient use of parallelism.
The dependency patterns represent constraints defined by the algorithms we want to
run on computers. Any execution of a program must obey its dependency pattern.
This is trivially achieved on sequential machines. On a parallel machine we want
to distribute the program in order to utilize the processing resources as much as
possible. The task can then be seen as embedding the program’s data dependency
onto the hardware’s communication structure so that we utilize the computing
resources as much as possible.

In [>%] we suggested abstracting these patterns as algebraic structures —
data dependency algebras (DDAs). This makes it possible to investigate the
dependencies of programs independently of any program, e.g., showing that
dependency patterns form a category. Further, the execution resources of a
parallel computer, its processors and communication network, may be described
by a special form of DDAs, called space-time algebras (STAs). The task of
programming parallel machines may then be abstracted to embedding a program’s
DDA into the machine’s STA, a task which can be investigated independently of
actual programs and physical machines. A basic theory for this was preserffed in [
and some practical results were shown® [

Although this kind of embedding is central to the parallelization of programs
(see, e.g..), very few approaches have tried to abstract the dependency pattern as
a separate entity. The theoretical model of synchronous concurrent algoritims [
seems to be the closest. The functional language Crysi{dijcused very clearly
on data dependencies, but these were not made into explicit language elements.

In this paper we utilize our notion of DDAs to study various ways of
combining simple DDAs to more complex ones. The constructions are shown to
give the category of DDAs the property of havialj limits. Theorems about the
commutativity of limits allow us to factorize complex data dependency and space-
time patterns, find embeddings between appropriate factors, and then automatically
combine these into an embedding of the program onto the target hardware’s space-
time.

The paper is organized as follows. In Section 2 we define some mathematical
preliminaries. In Section 3 we define the basic concepts of DDAs and embeddings.
In Section 4 we show that DDAs and their embeddings form a finitely complete
category. Section 5 gives a factorization theorem for embeddings, before we
conclude.

2. MATHEMATICAL PRELIMINARIES

The symbolN = {0, 1, ...} denotes the set of natural numbers, and/fer IN,
[n] ={0,1,2,...,n — 1}. Thus[0] = {} = 0 denotes the empty set.

338

A sequence with length n over X is an arrayZ € X[. The unique
empty sequence is denoteéde X[, Concatenation of sequenc&sand i is
given by juxtapositionzy. For finite Z € X[and finitey € X" we have
iy € Xlxtm = xI+ml such that, foi € [n + m],

(FP)li] = { Zli ifi<n

yli —mn] otherwise.

The setX* = (J, . X is the set of all finite sequences frol, and X+ =
X*\ X% is the set of all nonempty, finite sequences of elements fkom

The set of sequences with elements fréfmand length up to is given by
X = Uiy X1, while X1 = x»J\ X1 are the nonempty sequences with
length up ton. Operations on sequences include 7 € X T, which prepends an
elementr € X to a sequencg € X*, i.e.,

: x ifi=0
(z::g)[i] = { yli — 1] otherwise

andy :: z € X, which appends an elementc X to a sequencg € X*.

A categoryC consists of a collectiorDbj(C) of entities called objects, a
collection Mor(C) of entities called morphisms, two operations assigning to each
morphismf its domaindom/(f), which is an object o€, and its codomainod(f),
also an object o€. Morphismsf andg are composable fod(f) = dom(g), and
the composition is a morphism denoteddy f, with dom(g o f) = dom(f) and
cod(g o f) = cod(g). The composition of morphisms is associative. There is also
an operation assigning to each objeécof C an identity morphismidy : A — A,
which is unitary with respect to the composition.

A functor F' between categorieS andC, written F' : S — C, is specified
by an operation assigning to objectsin S, objectsF'A in C and an operation
assigning to morphismg : A — B in S, morphismsF'f : FA — FBin C
such thatF'(id4) = idr4, and whenever the composition of morphisgs f is
defined inS, we haveF' (g o f) = Fgo Ff. For every objectX of C there is a
functorCyx : S — Csuch thatCxA = X andCx(f : A — B) = idx, for
all A, B € Obj(S)andf € Mor(S). A diagramof shapeSin a categonC is a
functorD : S— C.

Let S andC be categories and,G : S — C be functors. Then aatural
transformationy from F' to G, writtenn : F' = G, is given by an operation which
assigns to each objedt € Sa morphismy, : FA — G A in C such that, for any
morphismf : A — Bin S, we haveGGf ong =npo Ff.

