Proc. Estonian Acad. Sci. Phys. Math., 2085, 3, 131-153

Relationship between join and betweenness
geometries

Ulo Lumiste

Institute of Pure Mathematics, University of Tartu, J. Lii2, 51004 Tartu, Estonia;
lumiste@math.ut.ee

Received 14 February 2005

Abstract. A treatment of join geometry was elaborated by Prenowitz damtosciak in a
voluminous monograph of 1979din Geometries. A Theory of Convex Sets and Linear Geo-
metry), which in most part deals with the theory of convex sets buthes also upon linear
geometry and the betweenness relation. The latter relatiantaken as the only basic notion
(besides the notion of point) by the Estonian mathematiciasarv, J. Nuut, and A. Tudeberg
(Humal) in their treatment of the foundations of geometryhia 1930s. A solid betweenness
geometry as a theory of betweenness models was worked outebguthor of the present
paper in 1964 but it appeared in publications not widely latd&. On the basis of the
1979 monograph, the author analyses the relationship bettfeese two geometries. First,
betweenness geometry is recapitulated, and then the moegajénterimity and betwixtness
geometries are introduced. It is proved that a betweenresmsigiry is at the same time an
ordered join geometry, and conversely, an exchanged jamggy is a betwixtness geometry,
but the more special ordered join geometry coincides wittvéenness geometry. In higher
than two dimensions the latter is Desarguesian and leadsdowex region in a linear space
over an ordered skew field.

Key words: join geometry, betweenness model, convex region, Dessigyuspace.

1. INTRODUCTION

After having about fifty years ago completed his investigations into
betweenness geometry (séé]} based on{~°]) and carried on with problems of
differential geometry, the author recently stumbled upon an interesting megtog
by W. Prenowitz and J. Jantoscid&in Geometries. A Theory of Convex Sets and
Linear Geometrysee f]). The present paper is the author’s reaction to that event.

The betweenness relation has fascinated the investigators for a long time.
Already C. F. Gauss in his letter to F. Bolyai (6 March 1832; sdeq. 222)
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pointed to the absence of betweenness postulates in Euclid’s treatment. Eliminatio
of this defect was started fifty years later by Pas¢hFurther development of the
logical foundation of synthetic geometry in the 19th century (through théxsvor

of G. Peano, F. Amodeo, G. Veronese, G. Fano, F. Enriques, arféievl) led

to Hilbert’s fundamentaGrundlagen der Geometrif’], where the betweenness
relation is subjected to thaxioms of connection and of ordér 1-7, 1l 1-5 of
Hilbert's list), called by Schur'f] the projective axiom®f geometry.

In the first decades of the 20th century axiomatics of the betweennetisirela
was investigated in the U.S. by Mooré'] and Veblen 2] in the framework
of these projective axioms. They indicated also some redundancy in Hilbert’
axiomatics, which was taken into consideration by Hilbert in the following editions
(e.g. in the seventh edition ot]). In addition, the standpoint was developed that
the lines and planes can be considered as sets of points and that sxieoms af
connection are expedient only for lines (not for planes, becausealigites for
them can be deduced). Note that this standpoint was not accepted byt litilbe
the following editions of higsrundlagen but was afterwards adopted in the U.S.
by Huntington [?~16], who in 1926 gave an elaborated system of axioms for the
betweenness relation, but only in dimension 1, i.e. for the case of a line.

This standpoint was developed further in Estonia, first by Nudd} for
dimension one (as a geometrical foundation of real numbers) and aftisnivg
Sarv [] for an arbitrary dimensiom. Extending the Moore—Veblen approach,
Sarv proposed a self-dependent axiomatics for the betweennessnetatithat
all axioms of connection, including also those concerning the lines, became th
consequences. This self-dependent axiomatics was simplified and ttiectge
by Nuut [}] and Tudeberg (from 1936 Humab][ As a result an extremely simple
axiomatics was worked out for thedimensional geometry using only two basic
concepts: “point” and “between”.

The author of the present paper developed!jna comprehensive theory of
the models of betweenngdsased on this axiomatics. At the same time it was
proved in B] that in dimension>2 this model reduces to a convex domain in
n-dimensional linear space over an ordered skew field. Later Pimefpyir
Appendix: Local betweenness relation) called the perfected axiomatiekihal—
Lumiste axiomaticand its model in dimension 2, when the above result cannot be
used, the_umiste planeAs a whole, the theory of these models, including also the
Huntington—Nuut theory for dimension 1, can be callediibveenness geometry

Approximately at the same time, Rubinshteitf{?!] developed (together
with Rutkovskij) a theory ofaxial structures which is tightly connected with
betweenness geometry and uses some of its results (with exact refeteficg).

Independently also another approach, independent of the axiomsrdction,
was evolved. In¥?], Schur tried to work out a part of geometry based on the
basic concepts of “point” and “line segment” (Geétreckg. This approach was
elaborated by PrenowitZ2q] (see also{*2°]). The segment was considered as the
“join” of its endpoints, and so thi@in operationwas introduced in the set of points.
In the monograph®] a completgoin geometryof thesgoin spacesvas developed.
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The aim of the present paper is to investigate the relationship between the join
and betweenness geometries. In join geometry we can re$t drng essential part
of it is summarized here in Section 2 (and also afterwards). Since the pidiga
about the betweenness geometry are not widely available (a greatf dieaihroare
written in Estonian, namely {'], or in Russian, e.g2['¥]), we have to recapitulate
here in Sections 4 and 5 the outlines of this theory, relatively little known at
present. Meanwhile, in Section 3 the earlier betweenness geometry isitsepar
into some parts having in mind the later join geometry. Soitterimity models
andbetwixtness geometrare introduced separately.

The main topic is treated in Sections 6 and 7. It is shown that the betweenness
geometry is at the same time the ordered join geometry. Conversely, the ggdhan
join geometry is a betwixtness geometry, but the more special ordered join geo
metry is a betweenness geometry.

In Section 8 a relationship with the projective geometry is established and the
Desarguesian theorem is proved together with its converse. Finally, tio®s&c
the Main Theorem is proved, asserting that in higher than two dimension the
betweenness geometry (ordered join geometry) is Desarguesian asdtdead
convex region in a linear space over an ordered skew field.

2. JOIN SPACE AND JOIN GEOMETRY

Following [°], let us consider the paiS, -) of a setS and an operation, which
assigns to any ordered pair, b) of elements ofS a subset of5, denoted by - b
and called thgoin of a and b For any pair(A, B) of subsets of5S the setA - B
determined by

acA,beB
is called thgoin of A and B
The pair(S, -) above is called in systen(see ], Sections 2.2 and 2.3) if
J1:a-0#0; J2:a-b=b-a; J3: (a-b)-c=a-(b-¢); J4:a-a=a,

where inJ3 (a - b) - ¢ is, of course, the join of - b andc. Further, the subset

a/b = {z|b-z D a} is called theextension of a from,kand letA ~ B mean that

A and B have a nonempty intersection, i.e. that they have a common element.
The join system is called jain space(see f], Section 5.1) if, moreover,

J5:a/b#0; J6:a/bxc/d=a-dxb-c; J7:a/a=a.

