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Abstract. An algebraic informational measure is presented for evaluating the intrinsic complexity 
of large structured objects on the basis of the distribution of the basic property of their elements. 
The method is based on the notion of partition, formed by classifying the object elements according 
to their property values. Partition is evaluated by the notion of extropy, which characterizes its 
information content. The discrete property function is extrapolated into a continuous property curve 
and an extropic measure called the extropy index is calculated for the object on the basis of this 
curve. To test the proposed method, it was applied to evaluate the structural complexity of state 
economies on the basis of the population income distribution. The comparison of the extropy index 
with the GDP index and the human development index gave the correlation coefficients of 0.77 and 
0.86, respectively. 
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1. INTRODUCTION 
 
We share A. N. Kolmogorov’s opinion that the foundations of the information 

theory have a finite combinatorial character. As an initial step of our approach, 
we start with the simplest informational model for structural complexity – a 
partition on a finite set. Already von Neumann and Morgenstern [1] pointed out 
that the notion of partition on a finite set can be interpreted as information. This 
point of view on the partition as an algebraic equivalent for the notion of 
information was developed further by Hartmanis and Stearns [2] in the theory of 
finite state machines. The extropy1 of the partition gives us the initial quantitative 

                                                      
1  Instead of the rather widespread notion of negentropy we use the term extropy, as neg en means 

in Greek not into, which is equivalent to out, or ex in Greek. 
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measure for evaluating the structural complexity of finite objects represented by 
this partition, assuming that the information content characterized by the partition 
extropy is proportional to the structural complexity. Unfortunately, in practice the 
formation of a classification partition is seldom a well-defined process. More 
often than not, and especially with a large set of elements, this process is a rather 
voluntary one, depending strongly on the fineness of the classification for, as a 
rule, there does not exist a clear-cut property-based natural classification pattern. 
Therefore, to get a strictly determined complexity evaluation outcome, we have 
to find such a complexity measure which does not depend on this classification 
process. It makes us to base the complexity measure on a limit value of the 
classification process while enhancing steadily the classification fineness by 
increasing the partition rank. Although the extropy value for a partition while 
increasing its rank is not limited, the difference between extropies of two parti-
tions with their ranks simultaneously approaching infinity through the one and 
the same partitioning process, is limited. This fact gives us a chance to measure 
the extropy value for a property curve in relation to an ideal property curve with 
the maximum extropy value, which is characterized by an exponential function. 
An exponential function ( )f x  has the wonderful  property 2 1( ) ( )f x f x′ ′− =  

2 2

1 1
2 1( ) ( ) ( )d ( )d ,

x x

x x
f x f x f x x f x x

′ ′′

′ ′′

′′ ′′− ⇒ =∫ ∫  from which it follows that all blocks 
of the partition contribute to the final result to the same extent, i.e. the  
higher the rank of a block in the partition, the smaller its size in it. As all 
elements contribute equally to the outcome of the partitioning process, the 
solution is the best and has therefore the maximum value compared to all other 
choices. Thus, to find the limit value for this extropy difference, we will extra-
polate the discrete property function of an object into a continuous differentiable 
property curve. To this curve we will juxtapose an exponential curve in such a 
way that the end points of both curves coincide. Next we will divide both curves 
into n  cuts, which have all equal projections to the ordinate axes, reflecting the 
principle that all properties should be equally represented by the partition-
forming process. The partitions for both curves are now formed by cutting the 
surface area between the curves and the argument axis into blocks according to 
these n  cuts of the curve. Now we will find the limit value for the extropy 
difference of these two partitions while their rank n  approaches infinity. This 
limit gives us a foundation for an extropic measure, which is invariant to the 
partitioning process and is solely characterized by the given property curve of the 
object under consideration. On the basis of this limit value we define the notion 
of the extropy index as its normalized complementary which evaluates in 
informational terms the vicinity of the property curve to the ideal exponential one 
and thus measures the structural complexity for objects characterized by a 
property distribution which can be extrapolated into this curve. 

