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Abstract. Connections between interpolation spaces, Pick functions, and matrix monotone
functions are investigated. Characterizations, inclusion results, open problems, and conjectures
on these function classes and their interrelations are presented.
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1. PICK FUNCTIONS AND INTERPOLATION SPACES

A (positive) Pick function is a function of the form

h(λ) =
∫

[0,∞]

(1 + t)λ
1 + tλ

d%(t), λ > 0, (1)

where % is some positive Radon measure on [0,∞]. The convex cone of functions
having such a representation is denoted by the letter P . A suitable reference on the
class P is [1]. If S ⊆ R+ = (0,∞) is an arbitrary subset, we denote by P|S the
set of restrictions to S of P-functions.

A function h : R+ → R+ having the property that for any positive definite
n×n-matrices A,B, the condition “A ≤ B implies h(A) ≤ h(B)” holds, is called
a (positive) matrix monotone function of order n. The class of all matrix monotone
functions of order n is denoted by the symbol Pn. Evidently, P1 consists of all
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positive increasing functions on R+ = (0,∞) and Pi+1 ⊆ Pi for all i ∈ N. A
well-known theorem due to Löwner [2] (cf. [1]) states that ∩∞n=1Pn = P .

A regular Hilbert couple H = (H0,H1) is a pair of Hilbert spaces, which are
embedded into some Hausdorff topological vector space, and such that H0 ∩ H1

is dense in H0 and in H1. If H is a regular Hilbert couple, there exists a
densely defined, positive, possibly unbounded operator A in H0 such that ‖x‖2

H1
=

(Ax, x)H0 for all x ∈ H0 ∩ H1. Recall that a Banach space X is called
intermediate with respect to the couple H if H0 ∩ H1 ⊆ X ⊆ H0 + H1

where the inclusions are continuous. An intermediate space X is called an exact
interpolation space with respect to H if ‖T‖B(X) ≤ max{‖T‖B(H0), ‖T‖B(H1)}
for all T ∈ B(H0) ∩ B(H1). If H∗ is a Hilbert space which is intermediate
with respect to H , we may express the norm in H∗ as ‖x‖2

H∗ = (Bx, x)H0 for
all x ∈ H0 ∩ H∗ for some other densely defined positive operator B in H0.
The condition that H∗ be an exact interpolation space with respect to A is then
equivalent to

‖B1/2TB−1/2‖B(H0) ≤ max{‖T‖B(H0), ‖A1/2TA−1/2‖B(H0), }, (2)

being true for all T ∈ B(H0). By a lemma of Donoghue [3], Lemma 1 and
Lemma 2, cf. [4], if the interpolation inequality (2) is satisfied, then the operator B
is affiliated with A and B = h(A) for a (unique) continuous function h defined on
σ(A).

Interpolation of Hilbert spaces has been studied by several authors, notably
Foiaş and Lions [5], Donoghue [3] (see also [1] and [6]), Peetre [7], Foiaş et al. [8],
and one of the present authors (Ameur [4,9]). This has also led to a new proof
of Löwner’s theorem by Sparr [10], and to discovery of a new class of orthogonal
polynomials [11].

2. INTERPOLATION FUNCTIONS

Let A be a densely defined positive operator in a Hilbert space H . A positive
continuous function h defined on σ(A) is an interpolation function with respect to
A if

‖h(A)1/2Th(A)−1/2‖ ≤ max(‖T‖, ‖A1/2TA−1/2‖) (3)

for every bounded operator T on H . The set of interpolation functions with respect
to A form a convex cone, which is denoted by CA. Fix n ∈ N, and assume that
H = `n

2 is an n-dimensional Hilbert space. We shall say that a function h defined
everywhere on R+ is an interpolation function of order n and write h ∈ Cn if h
satisfies (3) for every positive definite operator A ∈ B(`n