1 Here the word “betwixt” has been in mind (which, accordindittionaries, is now archaic
except in the expressidretwixt and betwegnas well as the word “interim”.
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The theory of join spaces, called thein geometry is developed in the
monograph ). Mainly the properties of convex sets, in particular of linear sets,
and of convex (resp. linear) hulls are considered.

Here a setA is called aconvexset if A O z,y impliesA D = - y (see f],
Section 2.9). A convex sed for which A D z,y implies A D z/y is called a
linear set (seef], Section 6.2). The least linear set which contains a givemset
is called theinear hull of this given set and denoted ky A > ([®], Section 6.8).
The linear hull of two distinct: andb is called thdine < ab >. It is established
in [%] (Section 6.10, (2)) that

<ab>Da-bUa/bUb/aUaUb.
If J1-J7are complemented by
E:(cC<ab>)AN(c#a)= (<ac>=<ab>),

then the join geometry is called @amchange join geomet(gee f], Section 11.1).

In such a geometry the linear hull of thregb, ¢, not in the same line, is called
aplane< abc > (see f], Section 11.6).

In a join geometry theébetweennesselation is introduced by the following
definition (see {], Section 4.23): suppose C a - b anda # b; then we sayr
is betweeru andb, and write(axb).

Finally the followingorder postulatés added in {], Section 12.1:

O. For every three distinat, b, c of a line eithefra C b-c,orb Ca-c,0rc C a-b,
i.e. at least one is between the two others.

If O is added toJ1-J7, then the join geometry is called thmrdered join
geometry In this geometry (se€], Section 12.3)

<ab>=a-bUa/bUb/aUaUb.

It is established in], Section 12.2 that an ordered join geometry is an exchanged
join geometry, but the converse is not valid: there exist examples of rgeldgoin
geometries which are not ordered join geometries (see &g@p. 62-68).

3. BETWEENNESS GEOMETRY AND RELATED MODELS

The independent concept of betweenness model was introduced ranréGh
years ago in[?], following [3~®]. Having in mind the join geometry, it is more
convenient to separate the definition into some parts as follows.

Let S be a set, and let there be given a subset B'in S x S (i.e. aternary
relation for S). Further(abc) will mean that(a, b, ¢) € B and therb is said to be
betweeru andc. Moreover, let us denote

(abe) = (abc)V(bea)V (cab); [abc] = (abec)V(a =b)V(b=c)V(c=a). (1)
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The triplet(a, b, ¢) is said to becorrectif (abc), andcollinearif [abc]. The subset
{z|(axb)} is called arinterval ab with endsa andb.

Let us start with a preparatory concept. The gairB) is called aninterimity
modelandB aninterimity relationif

B1: (a #b) = Je, (abc); B2 : (abc) = (cba);

B3 : (abc) = —(acdb); B4 : (abc) A [abd] = [cda]; B5 : (a # b) = e, —[abel.

The basic concept will be introduced by the following definition: if in an
interimity model(.S, B), in addition,

B6 : —[abc] A (abd) A (bec) = 3f, ((afc) A (def)),

then this(S, B) is called abetweenness modahdB is said to be detweenness
relation (see [+?]).

A subsidiary concept gives now the following definition: if in an interimity
model(S, B) B6 is replaced by

B6 : —[abc| A (abd) A (aec) = 3f, ((bfe) A (dfe)),

then this(S, B) is called abetwixtness modeind B is said to be @etwixtness
relation (see the footnoteabove).

The connecting instrument for the betweenness and betwixtness models is the
so-calledPasch postulate

P : —[abc] A (bec) A (d € Pape) A(d & Lie) A (a & Lae)
= 3f,(f € Lae) N[(afb) V (afc)],

whereL,, = {z|[zab]} is aline determined by:, b, a # b, andP,;. = Q,UQpUQ.
with noncollineara, b, c andQ, = Lap U Lac |, cpe Lae 1S @planedetermined by
theseua, b, ¢ (and obviously not depending on their reordering).

It will be proved in the present paper that every betweenness modgbis a
space with an exchange ordered join geometry. On the other hand, jeuery
space with exchanged join geometry is a betwixtness model. As a corollary, ev
betweenness model is also a betwixtness model. This last result can Hislesthb
even directly: for every betweenness model d@#holds and, moreover, also the
Pasch postulate is valid.

4. THE INTERIMITY MODEL

It is natural to start with the interimity model.

Lemma 1. If in an interimity modelabc), thena, b, ¢ are three distinct points.
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Proof. Indeed,B3 excludesh = ¢, and together wittB2 excludes als®d = a.
Finally, « = ¢ is impossible as well, becausecif= a, thenb # a and due tB5
3d, —[abd], but on the other handabc) = (acb) and(a = ¢) = [acd], and these
together imply due t®4 that[dba] = [abd], but this contradicts:[abd] and finishes
the proof.

If a tripleta, b, cis correct, i.e{abc), then due to Lemma 1 heteb, c are three
different points and due tB2, B3 only one of them is between the two others.
Recall that iflabc], thena, b, c are said to be collinear. It is obvious that correctness
and collinearity of any three, b, ¢ does not depend on their order, i.e.

(abc) = (bca) = (cab), [abc] = [bea] = [cab]. (2)
Lemma 2. In an interimity model let, b, ¢ be collinear i.e. [abc] and so(1) holds.
Here only the following four possibilities occur
Da=b)V(b=c)V(c=a), 2)(abc), 3)(bca), 4) (cab).
Each of them excludes the three others.

Proof. The first possibility follows from Lemma 1. Due 2, B3 (abc) =
(cba) = —(cab), (abc) = —(acb) = —(bca). Due to the same Lemma 1,
(abc) = —[(a=b) VvV (b=1c)V (c=a)].

Lemma 3. In an interimity model there hold

=labe] A (abd) = —lacd], (3)
—labe] A [abd] A [adc] = (a = d), (4)
(abc) A (bed) = (abd), (5)
—[abe] A (adb) A (aec) = d # e. (6)

Proof. Let us suppose for (3), by reductio ad absurdum, [thaf]. Then due to (1)
andB4, (abc) A [acd] = (acb) A —[acd] = [bda] = [abd], but this is impossible.

For (4), —[abc] = (a # b), =[abc] A [adc] = (b # d); now by reductio ad
absurdum,

[abd] A (a # b) A (b # d) A (a # d) = (abd) = (adb)

and then due t84 (adb) A [adc] = [bca] = [abc], but this is impossible.

For (5), due to Lemma 1abc) A (bed) = (a # b) A (b # d). Alsod # a,
because otherwise, dueB@, (bed) = (bea) = (acb) and now, due td@3, —(abc),
which is impossible. Further, due to (1}bc) A (bed) = (bca) A [bed], and now
due toB4 [adb], which is, due to (1), equivalent tabd], but this together with
(a #b) A (b# d) A (d # d) implies (abd), as needed.
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For (6), (adb) = [abd], and now, by reductio ad absurdum, if one supposes
d = e, then(aec) = (adc) = [adc|, and (4) would yield: = d. On the other hand,
due to (1),(adb) = a # d, which gives a contradiction. This finishes the proof.