A coneX for a diagramD : S — C can be seen as a natural transformation
n:Cx = D,whereCy : S— C is the constant functor for the objektin C.

A limit for a diagramD : S — C is a coneX given by a natural transformation
n : Cx = D such thatifY” is another cone fob given by a natural transformation
n' : Cy = D, then there exists a uniqgue morphigm Y — X, called mediator

339

morphism such thapy o k = 7y, for all A € Obj(S). Given thatS has objects
Ay, ..., An—1, we denote a diagrar®? of shapeSin C by [Dy, ..., Dn_l]S, where
the objectsA; are mapped into the objecis;; the limit of such a diagram will be
denoted byL([Dy, ..., D,,_1]%). Some special limits in a category areteaminal
object isL([]%), a limit for a diagram of the empty catego®y Theproductof two
objectsDy and Dy is L([Dy, D1]%), whereS is the category of two objects with
only identity morphisms. Thequalizerof a pair of morphismg, g : Dy — D1 is
L([Dy, D1])S, whereSis a category

Ao.

A category idinitely completéf for each finite diagram in the category there exists
a limit.

oAy

Theorem 2.1 (Finite completeness)A categoryC is finitely complete iff it has
binary productsequalizersand terminal objects

Theorem 2.2 (Factorization). Given a categoryC and two limit objectsP =
L([Py, ..., P,_1]) respectivelyQ = L([Qo, ..., @,_1]%) such that there exists a
natural transformation; : [Py, ..., P,_1]° = [Qo, ..., @n_1]°, there exists a unique
morphism fromP into (Q making the diagram

\

P

commute
Proposition 2.3 (Distributivity of limits). Given a finitely complete category
C, shapes S and S with n respectively »’ nodes and dia}grams
D' = [P ..,P,1"5 i € [n], we have thatL/([..., L(D"),..]5) =
L([...,L'(D}),..]%), whereD/; = [P,°, .., P, ~1]% for j € [n].
3. DATA DEPENDENCY ALGEBRAS
3.1. DDAs and embeddings

Definition 3.1. ADDA D = D(P, B, r, s) is given by the data of the 4-tuple such
that

340

e P is a set of points

¢ B is a set of branch indices

e r is the data request consisting of
— the request-guard relation, C P x B telling which request branches
b € B exist for a poinp € P,
— the request-target function : v, — P telling which pointr,(p, b) a
request goes t@and
—the request-branchback functiopn: r, — B telling which supply branch
rp(p, b) leads back fromr,(p, b) to p,

and

e s is the data supply consisting of
— the supply-guard relatios, C P x B telling which supply branches
b € B exist for a pointp € P,
— the supply-target functios : s, — P telling which points;(p, b) a
request goes t@nd
—the supply-branchback functiep : s, — B telling which request branch
rp(p, b) leads back frons;(p, b) to p,

such that
Tg(p7 b) = sg(rt(pv b),’l"b(p, b))7
Tg(p, b) = 8t<Tt(p7 b),Tb(p, b)) =D
Tg(pv b) = Sb(rt(p>b » o\ P b)) = b>
and
89(p7 b) = Tg(St(p, b),Sb(p,b)a
Sg(pvb = T't(St(p, b),Sb(p,b) =D
Sg(pvb = Tp St(p,b),Sb(p,b) =b

Example 3.2. The loop DDA with pointsP is defined byL (P) = D(P, B, ¢, c)
with B = [1], ¢ = P x B, ¢4(p,b) = b.
The loop DDAL ([13]):

SACACACACACACECACACACACAT,

Example 3.3. A linear time DDA overP C IN is T(1, P) = D(P, [1],t,u) with
ty = {{p,b) € P x[1] | p+1 € P} as the request-guard,(p,b) = p + 1
as the request-target, (p,b) = b as the request-branchback, = {(p,b) €
P x [d] | p—1 € P} as the supply-guardy(p,b) = p — 1 as the supply-target,
anduy(p, b) = b as the supply-branchback.

The time DDAT(1,4):

o —0——0— >0

341

Example 3.4. A k-dimensional grid with radius € IN for § = (go, ..., gk—1) €
N is G(r,§) = D(G, B, f,) with G = [go] X ... X [gx_1] as the pointsg; is the
number of points in dimensiant1), B = [k] x {—r, ..., —1,1,...,r} as the branch
indices, f4((po, .-, Pis -, Pk—1), (i, j)) = 0 < p; + j < g¢; as the request-guard

and Supply_guardft(<p07 <oy Diy "'7pk—1>7 <Z7j>> = <p07 ey Di + ja "'7pk—1> as the
request-target and supply-targéi(p, (i, j)) = (i, —j) as the request-branchback

and supply-branchback.

