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Abstract. After 41 years it is still not known whether an operator acting on a Banach pair
and which acts compactly on one or both of the “endpoint” spaces also acts compactly on
the complex interpolation spaces generated by the pair. We report some recent steps towards
solving this and related problems.
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1. INTRODUCTION

The year 1964 saw the appearance of two remarkable and fundamental papers
in the theory of interpolation spaces. Jacques-Louis Lions and Jaak Peetre [1]
introduced their “real method” spaces (A0, A1)θ,p and Alberto Calderón [2]
introduced his “complex method” spaces [A0, A1]θ. Both papers provide numerous
important results about their respective interpolation spaces, including some
compactness theorems.

Now, more than 41 years after the appearance of these papers, we are still
unable to answer the following very natural question which is asked implicitly in
Calderón’s paper, and answered affirmatively there in an important special case.
Question C: Suppose that A0 and A1 are compatible Banach spaces, i.e., they form
a Banach pair, and that so are B0 and B1. Suppose that T : A0 +A1 → B0 +B1 is
a linear operator such that T : A0 → B0 compactly and T : A1 → B1 boundedly.
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Does it follow that T maps the complex interpolation space [A0, A1]θ into the
complex interpolation space [B0, B1]θ compactly for each θ ∈ (0, 1)?

We cannot even answer the following question which could be expected to be
somewhat easier.

Question C2: This is the same as Question C, but under the stronger hypothesis
that T : A1 → B1 is also compact.

In addition to the case considered in [2], there are also quite a number of other
special cases in which Question C, and therefore also Question C2 have since been
discovered to have affirmative answers. Most of the relevant papers for such results
are mentioned on p. 262 of [3] and p. 353 of [4]. We refer also to [5,6], and the
website http://www.math.technion.ac.il/˜mcwikel/compact.

By contrast, the analogues of Questions C and C2 in which the spaces [A0, A1]θ
and [B0, B1]θ are replaced by (A0, A1)θ,p and (B0, B1)θ,p are apparently somewhat
easier to answer. In fact the analogue of Question C2 was answered affirmatively [7]
already in 1969, and the analogue of Question C was answered affirmatively [8,9]
in 1992.

In this short note we will report on some recent developments related to
Questions C and C2 and consider possible approaches towards answering them. We
will assume that the reader is familiar with most earlier papers treating this topic,
and also with the alternative definitions in [10] of complex interpolation spaces
via minimal (orbit) and maximal (co-orbit) functors applied to pairs of weighted
sequence spaces (FLp

0, FLp
1), p = 1,∞.

Since notation varies slightly from paper to paper, we should specify that here,
for p ∈ [1,∞], we shall let FLp denote the space of complex sequences {λk}k∈Z
which arise as Fourier coefficients of some element of Lp(T) with the norm induced
by the norm of Lp(T). Analogously, FC is the closed subspace of FL∞ of
sequences of Fourier coefficients of continuous functions. Then, for each α ∈ R,
we let FLp

α denote the space of sequences {λk}k∈Z such that
{
eαkλk

}
k∈Z ∈ FLp

with the obvious norm, and FCα is defined analogously. Finally, for any Banach
space A, we use the usual notation `p(A) for the space of all A valued sequences
{an}n∈N for which the norm

∥∥{an}n∈N
∥∥

`p(A)
:=

∥∥{‖an‖A}n∈N
∥∥

`p is finite.

2. SOME SIGNIFICANT CHOICES OF THE “RANGE” PAIR (B0, B1)

As proved in [4] (cf. also [9]), the problem of answering Question C can be
reduced to the problem of answering any one of a number of special cases of
Question C. Among those reductions, the following one, suggested by various ideas
in [11] and [10] (cf. Proposition 3 of [4], p. 356 and Step 1 of the proof of Theorem
2.1 of [9], pp. 339–340), is particularly relevant for our discussion here:

Proposition 2.1. In order to answer Question C, it suffices to resolve it in the
special case where the “domain” pair (A0, A1) is (`1(FL1

0), `
1(FL1

1)) and
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the “range” pair (B0, B1) is either (`∞(FL∞0 ), `∞(FL∞1 )) or
(`∞(FC0), `∞(FC1)).

Let us put this into perspective with what is known so far. The case
where (A0, A1) is an arbitrary pair and (B0, B1) is (FC0, FC1) can be resolved
affirmatively as an immediate corollary of known results. In fact, using Fejér’s
classical theorem about Fourier series, it is clear that the pair (FC0, FC1) satisfies
the special approximation condition required for Calderón’s partial answer to
Question C in [2].