For a line the following assertions can be proved, which show that in an
interimity model the points, b are not some specific points of a lihg;,, but can
be exchanged by every two of its different pointg. Indeed, there holds

Lemma4.If ¢ € L, andce # a,thenLy. = L.

Proof. This is obvious ifc = b. Otherwis€labc] A (a # b) A (b # ¢) A (¢ # a) =
(abc) and, due td4, (abc) A [abx] = [cxa], thusz € Ly, = © € Lg.. But also
(acb) A [acy] = [bya], thusy € Lyc = y € Lgp.

Using this lemma two times, one obtains

Theorem 5. If in an interimity model two different points d belong to a lineL,;,
thenL.q; = Lgp.

Otherwise, a line is uniquely determined by any two of its different points.
Recall that in the definition of a liné,;, due to (1)[zab] = (zab) V (abx) V
(bxa)V (x = a) Vv (x = b) (note that here = b is excluded). Hence andb divide
the remaining part of.,;, into three subsets: B = {z|(axb)} (note that, due to
B2, ab = ba), 2) a/b = {z|(zab)}, and 3)b/a = {z|(abz) = (xba)}. Hereab is
called theinterval with endsa andb; further,a/b will be called itsextension over
an end alt follows thatL,, = abU (a/b) U (b/a) UaUb, i.e. alineL,, is a union
of an interval, its ends, and its extensions over both ends.

Note that up to now onl31-B4 are used and, in an extreme caSean consist
only of the points of one single ling,;,. Further let alsd5 be taken along. Here
—[abc] means that, b, ¢ are three noncollinear points, i.e. three different points,
not belonging to one line. I&, b, c are noncollinear, then they are said to be the
vertices the intervalsbe, ca, ab the sides(opposite toa, b, ¢, respectively) of the
triangle Aabe, which is considered as the union of all of them. Hefé andb/a
are theextensions of the side abndab U a U b is theclosed side

Note that the subs€l, = Lap U Lac U,y Laz in the definition of a plané,;,.
can be now interpreted as the union of points on the lines, which are detdrmine
by a vertexa of the triangle/\abc and the points of its opposite closed side. The
plane P, itself can be interpreted as the union of the points on the lines, which
are determined by any of the vertices and the points of its opposite closeaf side
triangle Aabc.

The theory of interimity models is rather poor if one is not willing to ad81e-

B5 some new postulate. Some possibilities were indicated above, which will lead
to the betweenness or betwixtness geometries. The added postulates allow no
some interpretations. For instance, the Pasch postulate says that if a linmson
a pointd of the plane of a trianglé\abc, which does not belong to a side or its
extension (e.gd ¢ L), and intersects a side (e.by: in €), and does not contain
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any of vertices, then this line (e.d.4.) intersects also one of the other two sides
(correspondingly iry).
Below analogous interpretations will be given alsoB&randB6.

Remark. The interimity models are in interesting relationship with gemmetry
of geodesicsdeveloped in?%] as a theory of7-spaces.

A G-space is a metric space, i.e. a éetith p : G x G — R™ satisfying
a)p(z,y) =0 ez =y, b)plx,y) +ply,z) = plz,2), €) p(z,y) = p(y, ),
which is ) finitely compact, i.e. the bounded infinite subset§ihave limit points,
and (i) convex in the sense of Mengér: # y) = 3z, p(x, 2)+p(z,y) = p(x,y).

Moreover, for everya € G there must exist a real number > 0 so that
in the set{z|p(a,z) < r} there exists a point distinct from the pointsc
andy with p(z,y) + p(y,z) = p(x,z), and if here forzy, zo there would be
p(y,z1) = p(y, z2), thenz; = z.

The betweenness relation can be introduceddfiigpace by

(xzy) <= [p(z, 2) + p(z,y) = p(z,y)] A (x,y, z are three different points).

HereB2 follows directly from c). AlsoB3 is satisfied. Indeed, if together with
(xzy) one supposelryz), then at the same tim&z, z) + p(z,y) = p(z,y) and
p(z,y) + p(y,z) = p(z, z), but this due to c) would lead tp(y, z) = 0, thus
toy = z (see a)), which is impossible, becausey, = must be different. If the
G-space is not one-dimensional, i.e. neither a straight line nor a circle {4ee [
89), then alsd5 is satisfied.

With B4 the situation is more complicated. Here only a part of it holds in
general. In19], 86 itis proved as (6.6) thdtvzy) A (wyz) < (vyz) A (wzz) (this
follows easily from b)), buB4 as a whole cannot be satisfied in general.

Finally, for B1 the statements (7.4) and (8.5) &f]are substantial. According
to these for every poinp there exists a positive real numbey such that in the
sphereS(p, pp) B1 holds. Consequently31 holds everywhere ip, = oo, i.e. if
geodesics are straight lines.

5. THE BETWEENNESS MODEL

An interimity model will turn into a betweenness model if one a@fsto
B1-B5. The concept of a triangle, introduced in Section 3, allows us to interpret
this B6 in the following way.

The premise-[abc] means that there exists a triangl@bc. The other premises
(abd) A (bec) mean that there aré € b/a ande € be, where the sidéc and
extensiorb/a have a common endpoibht

Note that here the premisesBb differ from those o086 only by the fact that
e € be is replaced by € ac and sobc is changed by the sideéh, which does not
have a common endpoint with the extensbgn.
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It is remarkable that alsB6 is valid in a betweenness model. To prove this,
first some lemmas are to be established.

Lemma 6. In a betweenness model
=labe] A (afb) A (bde) A (cea) = —[def], (7)

i.e. there does not exist a line intersecting all three sides of a triangléc.

Proof. From (6) it follows thatd, e, f are all distinct. Due to Lemma 1 also
a, f,b are all distinct, likec,e,a. As a consequences, f,e are all distinct.
Further,—(afe) because otherwise there would be, du®® (afe) A (cea) =
(aef)Naec] = [feca], (afb)A[fca]l = (afb)A|afc] = [bca], which isimpossible
now. Using permutations, and also (1), one obtaifisfe] A —=[bdf] A —[ced].

Finally, reductio ad absurdum will be used. So, let us supptis§. Then due
to (1),

(def) = (def) v (efd) V (fde).

Here it is sufficient to consider the last case wli¢de), because the other two
differ only by a permutation. Due tB6,

—lafe] A (afb) A (fde) = Tp, (ape) A (bdp);
due toB4,
(ape) A (aec) = (aep) A [aec] = [pca] = [cap],
and similarly
(bdp) A (bdc) = (bdp) A [bdc] = [pcb] = [cpb].
Now due to (4),
—[cab] A [cap] A [epb] = (¢ = p),

thus (ape) A (¢ = p) = (ace) = —(aec), but this contradict§cea). Hence the
supposition is impossible and (7) holds, indeed. This finishes the proof.

Lemma 7.If forab and cd c € ab andbd € cd, thenb € ad andc € ad; otherwise

(acb) A (cbd) = (abd) A (acd). (8)

Proof. First the partacb) A (cbd) = (acd) will be proved as follows.