The two-dimensional grid= (1, (4, 16)):

Example 3.5. A k-dimensional nearest-neighbour DDA with radiuss IN and
stepsI’ C IN is N(r, 7, T) = D(N, B, p,n), whereii = (ng, ..., nj_) € IN¥ (n,
is the number of points in dimensior-1), such thatV = ([ng] x ... X [ng_1]) X T,

Pg({(P0y -3 Dis s PR-1), 1), (3, 7))

Pe(((P0s s Diy s PE—1), 1), (3, 7)) =
Po({(P0s vy Diy ooy PE—1), 1), (0, 9)) =
g (((POs oy Diy oy DR—1), 1), (5, 5)) =
Nt (({D0y <oy Diy ooy Ple—1)5 1), (1, 7)) =
o (((P0s s Piy s Pk—1)5 1), (1, 7)) =

O0<pi+i<n)AN(t—-1€T),
((POs s i + Jy ooy PR—1)5 t — 1),
(i, —J),
O<pi+j<n)A(t+1eT),
((P0s +es Di + Jy ooy PE—1) E + 1),
(i, —J)-

The points are indexed by a grid refererigg, ..., px) and by row numbet. The
branch index(i, j) tells which dimension; + 1, the movement is along, and how

far, j, the movement is.

The nearest-neighbour DDA(1, (16), [3]):

342

Example 3.6. A hypercube of dimensionn € IN is given by H(m) =
D(H, B, h,h) with H = [2]I™] as the pointsB = [m] as the branch indices,
hy = H x B as the request-guard and supply-guésd{po, ..., pb, --., Pm—-1),b) =
(o, .-y 1 — o, ...,bm—1) @s the request-target and supply-target, asi@,b) = b
as the request-branchback and supply-branchback.

The hypercube connections drawn ##(4):

Proposition 3.7. Given a DDAD = D(P, B,r,s) and a setC C B such that
for all (p,b) € r, whenb € C, we haver,(p,b) € C, and for all (p,b) € sq4

whenb € C, we haves,(p,b) € C. Then®D = D(P,C,“r,%s) is a DDA where
Cry=r,N(PxC)and®s, = s,N (P x C), and for all {p, b) € “r,, “ri(p,b) =

r+(p,b) and“ry(p,b) = r4(p,b), and for all {p, b) € “s;, “s:(p,b) = s:(p,b) and
Csb(pa b) - Sb(pa b)

As in the case of graphs where sequences of edges give us paths, we get paths
in a DDA from sequences of branch indices.

Definition 3.8. Given a DDAD(P, B, r, s) and a sequencé € B*. Thenc'is a
request-path from € P if Zis the empty sequendes B, or = b :: d'such that
rq(p,b) andd € B* is a request-path from,(p, b). Likewisg c'is a supply-path
fromp € P if Zis the empty sequendeor & = b :: d such thats,(p, b) andd € B*
is a supply-path from,(p, b).

Now the request and supply operators can be extended to encompass paths.

Definition 3.9. Given a DDAD(P, B, r, s). Define a path data requestand a
path data suppl§ with7,, s, C P x B*,7; : 7y — P,7 : Ty — B*,5; : 5, — P,
5y 1 54 — B* by setting

o for the empty sequencec BIY,

<p))‘> 6 Fga <p7 >‘> 6597
F1‘,(p7 >\) = D Et(pa)‘) =D
Fb(p7)\) = Aa gb(pa A) = A7

o for any nonempty sequence-= b : d € BY,

343

Tg(p,©) = 14(p,b) ATg(re(p,b),d),
71(p, ©) Ti(r(p, b), d),
7u(p, ©) 7o(re(p, b), d) = 1y (p,),
5g(p:0) = 5g(p,b) ASg(s(p,b),d),
5(p.@) = Fi(si(p,b),d),
5(p. &) = Su(si(p,b),d) i sy(p, b).

Proposition 3.10. Given a DDAD = D(P, B,r,s). For all natural numbers
n € N, DM = p(p,Bln (B") 7 (B") 5) will be a DDA where B")7, =
740 (P x By and(B™)s, =5, n (P x B,

Corollary 3.11. Given a DDAD = D(P,B,r,s) andn € IN. For e =
[n], [n], [n], +, * we have thaD* = D(P, B*,(3*) 7,(B%) 5) is a DDA.