To test the proposed method, it was applied to evaluate the structural 
complexity of a state economy on the basis of the population income distribution. 
It should be emphasized that this attempt was not meant to break new ground in 
economics. We fully admit that the result of the application of our approach in 
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economy is a preliminary one as there is too much uncertainty about the initial 
data gathered by different organizations under different conditions and back-
ground. It is but a humble attempt to introduce our method and call attention to 
this application in the hope that some in-depth study would follow. 

 
 

2. EXTROPY  OF  THE  PARTITION  AS  A  MEASURE  OF  ITS  
INFORMATION  CONTENT 

 
It goes without saying that one can use many different models for representing 

the structural complexity of a large object, a contemporary economy being a 
good example of it. On the other hand, dealing with such a difficult problem as 
measuring structural complexity, one should start with the simplest strategy to 
elaborate the model in the course of the study. And the partition is just the very 
thing satisfying this strategy. One cannot find a simpler informational model than 
a partition and from a partition it is easy to move on to more complicated models. 
We are not going to assume a priory that an extropy function on partitions is just 
the parameter that informs us about structural complexity, taking mechanically 
over the extropy interpretation as a quality parameter for objects it is applied to. 
Instead we are going to use an axiomatic approach, defining first an information-
related evaluation function on partitions and only after this reaching the so-called 
Shannon entropy formula; we accept this as the searched parameter of structural 
complexity. As in our context this formula is linked to complexity, it is natural to 
call this measure an extropic one (this choice has a strong justification from the 
ecological point of view, as by consuming energy quality (extropy), the 
complexity of organic life would increase, which means that the extropy of 
energy is converted into the extropy of organic life). But the main difference 
between our approach and that of Claude Shannon is that while the latter is a 
probabilistic approach to information, the former is an axiomatic algebraic one. 

In this chapter we will find an extropic measure for partitions defined on a 
finite set which satisfies the basic intuitive properties of information. This 
axiomatic approach is based on the fundamental information-related properties of 
the partition lattice. 

Let us define a partition ( )i Xπ  on a finite set 1 2{ , , ..., }mX x x x=  as a class  
of its subsets (blocks of the  partition) ( )( )(1) (2){ , , ..., , ..., },im

i i iiB B B Bα   satisfying 
the following conditions: 
(a)  ( )

1
;im

iB Xα

α =

=∪  
 

(b)  for any arbitrary ( ) ( ), ( )i iiB B Xα β
π∈  we have ( ) ( ) .iiB Bα β =∅∩  

A block ( ) ( )B Xα
π∈  consisting of elements 21, , ..., mx x x Xααα

∈  will be 
denoted by 21, , ..., .mx x xααα  Extreme partitions are a zero partition (denoted by 
0 ),X  having in each block no more than one element, and a unit partition 
(denoted by 1 ),X  having only one block. If for any arbitrary ( )

iiB α
π∈  there 

exists ( )
jjB β

π∈  such that ( ) ( ) ,jiB Bα β
⊆   then  we  will  denote it by ( )i Xπ ≤  

( ).j Xπ  It is not hard to show that if ( ) ( )ji X Xπ π≤  and ( ) ( ),j iX Xπ π≤  then 
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( ) ( ).ji X Xπ π=  We define for any arbitrary ( )i Xπ  and ( )j Xπ  operations 
( ) ( ) ( ) ( )

Df { | }j i jj ji i iB B B Bα βα β
π π π π⋅ = ∈ ∧ ∈∩  and { | , }.i j k k i jπ π π π π π+ = ≥∩  
The restriction of a partition ( )Xπ  onto X X′ ⊂  will be denoted by 

( ) ( )
Df( ) { | }.X B X Bα α

π π′= ∈∩  With respect to the above-defined multiplication 
“ ⋅ ” and addition “+” operations all possible partitions on X  will build up a 
semimodular lattice [3], which will be denoted by ( ).XL  For any subset X X′ ⊆  
we will define its weight ( )Xq X ′  as a ratio Df( ) || || || ||Xq X X X′ ′=  (as a rule, the 
subscript by q  will be omitted). Partitions ( )i Xπ ′  and ( )j Xπ ′′  will be called 
equivalent (the corresponding denotation is ( ) ( ))ji X Xπ π′ ′′≡  iff there exists a 
bijection : jiϕ π π→  such that for any ( )