Due to Lemma 1,B5, andB1, (acb) = (a # ¢) = e, ]ace] and
—lace] = (¢ # e) = 3f,(cef). Due to (1) and (3),(acb) A —[ace] =
(cab) N —[cae] = —[cbe] and(cef) A —[ceb] = —[cfb]. Further, due td2 and
B6, —[bcf] A (bea) A (cef) = 3g, (bgf) A (aeg) and=[cbf] A (cbd) A (bgf) =
3h, (chf) A (dgh).
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Again, due to (1) and (3)aeg) A —[aeg] = —labc] = —[acg]. On the other
hand, (5) giveqacb) A (cbd) = (acd) and now due to (3){acd) A —lacg] =
—ladg] = —[dgal]. So, due tdB6, —[dga] A (dgh) A (gea) = i, (dia) A (heq).

It remains to show that = c. First, due toB4, (cef) A (chf) = (cfe) A
[cfh] = [ceh]; similarly, (hei) A [ceh] = (ehi) A [ehc] = [eic] and (dia) A
(acd) = (adi) A [adc] = [aic]. Now, (4) gives—[cae] A [cai] A [sie] = (¢ = 1),
thus(dia) A (¢ = i) = (dca) = (acd), indeed.

The remaining part follows easilyuch) A (¢bd) = (dbc) A (bca) = (dba) =
(abd). This finishes the proof.

Lemma 8. If for ab and ad ¢ € ab andb € ad, thenb € c¢d andc € ad; otherwise

(acb) A (abd) = (cbd) A (acd). (9)

Proof. First let us prove the part
(acb) A (abd) = (acd). (9"

By the arguments used above one can é@ahd f, so that-[abe] A (eaf), and
theng andh, so that(bge) A (fcg) and(ahe) A (dgh). Due to (7),~[abe] A (acb) A
(ahe) A (bge) = —[cgh], and due to (3)(gcf) A—[gch] = —[gfh]. Now, B6 gives
[hgf] A (hgd) A (gef) = 3i, (haf) A (dei). But herei = a can be established
in the same way as in the previous proof. Thds) A (i = a) = (dca) = (acd),
indeed.

It remains to prove the other pdricb) A (abd) = (cbd). Hereb # c andb # d,
but alsoc # d, because otherwisebd) = (abc) and, due tdB3, =(acb), which is
impossible.

Further,(acb) A (abd) = (bac) A[bad], and this, due t&4, gives|cdb] for three
differentc, d, b, thus(cdb) = (cdb) V (dbc) V (bed). It remains to show that here
only the middle alternative can occur; the other two lead to contadictions.

For (cdb) = (bdc) this follows easily: from the part already provétic) A
(bca) = (bda) = (adb) = —(abd).

For (bed) = (dcb) this is not so easy. Because BS, Bl (ach) = (a #
b) = Je,—(abe) = (e # a) = 3f,(eaf). Now, due to (3),abd) A —[abe] =
—lade] and (bad)—[bae] = —[bde]. From B6 now —[eab] A (eaf) A (ach) =
dg, ((egb) A (fcg)). From the part already prove@ycb) A (abd) = (acd), and
from B6, —[eac] A (eaf) A (acd) = 3h,((ehd) A (fch)). Now, due toB4,
(fch) A (feg) = (fch) A [efg] = [chg], but, on the other hand, due to (7),
—[bde] A (bed) A (bge) A (dhe) = —[cgh]. A contradiction occurs here and this
finishes the proof of (9).

Lemma9.If ¢, d € ab, then eitherc € ad, or d € ac, or ¢ = d; otherwise
(ach) A (adb) = (acd) V (adc) V (¢ = d). (10)

140



Proof. Due toB4, (acb) A (adb) = (abc) A [abd] = [cda] = (cda) V (dac) V
(acd) V (¢ =d)V (d = a)V (a = ¢). Due to Lemma 1, heré = a anda = ¢
are impossible. But als@lac) is impossible, because from (8) it would follow that
(dac) N (acb) = (dcb) A (dab) and, due tdB2, B3, (dab) = (bad) = —(bda) =
—(adb), which gives a contradiction.

Lemma 10. Likewise

(abc) A (abd) = (acd) V (adc) V (¢ = d). (11)

Proof. Due toB4, (abc) A (abd) = (abc) A [abd] = [cda] = (cda) V (dac) V
(acd) V (¢ =d)V (d = a)V (a = c¢). Due to Lemma 1, heré = a anda = ¢
are impossible. But als@lac) is impossible, because from (9) it would follow that
(cba) A (cad) = (bad), and, due tdB2, B3, (bad) = (dab) = —(dba) = —(abd),
which gives a contradiction.

Note that in (10) the premise is, dueB@, symmetric with respect t@, b. Thus

(ach) A (adb) = (bed) V (bde) V (¢ = d). (10"

Here(acd) A (bed) is impossible because it leads, dud® to (dca) A (deb) and
this, due to (11), tddab) V (dba) V (a = b), which contradictgadb) (seeB1, B2
and Lemma 1). Thus

(acb) A (adb) = [(acd) A (bde)] V [(adc) A (bed)] V (¢ = d), (10")

where each component in the conclusion excludes the other two, whichyisea
control.
Now we are able to prove

Theorem 11. Every betweenness geometry is also a betwixtness geotinetrif
B1-B6hold, then alsoB6 holds.

Proof. It must be proved that[abc] A (abd) A (aec) = 3f,((bfc) A (dfe)).
Due to Lemma 1 an®B1, (aec) = (a # e) = 3Ig,(eag). Due to B6,
—[ead] A (eag) A (abd) = 3h,((ehd) A (gbh)). Now from B2 and (8) it
follows that (aec) A (eag) = (cea) A (eag) = (ceg) and again, due td6,
—[ced] A (ceg) A (ehd) = Fi, ((cid) A (ghi)). From (9) andB2 it follows that
(gbh) A (ghi) = (bhi) = (ihb) and again, due t86, —[cib] A (cid) A (ihb) =
37, ((cfb) A (dhf)). Now, due toB2 and (11),(dhf) A (ehd) = (dhf) A (dhe) =
(dfe) Vv (def) vV (f = e), and fromB6 it follows, due to—[abc| A (abd) A (bfc),
that here only(dfe) is possible. This finishes the proof.

The following theorem can be proved now as well.
Theorem 12.The interval ab is not empty but is an infinite subset.
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Proof. Herea # b and, due td5, 3¢, =[abc], thusb # c¢. Due toB1, 3d, (bed),
thus(bed). Now, due to (3){bcd) A —[bca] = —[bda], thus(a # d). The samd31
givese, (ade). Hereb, d,a must be noncollinear, becausgl, ¢ are correct and
otherwise, because 84, b, ¢, a would be collinear, which is now impossible. Due
to B6, —[adb] A (ade) A (deb) = 3f, ((ecf) A (afb)) = f € ab.

The same argument givelg, (ag f) and, due to Lemma %, # f. But from (8),
(agf) A (afb) = (agb), thus alsgg € ab. So this can be continued until infinity.
This finishes the proof.

Theorem 13. For a triangle Aabc, the subset{z|3y, (byc) A (axy)} does not
depend on the reordering of verticesb, c.

Proof. Hereb, ¢ can be interchanged, due B2. Thus only the interchanging of
a, b is to be considered.