For any DDAD, the constructiorD!!/ adds a loop at every node.

Definition 3.12. Given DDAsD = D(P, B,r,s) and ' = D(Q,C,v,w) and a
nonzero number € IN,n > 0. For e = [n], [n], +, ae-embedding: : D — F'is
given by a collection of functions

e ¢, : P — () mapping the points

e ¢, : 74 — C*® mapping request-targets to request-patusd

e ¢, : s, — C° mapping supply-targets to supply-paths

such that
Tg(p,b) = (C.)Eg(ep(p),er b)),
rg(0,b) = ep(re(p,b)) = Ti(ep(p), r(p, D)),
re(,b) = es(ri(p,b),m(p, b)) = ITy(ep(p), €r (p, b))
so(p,b) = Cwg(ep(p), es(p, b)),
sg(0,b) = ep(se(p, b)) = Cw(ep(p), es(p, b))
sg(p,b) = er(se(p,b), sp(p, b)) = “wy(ep(p), es(p, b)).

If we have an embedding: D — F, we get an embedding!’ : DY) —
FUJ which is the same asand maps the added loopsiin'! to the corresponding
added loops i1,

Proposition 3.13. Given DDAsD = D(P, B,r,s) and F = D(Q,C,v,w) and
n € IN. Fore = [n+1], [n], +, an embedding : D — F extends elementwise to
an embedding : D®* — F.

Proof. Definee by €, = e,(p), and, ife = [0], thene, ande, are the empty
functions, otherwise

344

_ | er(p,b) if =\,
erp,bi &) = { er(p, D) (ru(p, 1), &) 1 04N,
_ o | es(p,b) if &=\,
lp,b::) = { a(p.b)es(ru(p,b). &) 1 E#
Itis easy to see that= (¢, ,, €;) is indeed an embedding. O

Proposition 3.14. Given embeddings: D — D’ ande’ : D' — D”. Define

(eloe)p(p) = i’p(ep(p))a
(€ oe)r((p,0) = er((en(p)er((p,b)));
(€ oe)s((p,b) = €s({en(p),es((p,)))-

The triple((¢’ce),, (¢'ce),, (¢'0ce)s) yields an embedding fro into D” denoted
¢’ o e and called the composition ef ande.

Proof. The embedding defines paths i’ for every branch irD. The embedding

¢’ maps paths itD’ to paths inD”, specifically it will map the subset of paths given

by e. Moreover, this subset consists of matching request and supply branches, so
that the requirements on an embedding are satisfied by the compesitien [

Fact 3.15. Composition of embeddings is associative.

Proposition 3.16. For any DDAD = D(P, B,r, s) definge id, : P — P, id, :
rq — B, andid, : s, — B by

de(p) = D
idr(pv b) = b,
ids(p,b') =V

forall p € P, (p,b) € ry and (p,V’) € s,. The triple (idp, id,,id,) yields an
embedding denoted ¥y and called the identity embedding @n

Proof. From the definitions above it follows that is indeed an embedding from
D into D. Let f: D — F be an arbitrary embedding with = D(Q, C, v, w).
We have (f o idp)y(p) = folidy(p)) = fo(p) and (f o idp).(p.b) =
fr(idy(p),id,(p,b)) = fr(p,b), forallp € P and(p,b) € ry. Likewise we get
that(f oidp)s(p,b) = fs(p,b), forall (p,b) € s4. Thusf oidp = f. Similarly,
for every embedding : C — D it can be shown thatip o g = idp. Henceidp
satisfies the identity axioms. O

345

3.2. Space-time algebras

Definition 3.17. A space-time algebra is a data dependency algebra with the
following restrictions

o the carrier for the nodes of a space-time algebra is (a subset of) the Cartesian
product of the processing elements of a parallel machine and a time counter
usually the integers

o the carrier for the directions are channels going out from and leading into
the processorsincluding a channel for in-memory communicatiailowing a
processor to retain data in memory between computatiang

e the r and s functions define allowable communications from one time-step to
the next.