iiB α
π∈  we have ( )( )iXq B α

′

=  
( )( ( )).iXq B α

ϕ
′′

 
Let us call ( )i Xπ  quasi-independent with respect to ( )j Xπ  (denoted by 

)jiπ πT  iff for any jiB π π∈ +  and ( )
jjB α

π∈  with ( )
jB Bα
⊂  the condition 

( )( ) ( )ji iB B α
π π≡  is satisfied. The reflectivity of quasi-independence follows 
directly from its definition (i.e. ( )( )).i i iπ π π∀ T  Iff partitions iπ  and jπ  satisfy 
the condition ( ) ( ) 1 ,Xi jX Xπ π+ =  they will be called orthogonal. Quasi-
independent and orthogonal partitions will be called independent (denoted by 

).jiπ π†  It is easy to see that the independent relation †  is anti-reflexive and 
symmetric. 
 
Definition 1. A real-value domain function ( )iG π  defined for the aggregate of all 
partitions ( )i Xπ  on all possible finite sets X  is called extropy of the partition 

( )i Xπ  if it satisfies the following axioms corresponding to the intuitive 
properties of the object-related information content: 
(i)  positivity: ( ) 0;iG π ≥  
(ii)  invariability: ( ) ( ) ( ) ( );i j i jX X G Gπ π π π′ ′′≡ ⇒ =  
(iii) monotony: ( ) ( ) ( ) ( );i j i jX X G Gπ π π π≤ ⇒ ≥  
(iv) subadditivity: ( ( )) ( ( )) ( ) ( ).i j i j i jG X G X G Gπ π π π π π+ ≥ ⋅ + +  
 
Theorem 1 [4]. For any arbitrary partition ( )i Xπ  its extropy ( )iG π  equals 

( ) ,iaH bπ +  where ( ) ( )
1Df( ) ( ) ln ( )im

i i iH q B q Bα α

α
π

=

=−Σ  and ,a  b  are some positive 
constants. 
 

Theorem 1 gives us the justification to use the partition extropy as the only 
quantitative partition evaluation that satisfies the basic intuitive properties of 
information. 

It is not hard to prove that for any ( )i Xπ  and ( )j Xπ  the following conditions 
are equivalent: 
(i)  ;jiπ πT  
(ii)  ;ijπ πT  
(iii) ( ) ( ) ( ) ( );j jiji iH H H Hπ π π π π π+ = ⋅ + +  
(iv) for any ,i jB π π∈ +  ( ) ,i iB α

π∈  and ( )
j jB β

π∈  with ( ) ,iB α  ( )
jB Bβ
⊂  we 

have ( ) ( ) ( ) ( )( ) ( ) ( ).ji j iB B Bq B B q B q Bα αβ β
=∩  

One can show that the relation ( ) ( )i jX Xπ π†  is equivalent to the following 
two conditions: 
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(i)  ( ) ( ) ( );i j i jH H Hπ π π π+ = ⋅  
(ii)  for any ( )

i iB α
π∈  and ( )

j jB β
π∈  the equality ( ) ( )( )i jq B Bα β

=∩  
( ) ( )( ) ( )i jq B q Bα β  holds. 

 
 

3. STRUCTURAL  COMPLEXITY  OF  OBJECTS  REPRESENTED  BY  
THEIR  PROPERTY  DISTRIBUTION 

 
In this chapter we are going to extend the partition-based extropy evaluation 

defined on a finite set onto a continuous real-value function. The approach 
applied enables us to evaluate large complicated objects that can be characterized 
by a basic property function on their elements. The property function of these 
objects can be extrapolated into a continuous real-valued curve which will be 
submitted to extropic evaluation. The remarkable feature of our approach is that 
the derived extropy measure does not depend on the partitioning process of the 
property curve. This enables us to get a unique quantitative complexity measure 
reflecting the most fundamental properties of the algebraic concept of informa-
tion.  