Due to (3),-[abc| A (byc) = (cby) A —[cba] = —[cya]. Now, due toB6,
=[eya] A (eydb) A (yza) = Iz, ((cza) A (bxz)). Herea, b are interchanged, indeed.
This finishes the proof.

It is natural to call the subset considered in Theorem 13irtexior of the
triangle Aabe. Here any permutation af, b, ¢ is admissible.

The interpretation of the Pasch postul&ecan be detailed as follows. Its
premises mean that there is a lihg;, which is determined by a poirtof a side
be of the triangleAabe and a pointd of the planeP,,;.. of this triangle, and does not
contain any of its vertices. The assertion is that this line must intersect tbleas
of the other two sides in a poirft (Both of them cannot intersect, because this is
excluded by Lemma 6.) Briefly: if a line in a plane of a triangle intersects one side
and does not contain any of vertices, then it intersects one of the otheside®
(but not both of them).

Theorem 14.In the betweenness geometry the Pasch postulate is valid.

Proof. SinceP,,. = Q, U Qp U Q., the pointd belongs to one of),, Qy, Q.. If
d € Q., then eitherd € L.,, ord € Ly, ord € L., wherex € ab. In the first
two cases one can us®, or B6, for Aabc to obtain the needed poirft or simply
f = d. In the third case one can use the s@Beor B6, for Aaxc, or Azxbe.

Note that inP the vertices: andb can be interchanged. So it suffices to consider
the possibilityd € Q,. The casel € L., was analysed above, bdte Ly, is
impossible now (ther.; would containa andb). Thus only the case remains
whered € Ly, with z € be. If d € a/x ord € x/a, thenB6 or B6 can be
used forAazxb. If d € ax, thenB6 can be used for\azb to obtainh, so that
(ahb) A (edh) and now agaiB6 can be used fof\ahc or Ahbe to obtainf in ac
or be, respectively. This finishes the proof.

Also the following holds.

Theorem 15. In an interimity geometrythe Pasch postulate yieldsB6, i.e. one
can obtain a betweenness geometry addinmstead oB6, to B1-B5.
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Proof. Let us consider the premises®6. Here(abd) means, due to definitions of
Q. and Py, thatd € P,,.. Moreoverd ¢ L., because otherwise,df€ L;., one
would have, due to Lemma 4, thAt. = L4, but on the other hand, hetlec L,
thus L., = Lyg, hence there would bg,, = L., which contradicts the premise
—labc]. Similarlya ¢ Ly, due the same argument. It follows that the premisd? of
are satisfied. The same argument as above gives thathgrgis impossible and
only (def) can occur. This finishes the proof.

Theorems 15 and 11 together give that in an interimity geontetnglds also
B6. This can be proved, of course, also directly using the same argumaint\aes.

Let us stop here temporarily the treatment of betweenness geometry and turn
to our main topic, to the relationship between betweenness and join geometries.

6. FROM BETWEENNESS GEOMETRY TO EXCHANGE ORDERED
JOIN GEOMETRY

If one wants to proceed from betweenness geometry to join geometryasne h
to introduce in(.S, B) first a join operation.

For any two different points, b € S let the joina - b be defined as the interval
ab, i.e. if a # b, thena - b = ab; moreover, let - a = a.

Theorem 16. A betweenness modg, B) with this join operation turns to be a
join space with exchange ordered join geometry.

Proof. One has to show that hedé—J7 are satisfiedJ1 (for b = a) andJ4 follow
directly from the definition of: - a, andJ2 from B2. J1 for a # b follows directly
from Theorem 12.

If in J3 a, b, ¢ are noncollinear, thefu - b) - ¢ = {z|3y, (aydb) A (yzc)} and,
due to Theorem 13, this does not depend on the reorderiaghof, so thatl3 for
this case holds.

If a = b = ¢, then both sides 083 are simplya. If a = b # ¢, then
(@-a)-c=a-c=ac={yllayc)} anda - (a - c) = {z[Iy, (azy) A (ayc)},
but here, due t¢9'), (azy) A (ayc) = (azc), sothata - (a - ¢) = {z|(azc)} = ac
as well. ThusJ3is satisfied. In the remaining casest b = c anda = ¢ # b the
control is similar.

This shows thatS, B) is at least a join system.

Further, ind5-37a/b = {z|b-x D a} is nowa/b = {x|(bax)} for a # b
anda/a = {z|a -z D a} = a. HereJ5 follows immediately fromB1, andJ7
is satisfied trivially. It remains to prove that al36 holds. For this, the following
cases are to be considered.

If a =bandc=d, thena/b=a/a =a,c/d=c/c=c,thusa/b~ c/din I6
means thatt = ¢, sothata =b=c=danda-d=b-c=a,thusa-d = b c,
indeed.

If @ = b, bute # d, thena/b = a/a = a anda/b ~ ¢/d means that € ¢/d,
which is equivalent tqacd), thusa € L.; and, due to Lemma 1, ¢, d are all
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different. Hence, due to Lemma 4,,; = L,. and eithefad C ac orac C ad, SO
thata -d ~b-c=a - c, indeed.

In generala # b andb # d. Now a/b ~ ¢/d means thaBz, (zab) A (xcd).
Here two subcases are to be treated separately.

If z,b, c are noncollinear, then, due to Theorem 11 8@ —[xcb] A (xed) A
(xab) = Jy, (cyb) A (dya), thusy € a-dandy € b- ¢, s0a-d = b - ¢, indeed.

If z,b, c are collinear, theh € L., moreoverd € L., sothatr,b,c,d € L,..
Due to Lemma4l,, = L,. and sincgzab), alsoa belongs to the same line. Here,
due tox € a/bandz € c/d, there exist several possibilities for the allocation of
a, b, ¢, d on this line. For each of them it can be shown that! ~ b - c.

All this shows that(S,B) is a join space. Moreover, its geometry is an
exchange join geometry. Indeed, Lemma 4 shows thatBésesatisfied, because
L, in betweenness geometry ahg in join geometry are the same subsets, as is
seen from their decompositions in Sections 3 and 2, respectively.

Also O is here satisfied. Indeed, three distinch, c of a line are collinear, thus
[abc] = (abc) V (bea) V (cab) holds, but this is exactly C a-c,0orc C b-a=a-b,
ora C c-b=b-c. This finishes the proof.

7. FROM EXCHANGE JOIN GEOMETRY TO BETWIXTNESS AND
BETWEENNESS GEOMETRIES

Let now the converse be investigated. So let one have a join $j5agewith
the exchange join geometry, i.&1—J7andE hold.
In join geometry the pointsay,...,a,, are calledlinearly dependentif
a; C< A1y eeey @j—1, Ajt1, ..., an > fOr somei, 1 < i < m. The set{aq,...,a,}
of linearly independent points for which a4, ...,a, >= S is called thebasisof
exchange join geometry and— 1 is called itsdimension(see f], Section 11.6).
The betweenness relatidn.) in join geometry is introduced as follows (see
Section 1 above):

(abc) =(a#c)ANbCa-c.

Theorem 17. The betweenness relation turns a join sp&se-), with exchange
join geometry and dimensian 1, into a betwixtness model.