4. CATEGORY OF DATA DEPENDENCY ALGEBRAS

Definition 4.1. The categoryDD.A of DDAs and embeddings consists of
e DDAs as objects
e embeddings as morphisms
e the composition operation as in PropositiB8ri4,
¢ the identity operation as in Propositidhla

The categoryDD.A defined above is indeed a category since the composition
of any two given embeddings: D — D’ ande’ : D' — D" is an embedding from
D to D", the composition of embeddings is associative, and for any embedding
e : D — D', the identity embeddings of and D’ satisfy the identity axiom:
idproe = eandeoidp = e.

In the following we show that the categorD.A has binary products,
equalizers, and terminal objects.

Proposition 4.2. For any two given objectd¥ = D(N,A,t,u) and ' =
D(Q, C,v,w) of the categoryDD.A the objectEl x F = D(P, B,r, s) together
with the embeddingsr : E x ' — F andnp : E x F' — F'is the categorical
product of the DDAS?Y and ', whereP = N x Q, B = Ax C,rqy C P x B,
reirg — Py irg — B,sg C P x B,s;:rg — P,andsy : v, — B such that

rg((n,9), (a,¢)) tg(n, a) Avg(g,),
ri((n,q), (a,c)) = (t(n,a),vi(q,c)),
ro((n,q), (a,¢)) = (ts(n,a),vp(g, c)),
s¢((1,4),(a,¢)) = ug(n,a) Awy(g,c),
st((n,q), (a,¢)) = (u(n,a),wi(g,c)),
3b<(n7q)7 (a7 C)) (ub(nv a>7wb(q7c))7
and(mg)p, : NxQ — N, (mg)y :17q = A, (TE)s : 8¢ = A, (7Fr)p : NxQ — Q,

(mp)r :rq = C, (p)s : s¢ — C such that

346

(m)p(n,
(me)r((n,9); (a,
(m5)s((n, q), (a', ¢

(mF)p(n,
(7F)r((n,9), (a,
(mr)s((n, q), (', ¢

//PQ

»Q

)
c))
) = d,
)
c))
)

_/v

forall (n,q) € N x Q, (a,c) € rgand(da’,c) € s,.

Proof. It can be easily verified that' x F'is indeed a DDA and thatz andnp
satisfy the axioms for an embedding. l&t= D(M, D, z,y) be aDD.A object
and consider two embeddings C — E, respectivelyf : C — F. We define the
following mappings, : M — P,l, : xg — A* x C*, andl, : y, — A* x C* such
that

Ip(m) = (ep(m), fp(m)),
lr(m,d) = (er(m,d), fr(m,d)),
ls (ma d/) = (65 (mv d/)v Is (m’ d/)),

forallm € M, (m,d) € =4, and(m,d’) € y,. Sincee and f are embeddings, it
can be easily verified that= (l,,,,,) is an embedding frond’ into E x F'. In

the following we show that makes the diagram below commute and it is unique
with respect to that property.

E

347

M — Q,

))’

: M — N, b,

m,d
d/

d’), bs(
es(m

)

= fs(ma d,)a

forallm e M, (m,d) € x4, and(m,d’) € yj.

m

(

(ar(m, d), by(m, d)),
)

(ap(m), bp(m)),

(as
d
(mpol)p(m) = fp(m),
(ﬂ-Fol/)T<mvd) - fr(m7d)a

/)S(m,
(rpol')s(m,d)

)

wherem € M, (m,d) € x4, (m,d) € y,, anda,

d/
(WEoll)p(m) = ep(m),

(rgol)(m,d) = e.(m,d),

(m, d)
(m,
(ﬂ'E ol

T

ll
!/
S

!

To verify the uniqueness ofl, we assume that there exists an embedding
:C — E x F with
The space-time algebra of a given DDRis the product ofA with a time

DDA. Typically we will add selfloops to a hardware communication network when
creating its space-time. This is because loops represent data in memory between

Applying now the definitions of1, p2, I/, we obtain that
time-steps.

ar: vy — A% by i 2y — C% a5 1y, — A%, bs : y, — C* are mappings such that

Example 4.3. The hypercube space-time pattdin'/ (4) x T(1, (3)):

l/

forallm e M, (m,d) € x4, and(m,d’) € y,, thusl =1’

W NANVY AN
OO0

MM»@%».% %.»«%?»»
% r«.\v A/..\ Y2\ r«..\v A(..\ '
N A

e Nt
N , A ﬂ\% P
RO

N
&”\ AOM«%W W ‘»‘-

Wiy

A

!4

SR

MAA
SN S
LA LA
N N

LR
OO NIRRT
VoW
YA

YN
{ \ g
o\

348

Example 4.4. A finite product of linear time DDAs yields a DDA as depicted
below:

Example 4.5. The nearest-neighbour DDA is isomorphic to the reflexive grid DDA
in time, i.e., N(r,§,P) = G(r,§) x T(1,P). Example 3.5 illustrates the
composite constructioN(1, (16), [3]) = G (1, (16)) x T(1,[3]).