We will denote by R+  the set of positive real numbers and define 

Df [ , ]X Rα ω
+

= ⊂  as a segment on this set. Now we are going to define an object 
O  as a triple Df , , ,Z P δ= 〈 〉O  where Z  is a finite set of its elements, P R+

⊂  is 
the set of basic properties of the elements and the function : Z Pδ →  gives us 
the element-related basic property distribution for the object. Next we will index 
Z  by {1, 2, ..., }M m=  with | |m Z=  in such a way that for each ,i k M∈  we 
have ( ) ( ).kii k z zδ δ≤ ⇒ ≤  Thus δ  induces a real-number function : .M Pδ →  
Then we are going to extrapolate δ  into a continuous differentiable function 

: ,f X Q→  i.e. fδ ⊂  with M X⊂  and .P Q R+

⊂ ⊂  Next we are going to 
find  for ( )f x  an exponential approximation as a function 0 Df( ) Bxf x Ae=  with the 
constants A  and B  chosen in such a way that 0 ( ) ( )f fα α=  and 0 ( )f ω = ( ).f ω  
If we denote Df ( ) ( ),F f fω

α
α ω= −  Df ( ),y f ω α∆ = −  and Df ,x ω α∆ = −  we get 

ln / ln /( )F x F xA y e e
ω ω

α α
ω α⋅ ⋅∆ ∆

= ∆ −  and ln .B F xω

α
= ∆  It is easy to prove that for any 

(1)
110 0Df ( ) ( )y f x f x′′ ′∆ = −  and (2)

220 0Df ( ) ( )y f x f x′′ ′∆ = −  from (1) (2)y y∆ = ∆  it  
follows that 21

1 2
0 0( )d ( )d .

x x

x x x x
f x x f x x

′′ ′′

′ ′= =

=∫ ∫  In the following we are going to rely 
on the definitions 
(i)  

Df
( ( ) ( )) ;n y f f nω α∆ = −  

 

(ii)  Df( ) ( ) ( );F x f x f x
τ τ τ

′=  
 

(iii) ( )
111Df

( ) (( ( ) ( )) 2) ( )nn
i i iiiS f f x f x x x

ττ τ ++=
= Σ + ⋅ −  and ( )

Df
( )nH f

τ
=  

1 11 11((( ( ) ( )) 2) ( )) ln((( ( ) ( )) 2) ( ))n
i ii i i i ii f x f x x x f x f x x x

τ ττ τ+ ++ +=
Σ + ⋅ − ⋅ + ⋅ −  
with 1Df

( {1, ..., 1})(( ( ) ( 1) ) ( ( ) ( )i iii n x i n f x f x
ττ

α ω α +∀ ∈ + = + − ⋅ − ∧ − =  
));n y∆  

(iv) 
Df

( ) ( )d .
x

S f f x x
ω

τ τ
α=

= ∫  
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It is easy to see that 0 ( ) constF x =  and 0( ) ( )BBS f A B e e αω⋅ ⋅

= − =  
ln .y x Fω

α∆ ⋅∆  Now we are prepared to prove the main theorem concerning the 
extropic evaluation of large structured objects characterized by the property 
function based on their basic elements. 
 
Theorem 2. For any real-value continuous differentiable function ( )f x  we have 

 

( ) ( )
0

0 0

lim ( ( ( )) ( ( )))

ln ( ( )) (1 ( )) ( ) ln ( ( ) ( ))d .

n n

n

x

H f x H f x

F S f S f f x F x S f x
ω

α

→∞

=

− =

− + ⋅ ⋅∫
 

 
Proof. Indeed, 

 

( ) ( )
0

( ) ( )
0 0 0 0

1

( ) ( )

( ) ( ) ( ) ( )
0 0 0 0

1

lim( ( ( )) ( ( )))

lim ((( / ( )) ln ( / ( )))

(( ( ) / ( )) ln ( ( ) / ( )))

lim (( / ( )) ln ( / ( )) ( ( ) / ) ln ( ) / ( ))

n n

n

n
n n

n n
n

i

n n
i n i n

n
n n n n

i i
n

i

H f x H f x

F y S f F y S f

F x y S f F x y S f

F S f F S f F x S F x S f

→∞

→∞
=

→∞
=

−

= − ⋅∆ ⋅ ⋅∆

− ⋅∆ ⋅ ⋅∆

= − ⋅ − ⋅

∑

∑

( ) ( )
0 0

1

( )
0 0 0 0

1

( )