Proof. HereB1 and B2 follow immediately fromJ1 andJ2. To establish that
B3: (abc) = —(acb) holds, let us use reductio ad absurdum. So let together
with (abc) also (acb) hold; in terms of join geometry, at the same time# c,
b Ca-c andc C a-b. From this, by eliminating and usinglJ3, J4, one would
getcCa-(a-c)=(a-a)-c=a-c Soc C a-c, butthis contradicts Theorem 4.9
in [6], which asserts that if # ¢, thena - ¢ 2 a, c. (The proof of this assertion by
reductio ad absurdum is simple: suppaesez O c; then due taJ2 ¢ - a D ¢, thus
a C ¢/c = cbyJ7, thatisa = ¢, but this contradicts the supposition.)

For B4 we have first to interprefabc) = (abc) V (bca) V (cab). This means
thata, b, c are all differentandb C a-¢)V (c C b-a)V (a C c¢-b). Thus
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[abd] = (b C a-d)V(d Cb-a)V(aCd-b)V(a=0b)V(b=d)V(d=a). Sincein
B4 a # b, buta/b in both join and betweenness geometries is the same set (indeed,
a/b = {z|b-x D a} = {z|(zab)}; cf. Theorem 10), alse ab > and L, is the
same set, as follows from their common decompositioo (a/b) U (b/a) Ua Ub.
Hence inB4 (abc) A [abd] is equivalent to(c,d C< ab >) A (¢ # a). Now
due t0oE < ac >=< ab > and sinced € Ly vyieldsd € L., due to
Lay=< ab >=< ac >=L,,, S0[dac] = [cda], as is needed iB4.

B5 is a consequence from the assumption that dimension of the join space
is> 1.

Finally, B6 follows from J6. Indeed,—[abc| A (abd) A (aec) means in join
geometry that, C b/d anda C e/c, sothath/d ~ e/c. Due toJénowb-c ~ d-e,
thus f exists so thaf C b-candf C d-e. Remembering here the definition of
betweerin join geometry, one sees thdtfc) A (dfe), as is needed faB6. This
finishes the proof.

Recall that among exchanged join geometries there are ordered join gesmetr

Theorem 18.Every ordered join geometry is also a betweenness geometry.

Proof. An ordered join geometry, as well as an exchanged join geometry, is also
a betwixtness geometry, as was just established in the previous theoreflj, In [
Section 12.23, Exercise 2, it is asserted that in ordered join geometrypweore

the Pasch postulate is valid. (Here it can be noted that Pasch postulate is
the same for the join space and the interimity model because the line is the
same, as is established above, and likewise the plane is the same. Indeed, the
decompositionP;,. = Q. U Qp U Q. in interimity model holds also for ordered
join geometry, as follows from Theorem 12.20 6f,[namely from its particular
case for< a1, as,as >.) Further, it is easy to prove thRtyieldsB6. Indeed, the
premises-[abc] A (abd) A (bec) of B6 say thatd ande satisfy the conditions stated

in premises oP. So also the assertion Bfis valid. But(afb) is here impossible,
because thed C< ab > andf C< ab > would hold in this join geometry, thus
due to Theorem 11.1 irf] one would have< de >=< ab >, which contradicts a
premise ofP. This finishes the proof.

Note that there exist examples of exchange join geometries which are not
ordered join geometries. One such simple example is givef],irBpction 12.1,
for dimension 1, but there are indicated also other examples in dimensiome
of these can be found i), pp. 62—-68. Among the last examples there exist also
the betwixtness geometries which are not betweenness geometries. Teglsab
although Pasch postulate yields b8®andB6 as was established abo¥6 does
not yield B6.

At the present time betwixtness geometry is not as profoundly developed as
betweenness geometry.
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8. LINES AND PLANES IN A BETWEENNESS 3-SPACE

Theorem 14 shows that in a betweenness geometry one can use albtsonce
and results of an exchange ordered geometry, as derivéfl iNpte that many of
them are given alredy in'f].) In particular, a subset inear if it is closed under
extension ({], Section 6.3). INL =< a1, ...,a,41 > the pointsay, ..., a, 1 are
linearly independent if no fewer than+ 1 of them generaté (in the sense that
is their linear hull). Then they form basisof L andn is called thedimensionof
L; the denotatiom = d(L) will be used (f], Section 11.6). So every link = L,
has dimension 1, every plarde= P,;. has dimension 2. Al of dimension 3 is
called a 3space

Theorem 5 above has the following generalization (given fh &s
Theorem 11.8):

Theorem 19. Let aq,...,a,+1 be linearly independent. Then there is a unique
linear subset of dimensionn which contains aq,...,a,+1, namely
< ai, ..., Ap41 >

Forn = 2 andn = 3 this was established earlier it [(as Theorems 18 and
29, respectively).

Let us consider further a 3-spaéeand prove the following assertion (se$, [
Theorem 30).

Theorem 20. If two planes of &-space L have a common pointthen they have
one more common point g # p, thus a common liné.,,,. If these planes do not
coincide then all of their common points belong to this lihg,.

Proof. Let the first plane be determined aspab > and the other as pcd >.
On the first pointse and f can be taken so thdbpf) A (afe). Then the 3-
space considered i5 =< abce > and is determined by the tetrahedron with
verticesa, b, ¢, e, edgesuib, be, ca, ae, be, ce, and faceabe, abe, bee, cae; here, e.g.,
abc = (a - b) - ¢ (using join geometry notations) is the interior &fabc and due
to Theorem 13 (083) does not depend on the reorderingaob, c. The opposite
edges and faces are defined as usual, i.e. not having a common vertex.

For d there are, with respect to the tetrahedron above, the following four
possibilities: d is collinear with 1) two vertices, or 2) one vertex and one point
of some of its opposite edge, or 3) one vertex and one point of its oppasie f
or 4) one point of an edge and other point of the opposite edge. (Thisvio
from [6], Theorem 12.20, which for. = 4 is the nearest generalization of the
statements above that, = abU (a/b) U (b/a) UaUband P = Qo U Qp U Qq;
see alsol], Theorem 2.)

For the first possibility, one of the verticesb, e is ¢. For the second possibility,

q is one of the points of the edges, ae or be.

In the third possibility, the vertices must be considered separately. c For
the point of its opposite facebe, collinear with ¢, d, is indeed the desireq.
For b, let the point oface, which is collinear tob, d, be denoted by. Now
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=[bpd] A (bpf) A (bgd), thus, due tdB6, 3h, (phd) A (fhg). Forg, as a point of the
interiorace of Aace, there exists so that(aie) A(cgi). Now —[ig f]A(ige) A(ghf),
and due tdB6 3q, (iqf) A (chq). Thisq is the other point needed. For the remaining
two vertices the situation is analogous.

In the fourth possibility, letl be collinear to points andv of egdesic andbe,
respectively. Herd,,, C P, and eithew C Ly, theng = a, or, in view of Pasch
postulate L, intersects one of the other two edgésandae. Let it intersecte in
w, SO that(vpw). Now —[vuw] A (vud) A (vpw) and, due tdB6, 31, (ufw)A(dfp);
further,=[auw] A (auc) A (ufw) and thus, due t86, 3q, (aqw) A (c¢fq). Thisgis
now the point needed.