Some months ago we reasoned that, until such time as someone sees
how to resolve the case where (B0, B1) is enlarged from (FC0, FC1) to
(`∞(FC0), `∞(FC1)) or to (`∞(FL∞0 ), `∞(FL∞1 )), a reasonable intermediate
step would be to consider the case where (B0, B1) = (FL∞0 , FL∞1 ). This pair
apparently does not have any of the properties which would enable it to be treated
by known theorems which resolve various special cases of Question C.

Recently [12] we have been able to resolve this intermediate case:

Theorem 2.2. Suppose that (A0, A1) is an arbitrary Banach pair and that T :
A0 + A1 → FL∞0 + FL∞1 is a bounded operator such that T : A0 → FL∞0
compactly and T : A1 → FL∞1 boundedly. Then T : [A0, A1]θ → [FL∞0 , FL∞1 ]θ
compactly for each θ ∈ (0, 1).

We remark that [FL∞0 , FL∞1 ]θ = FCθ. (Cf. [10,4]).

3. NECESSARY AND SUFFICIENT CONDITIONS IN TERMS OF
INFINITE MATRICES MAPPING (`1(FL1

0), `
1(FL1

1)) into
(`∞(FL∞0 ), `∞(FL∞1 ))

In the light of Proposition 2.1, one way of trying to answer Question C is to
study various properties of the operators which map `1(FL1

j ) into `∞(FL∞j ) for
j = 0, 1. These operators can be realized as infinite matrices, or rather as infinite
matrices each of whose entries is itself an infinite matrix. These matrices were
used in Theorem 2.1 of [9], p. 339, to show that if, for any given pairs (A0, A1)
and (B0, B1), Question C has an affirmative answer for one particular value of
θ ∈ (0, 1), then this implies an affirmative answer for all θ ∈ (0, 1) for those pairs.

As time passes it seems that we should give more consideration also to the
possibility of a negative answer to Question C. Indeed, this possibility is also raised
by the result to be mentioned in the next section. In this section we briefly describe
how a more careful examination of the above mentioned infinite matrices enables
one to formulate questions about them, which may ultimately provide an affirmative
or negative answer to Question C.

Since our exposition here needs to be short, we will refer the reader to Section 2
of [9] as a point of departure and source of notation and more details for much of
what we want to say. (Given more space, we would have preferred to present these
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things in a slightly different way.) Thus we are dealing with the spaces Eα and Fα

defined, for each α ∈ R, by Eα = `1
U (FL1

α) and Fα = `∞V (FL∞α ), and we are
considering an operator T which maps Ej into Fj boundedly for j = 0, 1. We also
assume that T maps Eθ into Fθ compactly for at least one value θ∗ of θ. But here, in
contrast to [9], we take θ∗ = 0. In [9] the index sets U and V may be uncountable.
But, as is clear from [4] (see the proof of Proposition 3 on pp. 356–357), we in fact
only need to consider the case where U and V are countable.

As explained in [9], we can realize T via a matrix of operators {Tuv}u∈U,v∈V ,
where each Tuv is a bounded map of FL1

α into FL∞α for all α ∈ [0, 1]. More
explicitly, we have

Tx =

{∑

u∈U

Tuvxu

}

v∈V

for each element x = {xu}u∈U in Eα = `1
U (FL1

α).

(1)
(Of course, there seems to be a typographical error in (1). But this is only because
our notation here has been kept consistent with some slightly unsuccessful notation
used in [9].) Furthermore, for each fixed u ∈ U and v ∈ V , the operator Tuv

can be represented as an infinite matrix (of complex numbers) {tjk(u, v)}j,k∈Z. In
other words, we can completely specify the action of T in terms of the “matrix of
matrices” {tjk(u, v)}j,k∈Z,u∈U,v∈V .

Now let Tuv0 be the operator represented by the diagonal matrix obtained by
replacing all nondiagonal elements of the preceding matrix by 0, i.e. the matrix
{δjktjk(u, v)}j,k∈Z. More generally, for each n ∈ Z, let Tuvn be the operator
represented by the “n-displaced” diagonal matrix {δj,k+ntjk(u, v)}j,k∈Z. The next
step is to introduce the “diagonal" operator Tn for each fixed n ∈ Z, which is
specified, analogously to above, via the matrix of operators {Tuvn}u∈U,v∈V , i.e. by
the “matrix of matrices” {δj,k+ntjk(u, v)}j,k∈Z,u∈U,v∈V .