Proposition 4.6. For any given two DDA$" = D(P, B,r,s), G = D(M, D, x,y)
and embedding$: F — G, g : F — G of the categoryDD.A the embedding
e : E — Fis the equalizer of the embeddingsand g, whereE = D(N, A, t,u)
with

e N={peP:flp) =gy}

eA={a€B":(Ipe N:(f(p,a) =7(p,a)) A (Va',a" € B*\ {A}: (/
a" =a) \N"(f(p,a’) =g(p,d') A f(p,a") = 3(p,a

") =9, d")))}
o the data request consisting of
—ty ={(p,a) €Tg:pe N ANae€ A},
—ty 1ty — N s.t.ty(p,a) = T(p,a) forall (p,a) € t4,
—ty 1ty — Astty(p,a) =Tp(p,a) forall (p,a) € tg;
¢ the data supply: consisting of
—ug = {(p,a) €55:p€ N Nae A},
—uy : ug — N such thatu(p, a) = 5(p,a) forall (p,a) € uyg,
—uy, : ug — A such thatu,(p, a) = 5(p, a) forall (p,a) € uy,
ande given by the triplge,, e,, es) with

a)

€p(p) = D
er(pa b) = b,
eS(p/>b/) = blv

forallp e N, (p,b) € tg,and (p', V') € uy.

Proof. A closer examination of the definitions above yields that D(N, A, ¢, u)

is indeed a DDA an@ : £ — F satisfies the axioms for an embedding. In the
following we show that is indeed the equalizer of the embeddinfgandg. We
have

349

(foe)p(p) = fplep(p)) = fo(p) = 9p(p) = gp(ep(p)) = (g0 €)p(p),

= f.(ep(p), er(p,a)) = f.(p,a) = G.(p,a) = glep(p), e (p, a))

forallp e N, (p,b) € tyand(p’, V') € u,.

Suppose that there is another embeddingt” — F such thatf oe’ = go¢€'.
Let B = D(Q,C,v,w). We have thate,(q) € N for all ¢ € Q since
(foe)p(q) = (go€)p(q) forall g € Q. Let(q,c) be an arbitrary request-guard
pair fromuv,. Since(f o ¢),(q,¢) = (g o¢€'),(q,c), we get thak](¢,c) € A or
e(q,c) = ap = ag... i ap—1 With a; € A\ {A\},7 € [k]. We can reason similarly
for any supply-guard paiw,.

Consider now the diagram

f
E— % . F G
g
2
e/
E/

wherek : E' — E'is given by the triplgk,, k,, ks) with

kp(q) = e;(Q),
kr(g.c) = €.(q,0),
ks(qlv C,) = e;(q,a Cl)?
forallg € Q, (¢,¢c) € vy, and(¢’, ') € wy. Sincee’ : E' — F is an embedding, it
can be easily verified that= (k,, k., k) is an embedding front”’ into E.

In order to show that’ = ¢ o k, we have to verify that the following equalities
hold:

ep(a) = (eok)p(a), @)
er(a.¢) = (eok)(q,c), 2
6;(qlv Cl) = (6 © k)8<q/7 C’), 3

forallg € Q, (g,¢) € vy, and(¢’, ') € wy.
We will prove only (2), since (3) can be proved similarly and (1) follows
directly from applying the definition of and considering that, is an inclusion.

350

To prove (2), let(q, c) € v,. There are two cases to considerelifg, c) € A, we

have(e o k),(q,¢c) = er(el.(q,c)) = € (q,c); if €(q,¢) = ag :: a1 = ... = ag—1
with a; € A\ {\},i € [k], then(e o k), (¢, ¢c) =& (kp(q), a0t a1 2 ... it ag—1) =
er(kp(q),a0) = € (te(kp(q),a0),a1 == ... =t ag—1) = ao = e (te(kp(q),aon),
aq i Q1) = ... =ap:aj ... ag_1 = €(q,c).