The other pairs of opposite edges can be reduced to this previous gase b
reorderinga, b, e.

Together with pointg andg, both planes above contain also the ling. If we
suppose that these planes have a common point outsidethithen these planes
would coincide due to Theorem 19, which is impossible. This finishes thd.proo

The set of all lines through a fixed poiatis called abundleof lines; o is its
centre The planes through are called théundle planes

Due to Theorem 20 every two different bundle lines determine a bundle plan
containing theses lines, and two different bundle planes in a 3-spacecicitén a
bundle line. Hence the bundle of lines in a 3-space turns tofrejactive plane
interpreting its lines and planes as the “points” and (straight-)“lines”. Thgn
and P,;, will be denoted byA and A B, respectively. The analogue of a “triangle
is then atrihedron angleAABC, its “vertices” A, B, C' are then theedge lines
The bundle planes through two different edge lines of a tetrahedrde aregthen
called theface planesAB, BC, andC A.

Theorem 21 (the Desarguesian theorem)lf between the edge lines of two
tetrahedron angle\ ABC and A A’ B'C’ of a bundle of linegwith centreo) in a
3-space there is a one-to-one correspondeAces A’, B — B’, C — (', such
that the bundle planed A’, BB’, andCC’ intersect in a bundle liné,; = D, then
the intersected lined BN A'B’, BCNB'C’,andCANC’ A’ of the corresponding
face planes belong to a bundle plane.

Proof. Let a,d’,d be chosen orl,, = A, Loow = A, Lo,g = D so that(add’).
Further, letb, b’ be chosen o, = B, L,y = B’ so that(dbb'), andc, ¢’ on
Loe = C, L, = C' so that(ded'), bute & P,pq. Here Py # Puyr. Moreover,
=[a'b'd] A (a’da) A (dbb'). Due toB6, 3p, (a'pb’) A (abp).

Also —[dbc] A (dbb') A (dd'c). Due toB6, dq, (bgc) A (b'qc’). Similarly,
=[adc] A (ada’) A (dec’). Due toB6, 3r, (arc) A (a'c'r).

Now ABNA'B' = Ly, BOCNB'C' = Loy, CANC'A' = L. Herep, ¢, r are
common points of two different pland3,,. and P, ./, therefore they belong to a
line, thusL,,, L.q, Lo belong to a bundle plane, indeed. This finishes the proof.

Also the converse holds.
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Theorem 22(the converse Desarguesian theorelffetween the edge lines of two
tetrahedron anglea\ABC and A A’ B’C’ of a bundle of linegwith centreo) in a
3-space there is a one-to-one correspondedces A’, B — B’, C — C’, such
that the intersect lined BNA’B’, BCNB'C’,andC ANC" A’ of the corresponding
face planes belong to a bundle plarieen the bundle planed A’, BB’, and C'C’
intersect in a bundle liné.,; = D.

Proof. Let AA'N BB’ = D = L,4. It must be established th&tC’ > D. To this
end, letC'D N C’ A’ be denoted by;. It suffices to prove that; = C’.

Now for the trihedron angle& ABC and A A’ B'C the premises of Theorem
21 are satisfied. Thus the intersected lidé8 N A’B’, BC n B'C;, and
CANCLA" = C'A’ of the corresponding face planes belong to a bundle plane.
But now on the same bundle plane lies ai$6' N B’C’. This means thaB’C’ and
B’'Cy intersectBC on the same bundle line and hence coincide. It follows that also
C, = C'. This finishes the proof.

Theorem 23. If in a 3-space among the points a’/,b,b,c,c/,d,d any three
are noncollinear andl) ¥/ € Puy, 2) ¢,d € Pugn, 3) ¢ € Py N Pyye,
Nd € P,ygN Pyg, 5) Py N Py # 0, thene, d, ¢, d' belong to a plane.

Proof. If L., and Ly, intersect in a poinb, then P, N Py > o. Due to
Theorem 20 the intersection lid&,,.. N Py goes throughl. The same holds also
for P,,4 N Pyyg and so the assertion is valid.

If L, N Lyy = (), one can chooseso that(abp) andd’ € Ly so that(a't'p).
Due to premise 5) and Theorem 29,,,, N P4 is a line, on which points ande’
can be chosen so thay, (bge’) A (b'ge). Due toB6, 3r, (a’re) A (pgr).

Let us consider, in the bundle of lines with centr¢he trihedrons determined
by a,b, e’ and bya’, V', e, respectively. The bundle planés,,/, Py, and P...
intersect in a bundle lind .. Due to Theorem 21 the intersection lines of the
corresponding face planes belong to a bundle plane. It followslthat> » and
so, in the bundle of lines with centig the corresponding face planes of trihedrons,
determined by:, b, ¢ and bya’, V', e, intersect in lines belonging to the bundle plane
Py,4. Now, due to Theorem 22, the bundle planes of the correspondindiedge
among them als@,,./, intersect in the bundle liné ;. But this P, contains
both L. and L4y . This finishes the proof.

9. LINEARLY ORDERED SKEW FIELDS AND COORDINATES

A well-known construction allows us to introduce coordinates in the progctiv
space as points-symbols, and to define the addition and multiplication operations
for these symbols, using the Desarguesian postulate, so that as a rekaiv a
field is obtained (se€]], also P®] and [*%], Ch. 20). By this and Theorems 21—

23 one can introduce the coordinates from a linearly ordered skew figldHa
betweenness geometry (and due to Theorems 16 and 18 also into thalgoitere
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geometry) so that the considered model (join space) is isomorphic to axconve

region of a linear space over an linearly ordered skew field.

What follows shows shortly how to realize this programme.

The bundle of lines with centre in a 3-space was considered above as a
projective plane, wheré,,, L., ... are interpreted as the “pointgl, B, ..., and
P, is interpreted as a (straight) “line3 B. In [>7], Ch. VI, §5, two constructions
are given.

Let on a “line” AB three “points”O, E, U be given so thal/ is different from
A, B. The “points” P, () can be chosen so th& ), U are “collinear” (i.e. belong
to a “line”).

I. In general, letR, S be chosen so thak, P, A are “collinear”, @, R,O are
“collinear”, S, @, B are “collinear”, andR, .S, U are “collinear”. Thenl; on
AB, which is “collinear” with P and S, is interpreted a7 = A + B.

In [27], Ch. VI, §85, 7, it is proved that the allocation &f depends only on
0,U, A, B and does not depend on the choiceHf), “collinear” with U. 1t is
also established that + B = B + A and that the “points” of “line”A B, excluding
U, with respect to this “+” constitute a commutative group. (Note that if we turn
the projective plane into an affine plane with “improper pofiiits, )", the above
construction turns to the parallel transport of the segrif@h, so thatO coincides
with A, i.e. to the classical addition of segments.)

II. In general, letR,S be chosen so thatk, P, A are “collinear” and
S, @, B are “collinear” as above, but no@, R, E are “collinear” andR, S, O
are “collinear”. ThenT;; on AB, which is “collinear” with P and S is
interpreted ag7; = A - B.