1

( )
0 0

1

lim ln ( / ( ) ( ) / ( ))

lim(1/ ( )) ( ln ( / ( ))

lim(1/ ( )) ( ( ) ln ( ( ) / ( ))

ln ( / ( )) lim(1/ ( )) ( ( ) ln ( ))

n

n
n n

n i n
n

i

n
n

n
n

i

n
n

j j n
n

j

n
n

j j
n j

y

y F S f F x S f y

S f F F S f y

S f F x F x S f y

F S f S f F x F x

→∞
=

→∞
=

→∞
=

→∞
=

∆

− ∆ ⋅ − ⋅∆

= − ⋅ ⋅ ⋅∆

+ ⋅ ⋅ ⋅∆

= − + ⋅ ⋅

∑

∑

∑

∑

( )

1

0 0 1

lim ln ( ) ( ( ) )

ln ( / ( )) (1/ ( )) ( ) ln ( ( ) / ( ))d .

n

n
n

j n
n

j

x

y

S f F x y

F S f S f f x F x S f x
ω

α

→∞
=

=

⋅∆

+ ⋅ ⋅∆

= − + ⋅ ⋅ �

∑

∫
 

 
Now we will define an extropy index HC  for an object , ,Z Pτ τ ττ δ〈 〉O =  as 

Df( ) (1 ( ( ))) 100,HC H f xτ τ= − ∆ ⋅O  where ( )
Df 0

( ( )) lim ( ( ( ))n
n

H f x H f x
τ →∞

∆ = −  
( ) ( ( )))nH f x

τ

 and ( )f xτ  is an extrapolation of the property function 
: .Z Pτ τ τδ →  The extropy index ( )HC τO  reflects the structural complexity of 

the object ,τO  whose property function τδ  can be extrapolated into a continuous 
differentiable function ( ).f xτ  
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4. STRUCTURAL  COMPLEXITY  OF  A  STATE  ECONOMY 
 

Talking about sustainable development, one cannot ignore economy. If we 
cannot find a way to follow sustainable economy, all our efforts in other walks of 
activity would end up in a ditch as well. Unfortunately, economy is a very 
complicated process and it is extremely difficult to get hold of reliable data about 
its functioning. The best available data are linked to the income distribution of 
the population for the country under scrutiny. This income distribution 
determines inequity which is one of the vital parameters of placing a judgement 
about the welfare of an economy. There are quite a few papers on finding such an 
inequity factor which would best characterize the well-being of an economy [5–7]. 
Unfortunately, all these approaches to determine the prosperity level of an 
economy on the basis of an equity factor lack a tangible logical background 
linking this factor to the structural complexity of an economy, but are only good 
mathematical studies into the subtle properties of the income distribution curve. 

To evaluate the structural complexity of an economy, we are going to use the 
extrapolation of the population income distribution as initial data for the income 
inequity curve. As this cursory example is not to establish final truth about which 
economy would be preferred in absolute terms, we have not taken pains to work 
hard on the initial income distribution data resorting to the raw data flows but 
have been satisfied with the data already worked up in [8], presented in Table 1. 

Based on the income distribution given in Table 1 we have found the income 
inequity (Table 2) for the countries under consideration, i.e. we have found the 
derivatives for the extrapolated income distribution curves. 
 