It can be shown (cf. [9]) that Tn maps Eα boundedly into Fα for each α ∈ R
and each n ∈ Z. Furthermore, if 0 < α < 1, then the series

∑
n∈Z Tn converges in

the norm topology of the Banach space of bounded operators mapping Eα into Fα,
and the sum of this series is our original operator T . Thus, if we wish to deduce
that T : Eθ → Fθ is compact for some θ ∈ (0, 1), it will suffice to show that

Tn maps Eθ into Fθ compactly for each n ∈ Z. (2)

In [9] it is shown that (2) holds for all θ ∈ (0, 1) whenever T : Eθ → Fθ is
compact for (at least) one value of θ in (0, 1). It is also rather straightforward to
see, because of the “diagonal" structure of Tn, that the condition (2) is equivalent
for all real values of θ, i.e. if it holds for any particular θ, then it holds for all θ ∈ R.
We now point out that all this shows that the answer to Question C, regardless of
whether it is yes or no, hinges inavoidably on the question of the compactness of
the “diagonal” operators Tn. Furthermore, the crucial things happen for values of
θ which may be assumed to be arbitrarily close to 0. (Here we are also using the
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reiteration formula for the complex method.) In fact the answer to Question C is
the same as the answer to the following question:
Question ∆: Suppose that T is an arbitrary compact operator from E0 into F0

with the additional property that T : Eα → Fα is bounded for some α 6= 0. Does it
follow that the “diagonal” operator Tn maps E0 into F0 compactly for all n ∈ Z?

Remark 3.1. By considering compositions of T and of Tn with suitable shift
operators, it is not hard to see that the answer to Question ∆ is the same as the
answer to the corresponding question about Tn for just one value of n, say n = 0.

4. A RELATED QUESTION ABOUT INFINITE FAMILIES OF
COMPACT SUBSETS OF `∞

In this section we consider a different kind of question. It is a simpler version
of the question appearing on page 362 of [4]. Our main reason for considering this
question is that, by using arguments similar to those given in [4], it can be shown
that an affirmative answer to it would suffice to imply an affirmative answer to
Question C2.

Question CKM2: Suppose that, for each θ ∈ [0, 2π), we are given a subset M(eiθ)
of the unit ball of `∞. Define the set M(0) to consist of all elements α = {αn}n∈N
of `∞, which are of the form {fn(0)}n∈N for some sequence of functions fn, which
are continuous on the closed unit disk and analytic in its interior and for which{
fn(eiθ)

}
n∈N ∈ M(eiθ) for each θ ∈ [0, 2π). If M(eiθ) is compact for every

θ ∈ [0, 2π), does it follow that M(0) is contained in a compact subset of `∞?

In fact, an affirmative answer to Question C2 would also follow from an
affirmative answer to a special case of Question CKM2, in the case where one
makes the additional assumption that the sets M(eiθ) are “uniformly compact”
on [0, 2π), i.e., that for each ε > 0 there exists an integer N(ε) such that, for each
θ ∈ [0, 2π), the set M(eiθ) is contained in the union of N(ε) balls in `∞ of radius ε.

If the compactness of the set M(0) defined in Question CKM2 follows when
the condition imposed in Question CKM2 is weakened so that M(eiθ) is assumed
to be compact only for every θ in some fixed subset E of [0, 2π) with positive
measure, then this suffices to give an affirmative answer to Question C. In fact, we
only need to consider sets E of a very particular form.

Here, in contrast to the partial affirmative result of Theorem 2.2, we report a
result in a negative direction, namely the following remarkable example obtained
by Fedor Nazarov, which suggests the possibility of a negative answer to Question
CKM2.

Example. For each ε > 0, there exists a positive integer N(ε) and a collection of
subsets

{
M(eit)

}
t∈[0,2π)

of the unit ball such that, for each t ∈ [0, 2π), the set

M(eit) is contained in the union of N(ε) balls in `∞, each of radius ε, but the
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set M(0), defined as in Question CKM2, contains a sequence {en}n∈N for which
‖en − em‖`∞ = 1 for all m 6= n.

The details of this example can be found on the website
http://www.math.technion.ac.il/˜mcwikel/compact.
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Operaatorite komplekssest interpolatsioonist: täiendus

Michael Cwikel ja Svante Janson

Juba 41 aastat pole ikka veel teada, kas operaator, mis toimib teatud Banachi
paari peal ja on kompaktne ühes või mõlemas lõpp-punktis, toimib kompaktselt
selle paari poolt tekitatud interpolatsiooni ruumide peal. On antud ülevaade selle ja
sarnaste probleemide lahendamise mõnest täiendusest.
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