Finally, suppose that there exigtssuch that’ = eok’. Applying the definition
of e, we obtain thak), = e}, k;. = e;, ki = e, thusk = k. O

Example 4.7. Given a DDA F' with nodes{A4, ..., L} and a time-DDAT(1,4)
with nodes{T1, ..., 74} and arc indiceg1, 2, 3}. Consider embedding§ g : F' —
T(1,4)

1A1 1Bl 101 1D2 ll

lll 1l12 1l12 1l2 T2
f

2E2 2F3 2G3 2H3

QJQ ZSJS QJ?) 2l3 g T3
3[3 4J4 3K4 3L4 l?)

T}

defined as follows:f,(X7) = T; respectivelyg,('X’) = Tj, for X = A, ..., L

andi,j = 1,...,4. In the same wayyf, (resp.g,) maps a request-guard pair from

F into a request-arc or request-pathi tagged with the left (resp. right) tag of

the source request-arc. Then the equalizer of the diagram above is an embedding
e : E — F with E shown below an@ encoded as either the embeddinger g

(since they will coincide on the data frof)).

A B c
1{1

E 123 | 123

2{2

1 J

Notice how the equalizer replaced the path frBnbo J with an arc.
Proposition 4.8. The loop DDAL([1]) is a terminal object in the catego®D A.

Proof. Given an arbitrary DDAD = D(P, B,r,s), we can construct a unique
embedding: : D — L([1]), by mapping the points fron® into the single point
from the point index set dk ([1]) and by mapping the request-guard (resp. supply-
guard) pairs into the single branch index from the branch index se([@]). O

351

4.1. Finite completeness

Proposition 4.9. The categoryDD A is finitely complete

Proof. Follows from the completeness Theorem 2.1 and Propositions 4.2, 4.6,
and 4.8. O

Proposition 4.10. Given a shapeS with n nodes and linear time DDAs
Ty, ..., Tn_1, there exists an embedding froh([Ty, ..., T;,1]°) into a linear time
DDAT.

Proof. Following the steps from the general limit construction, we get that the limit
L([Tp, ..., T,,—1]®) is the equalize of two embeddings frond” = [, T; into

G = I (;2 ey Ts, whereU is the set of nodes fror§, andV’ is the set of edges
from S. From Example 4.4 we have théat contains points and diagonal arrows,
and from the definition of the equalizer we can deduce thaiill have a subset of
these points connected with diagonal atEswill contain the nodes and arrows on
which the embedding$ andg are equal, and replace sequences of lost arcs, where
f andg give equal paths, with new arcs. We can embed such a DDA into a linear
time DDA T by embedding each diagonal individually, mapping consecutive nodes
of F into consecutive nodes 0t O

We will call such an embedding a folding.

5. DDA DECOMPOSITIONS AND PARALLELISM

As pointed out in Example 4.5, the nearest-neighbour DNJA, (16), [3]) can
be decomposed into the product of the reflexive ggid! (1, (16)) and the time
DDA T(1,[3]). The embedding 06 (1, (16)) into H(4) is typically achieved by
using the Grey code embedding (séB.[We denote this embedding ly Then
we have the diagram

N
N‘ 7Tl
e Gl l
gl id,
H !

H! x

where the arrowsg stand for time the DDAT (1, [3]), id, is the identity embed-
ding andng, 7y, ™ are projection embeddings. From Theorem 2.2 we get an

352

embedding: from the nearest-neighbour DDN(1, (16), [3]) into the space-time
of the hypercubd |1/ (4), wheree is the mediator from the cone determinedMy
gt o 7 andm| to the limit HM x |.

Now we can look at more complex decomposition diagrams.

Theorem 5.1. Given a shapes with n nodes and DDAs P and H witl? =
L([Py, ...,P,_1]%) and H = L([H,, ..., H,_1]®) such that there exists a natural
transformationn : [Py, ..., P,_1]° = [Hox |,...,H,_1x |]S, there exists an
embedding from the DDA P into the space-time algebra.of H

Proof. Consider the diagram
P

Hyx | ... X]
/
R
€2
Hx | T

SN

where the arrowg stand for time DDAs. Since the categoBDA is finitely
complete (Proposition 4.9), we can construct the liRit= L([Hox |,...,
H,_1x |]®) and then from the hypothesis and Theorem 2.2 we get that there exists
a unique embedding; from P into R. Furthermore, applying the distributivity
property of limits (Proposition 2.3), we obtain an embedding(isomorphism)

from R into H x T, whereT = L([l,...,|]%). Let nowes = (Iy, F), where

F : T —| is afolding (Proposition 4.10), thesy is an embedding frontd x T

into Hx |. Finally,e = e3 o e5 0 €1 gives us the desired embedding frétinto

the space-time algebra bif O

353

6. CONCLUSIONS

Formalizing data dependencies as an algebraic structure gives rise to an algebra
of data dependency operators and provides a framework for precise descriptions
of the space-time embedding of software. Data dependency algebras, space-time
algebras, and embeddings wereihdeen as modular components for the parallel
distribution of programs.