Table 1. Income distribution 
 

Income distribution 
Country Lowest 

10% 
Lowest 

20% 
Second 

20% 
Third 
20% 

Fourth 
20% 

Highest 
20% 

Highest 
10% 

Gini 
index 

Australia 2.0   5.9 12.0 17.2 23.6 41.3 25.4 35.2 
Belarus 5.1 11.4 15.2 18.2 21.9 33.3 20.0 21.7 
Belgium 3.7   9.5 14.6 18.4 23.0 34.5 20.2 25.0 
Finland 4.2 10.0 14.2 17.6 22.3 35.8 21.6 25.6 
France 2.8   7.2 12.6 17.2 22.8 40.2 25.1 32.7 
Germany 3.3   8.2 13.2 17.5 22.7 38.5 23.7 30.0 
Hungary 3.9   8.8 12.5 16.6 22.3 39.9 24.8 30.8 
India  3.5   8.1 11.6 15.0 19.3 46.1 33.5 37.8 
Japan 4.8 10.6 14.2 17.6 22.0 35.7 21.7 24.9 
Mexico 1.4   3.6   7.2 11.8 19.2 58.2 42.8 53.7 
Netherlands 2.8   7.3 12.7 17.2 22.8 40.1 25.1 32.6 
Russia 1.7   4.4   8.6 13.3 20.1 53.7 38.7 48.7 
Slovak Republic 5.1 11.9 15.8 18.8 22.2 31.4 18.2 19.5 
South Africa 1.1   2.9   5.5   9.2 17.7 64.8 45.9 59.3 
Sweden 3.7   9.6 14.5 18.1 23.2 34.5 20.1 25.0 
Switzerland 2.6   6.9 12.7 17.3 22.9 40.3 25.2 33.1 
Ukraine 3.9   8.6 12.0 16.2 22.0 41.2 26.4 32.5 
United Kingdom 2.6   6.6 11.5 16.3 22.7 43.0 27.3 36.1 
United States 1.8   5.2 10.5 15.6 22.4 46.4 30.5 40.8 
Vietnam 3.6   8.0 11.4 15.2 20.9 44.5 29.9 36.1 
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Next we extrapolated the income inequity into a continuous curve for the 
countries under consideration and found for each of these curves a corresponding 
exponential curve. Figures 1 and 2 show these curves for Australia and India as 
the extreme cases for the set of countries observed. 

Next we evaluated an economy on the basis of the extrapolated continuous 
property curve by the extropy index. In the teeth of presupposed inaccuracy, the 
result shows a strong correlation between the extropy index and the development 
level of an economy, represented by the GDP index and the human development 
index. Table 3 represents a ranking list of countries under consideration accord-
ing to their extropy index, together with the comparison with the Gini index, 
GDP index, and human development index. 

 

 

 
 

Fig. 1. Income inequity in Australia. 
 

 

 
 

Fig. 2. Income inequity in India. 
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Table 3. Economy ranking list according to the extropy index 
 

Country 
Survey 

year 
Gini 
index 

Extropy 
index 

GDP index 
(1998) 

Human development 
index (1998) 

Australia 1994 35.2 86.1 0.986 0.932 
Sweden 1992 25.0 85.5 0.986 0.936 
Netherlands 1994 32.6 84.0 0.986 0.941 
France 1995 32.7 82.2 0.987 0.946 
United Kingdom  1991 36.1 81.8 0.986 0.932 
Belgium 1992 25.0 81.6 0.987 0.933 
United States 1997 40.8 81.2 0.992 0.943 
Germany 1994 30.0 80.0 0.986 0.925 
Switzerland 1992 33.1 79.0 0.991 0.930 
Finland 1991 25.6 79.0 0.985 0.942 
Japan 1993 24.9 77.7 0.987 0.940 
Hungary 1996 30.8 76.8 0.957 0.857 
Russia 1998 48.7 76.7 0.713 0.769 
South Africa 1993–1994 59.3 75.9 0.682 0.717 
Mexico 1995 53.7 75.5 0.957 0.855 
Slovak Republic 1992 19.5 74.4 0.960 0.875 
Belarus 1998 21.7 73.2 0.692 0.783 
Vietnam 1998 36.1 72.9 0.183 0.560 
Ukraine 1996 32.5 71.4 0.364 0.665 
India  1997 37.8 51.5 0.213 0.451 

 
 
The comparison of the extropy index with the GDP index and the human 

development index gave the correlation coefficients of 0.77 and 0.86, respectively. 
This surprisingly good result, considering all the inaccuracies of the broad-scale 
input data, shows that the extropy index points to some fundamental law of 
Nature that governs the structures of large complicated objects. 