2 ).
With this notation, the Foiaş–Lions theorem, essentially contained in [5], states

that ∩∞n=1Cn = P . A stronger variant of the Foiaş–Lions theorem states that
CA = P|σ(A) for every positive operator A in Hilbert space. This was proved
by Donoghue in [3] (cf. [9] for another proof). It is important to note the following
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consequence of Donoghue’s theorem: a function f belongs to Cn if and only if for
every n-set {λi}n

i=1 ⊂ R+ there exists a function h ∈ P such that f(λi) = h(λi)
for i = 1, . . . , n. (Of course, the function h depends on f and the set {λi}n

i=1 and
is in general not unique.)

The class of functions Cn admits also the following useful characterization.

Theorem 1. Let h : R+ → R+. Then h belongs to Cn if and only if for all subsets
{ai}n

i=1 ∈ Rn and {λi}n
i=1 ⊂ R+ one has that if

∑n
1 ai

λi
λi+t ≥ 0 for all t > 0,

then
∑n

1 aih(λi) ≥ 0.

The characterization of classes Cn given by Theorem 1 reminds of the defini-
tion of the function classes used in [10] to give a new proof of Löwner’s theorem.
These classes, however, are somewhat different.

3. GAPS BETWEEN THE FUNCTION CLASSES

In Donoghue’s book [1] it was asserted that Pn+1 $ Pn for all n. In [12]
a rigorous proof of this assertion was given. This was done by exhibiting an
explicit function in the gap for each n. A way to construct many such functions via
solutions to the truncated moment problem was recently obtained in [13]. Monotone
operator functions on arbitrary C∗-algebras are considered in [12,14]. Also, connec-
tions between operator monotone functions, operator convex functions, Löwner’s
theorem and Jensen’s type inequalities for operators are considered in [15].

The functions in the intersection ∩∞n=1Pn have several complete characteriza-
tions, for instance, by integral representations via Löwner’s theorems or by
analytical continuation properties. Obtaining satisfactory characterizations and
insight into the structure of the gaps Pn \ Pn+1 is a deep and important open
problem and, as mentioned above, so far only some ways to construct specific
functions in the gaps have been described.

The following inclusion theorem shows that the interpolation classes Cn

provide further insight into the structure of the gaps Pn \ Pn+1.

Theorem 2. For all n ∈ N it holds that Pn+1 ⊆ C2n+1 ⊆ C2n ⊆ Pn.

Due to restricted size of this paper, we refer for the proof of Theorem 2 to [16].
Whereas Theorem 1 yields a necessary and sufficient condition for h ∈ Cn to

hold, we have also the following, perhaps more transparent conditions for small
values of n:
(i) C1 consists of all positive functions on R+,
(ii) C2 consists of all quasi-concave functions (h(s) ≤ max(1, t/s)h(t) for all

s, t > 0),
(iii) C3 consists of all concave functions h on R+ such that (t + c)2h(t)/t is

convex for all c > 0,
(iv) a C4 function is either affine or strictly concave on R+.
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Analysis of the gaps for these inclusions is of interest as a contribution to the
in-depth analysis of the structure of the gaps Pn \ Pn+1 between classes of matrix
monotone functions, as well as for further study of the interpolation classes Cn

themselves. We have been able to prove so far only that

C4 $ P2 $ C3 $ C2 $ P1 $ C1,

but believe that the following general result should hold.

Conjecture 1. All inclusions in Theorem 2 are proper, for all n.
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Interpolatsiooni klassid, operaatorid
ja maatriksmonotoonsed funktsioonid

Yacin Ameur, Sten Kaijser ja Sergei Silvestrov

On uuritud seost interpolatsiooni ruumide, Picki funktsioonide ja maatriks-
monotoonsete funktsioonide vahel. On esitatud nende funktsioonide klasside
karakteriseerimisi, sisestamistulemusi, lahtisi probleeme ning hüpoteese ja samade
klasside vastastikuseid seoseid.
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