In this paper we have further studied the modularity properties of DDAs and
embeddings. We have shown that they form a category which is complete (has all
limits). This gives us many ways of building complex DDAs from simpler ones. It
also allows us to factorize complicated space-time embeddings into simpler ones,
and automatically build the complex embedding from the components.

This idea for parallel programming modularity can be extended to other
properties of the categories of DDAs. We intend to follow this line of investigation
by also studying the colimits of this category and the interaction between all the
various kinds of dependency module components.

ACKNOWLEDGEMENTS

We thank Paul Taylor for providing the diagram package and the The Research
Council of Norway for partial funding of this research.

REFERENCES

1. Perrin, G.-R. and Darte, A. (eds.). The data parallel programming mbN€&S 1996,
1132

2. Lisper, B. Data parallelism and functional programming. Tie Data Parallel
Programming Mode{Perrin, G.-R. and Darte, A., edsLNCS 1996,1132 220-251.

3. Snir, M., Otto, S. W., Huss-Lederman, S., Walker, D. W. and Dongarr&)Rl-The
Complete Referenc#®IT Press, Cambridge, Mass., USA, 1996.

4. Squyres, J. M., Saphir, B. and Lumsdaine, A. The design and evolution of the MPI-
2 C++ interface. InScientific Computing in Object-Oriented Parallel Environments
(Ishikawa, Y., Oldehoeft, R. R., Reynders, J. V. W. and Tholburn, M., edSICS
1997,1343 57-64.

5. Haveraaen, M. Data dependencies and space time algebras in parallel programming.
Technical Report 45, Department of Informatics, University of Bergen, P.O.Box 7800,

. N-5020 Bergen, Norway, February 1990, revised 1997.

6. Cyras, V. and Haveraaen, M. Modular programming of recurrencies: a comparison of two
approachednformatica 1995,6, 397—444.

7. Haveraaen, M. An algebra of data dependencies and embeddings for parallel
programmingForm. Asp. Computforthcoming).

8. Haveraaen, M. Efficient parallelisation of recursive problems using constructive recursion.
In Euro-Par 2000 — Parallel ProcessingBode, A., Ludwig, T., Karl, W. and
Wismiller, R., eds.)LNCS 2000,190Q 758-761.

9. Wolfe, M. (ed.).High Performance Compilers for Parallel Computinddison Wesley,
Reading, Mass., 1996.

354

10. Thompson, B. C. and Tucker, J. V. Theoretical considerations in algorithm design.
In Fundamental Algorithms for Computer Graphi(Sarnshaw, R., ed.). Springer-
Verlag, Berlin, 1985, 855-878.

11. Chen, M. C., Choo, Y. and Li, J. Crystal: Theory and pragmatics of generating efficient
parallel code. IrParallel Functional Languages and CompileiSzymanski, B. K.,
ed.). ACM Press, New York / Addison Wesley, Reading, Mass., 1991, 255-308.

Andmesoéltuvusalgebrate ja -sisestuste kategooriast
Alexa Anderlik ja Magne Haveraaen

Paralleelarvuti programmeerimine kujutab endast sisuliselt andmeséltuvus-
mustri sisestust arvuti aja—malu-mustrisse. Uldiselt on see tehniliselt raske Ules-
anne. Nimetatud mustrite kasitlemine algebraliste struktuuridena — andme-
sOltuvusalgebrate ning aja—malu-algebratena (viimased on esimeste erijuht) —
annab konkreetsetest programmidest ja masinatest lahutatud vahendid formaal-
seks arutlemiseks sisestusprobleemi tle. Selles artiklis naitame, et andmesdltuvus-
algebraid on vdimalik tegurdada nénda, et programmi sisestus paralleelarvutisse on
jaotatav lihntsamate andmesadltuvusalgebrate sisestusteks lihntsamatesse aja—malu-
algebratesse. Need lihtsamad sisestused on seejarel automaatselt kombineeritavad
programmi taielikuks sisestuseks masinasse.

355