 
 

5. CONCLUSIONS 
 
The extropy index proposed as a complexity measure for large-scale 

structured objects, derived through an axiomatic approach from the basic 
information-related properties of a partition lattice, reflects the intrinsic structural 
complexity of objects and gives us a tool for evaluating various complicated 
structured objects on the basis of the distribution of the basic property of their 
elements. Though the presented approach is based on a single property 
distribution, in principle, it can be easily generalized on objects with multiple 
properties. As one can witness from the results of testing this measure on state 
economies, the ranking list of various countries ordered according to their 
extropy index is very promising. It shows clearly that the exponential property 
curve as the best choice for structured objects reflects some fundamental law of 
Nature, which means that the best structure for an object is one with all its 
elements contributing equally to the structure formation. Considering the 
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inaccuracy of the initial data and the fact that not the raw data but the data 
already modified for other purposes were used, the outcome is even better than 
could have been expected. It is obvious that further work is needed to elaborate 
this approach for measuring the complexity of large structured objects whose 
elements are characterized by multiple properties and test it on evaluating various 
economic and other complicated situations. 
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Suurte  struktuursete  objektide  keerukushinnangust 
 

Tõnu Lausmaa 
 
On esitatud struktuursete objektide algebraline infopõhine keerukushinnang 

antud objekti elementide põhiomaduse jaotuskõvera alusel. Kasutatav meetod 
baseerub tükeldusel, mis moodustatakse vaadeldava objekti elementide klassifit-
seerimisel nende põhiomaduse alusel blokkideks. Eeldatakse, et objekti struk-
tuurne keerukus on võrdeline info hulgaga, mida väljendab objekti iseloomustav 
tükeldus, mille infosisaldus on võrdeline tükelduse ekstroopiaga. Objekti elemen-
tide põhiomaduse diskreetne jaotuskõver ekstrapoleeritakse pidevaks funktsioo-
niks ja selle kõvera alusel arvutatakse antud objekti jaoks ekstroopne keerukus-
mõõt, mida nimetatakse ekstroopia indeksiks. Ekstroopia indeks väljendab teatud 
klassi maksimaalse keerukusega objekti ekstroopia ja sellesse klassi kuuluva 
antud objekti ekstroopia vahe piirväärtust, kui pidevalt suurendada objekti ele-
mentide hulgal moodustatud tükelduse blokkide arvu elementide klassijaotuse 
täpsustamise kaudu. Graafiliselt mõõdab ekstroopia indeks ideaalsele juhule vas-
tava eksponentsiaalse kõvera ja vaadeldava objekti elementide põhiomaduse 
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jaotuskõvera erinevust. Saadud tulemus annab sobiva vahendi keeruliste struk-
tuursete objektide hindamiseks nende elementide põhiomaduse jaotuskõvera alu-
sel. Kuigi töös esitatud keerukusmõõt on leitud vaid ühe põhiomaduse kaudu 
iseloomustatud objekti jaoks, on seda kerge üldistada juhule, kui objekti ele-
mendid on iseloomustatud mitme sõltumatu põhiomaduse kaudu. Antud meetodi 
testimiseks katsetati seda riikide majanduse edukuse hindamisel eeldusel, et 
majanduse edukus on võrdeline selle ekstroopse keerukushinnanguga, mis on 
määratud elanikkonna sissetulekute jaotuskõvera alusel. Võrreldes arvutatud 
ekstroopia indeksit SKP indeksi ja inimarengu indeksiga juhuslikult valitud 20 
riigi puhul, saadi võrdlusel korrelatsiooni koefitsientideks vastavalt 0,77 ja 0,86, 
mis on üllatavalt hea tagajärg, arvestades kõrget täpsusnõuet algandmetele usal-
dusväärsete tulemuste saavutamiseks ekstroopia indeksi arvutamisel. Saadud 
kõrge korrelatsioon annab tunnistust sellest, et eksponentsiaalne objekti elemen-
tide põhiomaduse jaotuskõver kui parim valik struktuursele objektile peegeldab 
fundamentaalset loodusseadust, et objekti parim struktuur on selline, kus kõik 
objekti elemendid annavad võrdse panuse antud objekti struktuuri moodus-
tamisse. 

 
 
 
 