In [27], Ch. VI, 885, 7, it is proved that the allocation f; depends only on
O, FE,U, A, B and does not depend on the choicag®t), “collinear” with U, also
that with respect to “+” and-* the “points” of “line” AB, excludingU, constitute
a skew field. Her® andE are in the role of neutral elements, i.e. of null and unit,
respectively. It is established as well that if one alters the allocatian &f, U on
AB, the new skew field is isomorphic to the previous one.

Now the coordinates from the skew field can be introduced into a betwegnne
space of dimensior 2 as follows.

Let first a 3-space be considered. There exist four linearly indigrgrpoints
ap, a1,a2,a3. One can choose a poiatwhich does not belong to any of four
planes, determined by some three of them.

Considering the bundle of lines with centsg, i € {1,2,3}, and denoting
La,ao = Oi, La;a; = Uy, Where the indices, j, k have three different values, one
can takel’, q;a; N Pea;a, iN the role ofE;;, and introduce on the “line” of “collinear”
O;, Eji, Uy, excludingUy, the structure of a skew fielld ;.. HereK;, andK;;, are
isomorphic, as is shown ift]], Ch. VI, §86, 8, where the isomorphism is denoted
by T7; also K}; and K, are isomorphic with isomorphisti/* = Hj;.. Thus
there exists a skew field which is isomorphic to all of them and which is called
in [27] the skew fieldK of this geometry.
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Let = be a point not belonging t&,, 4,a5- TheNLa,z;, = Pagasa; N Prasay, 1S
a “point” X; ;. of the “line” O; E},, which does not coincide with’;, and thus is an
element ofK'. Here actuallyX; ;, does not depend dn i.e. X; ; = X, = X;, as
is shown in }] using Theorem 23.

TheseX1, Xo, X3, as elements oK, represent in a 3-space theordinatesof
the pointz, not belonging taP,, 4,4, With respect to thérame{apaiazas; e}.

In the betweenness model (equivalently, in a join space with ordered join
geometry) also of dimension > 3 by means of analogous construction one
can introduce the coordinates from a skew fiétd with respect to a frame
{apai...an; e}, where the pointsy, aq, ..., a, are linearly independent, andis
linearly independent with eveny of them.

Note that the projective part of this for bundles of lines with centrgs.., a,
can be found in{"], Ch. VI, §8, where also the following is proved.

Theorem 24. Every projective space of dimensian(either withn > 2 or the
Desarguesian theorem holdsan be represented in the form Bf (K'), which is a
set of points being in bijection with the equivalence classds’ii! \ {0}, where
K" = {(zo,21,...,z0)}, 7 € K, i € {0,1,...,n}, {0} = (0,0,...,0) and
equivalence is determined lby}) ~ (z;) <= 3\, z = Az;.

To be more concrete, let us return to a 3-space, considering it withatespe
to a frame{apajazas;e}. The coordinates abov&;, X5, X3 for a point =
are connected with projective coordinates x1, x2, x3 for bundles of lines with
centresuy, az, as by X; = z; : xg, ¢ € {1,2,3}. Now to the pointsc of the plane
P, 4505 (these were left out above, but in projective coordinates they areniet
by z¢ = 0) one can ascribe the symbals/0, wherez; are the last three projective
coordinates of a point of.,,.. In [>7], Ch. VI, 88, Theorem lll, it is proved
that three points, b, z with projective coordinates, respectively, a1, a2, as),

(bo, b1, ba, b3), (x0, x1, 2, x3), are collinear if and only if the rank of3x 4-matrix
of these coordinates is less than 3. For differeandb this means thatz,,) is a
linear combination of linearly independefat, ) and(b,, ), i.e. there exish, u € K
such thatr, = Aaq + pba, a € {0,1,2,3}. ForX; = z;/x0, ¢ € {1,2,3}, this
gives X; = MA; + uB;, where\ = X\ag/(Aag + pbg), i = ,ubo/()\ao + pubo),
A; = aifag, andB; = b;/by. HereX + i = 1 so thatX; = AA; + (1 — \)B;.
For A = (1,0,0) = a; andB = (0,0,0) = ao this givesX = (\,0,0). In
betweenness geometry (and also in ordered join geometry) thelling (the
line < ajag >, respectively) is a linearly ordered set of points. Hence the skew
field K of this geometry is a linearly ordered skew field, angith coordinates
X; = M, + (1 - )\)B; is between the poinisandb with coordinates, respectively,
A; andB; ifand only if 0 < X < 1inthis K.

Note that there can be tripléX;, X, X3) which do not determine any point in
the betweenness geometry. Namely, the lines, determinéd’hyXs), (X3, X1),
and(X1, X») in bundles of lines with centres, respectively, a2, andas, need not
intersect in a point, but only belong to a plane for every pair (and so determine a
new object, a so-calleidieal or non-properpoint). Hence, one can obtain instead
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of the wholeK™ only a region of it, which for the betweenness geometry must be
convex, of course. (For join geometry it is noted, e.g.5in$ection 2.9.)
In general, for a betweenness geometry (ordered join geometry) of giomen
n > 3 the result is the same, only in the deduction abowe {1, ...,n}. All this
can be summarized as follows.

Main Theorem. A betweenness modgbin space with ordered join geomejrgf
dimensionn > 3 is isomorphic to a convex region of a linear spak& over a
linearly ordered skew field, where the betweenness is determined as above.

Remarks

1. The Main Theorem is formulated for a betweenness modé] imifh a sketch
of proof. For an ordered join geometry it is probably new, as far asnegvk
at least we cannot find it in the monogragh [

2. The betweenness geometries (ordered join geometries) of dimensioB,
for whose bundles of lines the Pappus theorem is valid, corresponddagbe
when in the Main Theorerk is commutative, i.e. reduces to an ordered field
(see f], Ch. V, §8).

3. The betweenness planes (if][called Lumiste planes have not been
investigated sufficiently up to now. At least the Main Theorem above does
not hold forn = 2, in general, because there exist non-Desarguesian planes.
One such example, given iA’], is described in‘{] (1930), §23, and¥],

Ch. VI, 82. Another example is given id%], §12: a paraboloid = xy in
EuclideanE?, where(abc) for its points means thatis betweer: andc on
the geodesic line through the latter two (see até}) [

4. Due to f7], Ch. VI, 89, Theorem 1, non-Desarguesian Lumiste planes are
also non-Pappian.
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Uhenduvuse ja vahelsuse geomeetria vahekord
Ulo Lumiste

Prenowitzi ja Jantosciaki mahukas monograafia aastast 1979 Uheedyso-
meetriast kasitleb pdhiosas kumerate hulkade geomeetriat, kuid puudutab ka
lineaargeomeetriat ja vahelsuse relatsiooni. Viimane oli (koos punkti mdjstega
vOetud eesti matemaatikute J. Sarve, J. Nuudi ja A. Tudebergi (Humaddt) po
1930. aastail arendatud geomeetria aluste ainsaks p8&himdisteks. Selil alus
tootas kdesoleva artikli autor 1964. aastal valja soliidse vahelsuse geemee
kui vahelsuse mudelite teooria, kuid sellal leidis see avaldamist ainult vahese
rahvusvahelise levikuga valjaannetes. Nuud, mil talle sattus katte 1978. aas
monograafia, kasitleb ta artiklis nende kahe geomeetria vahekorda. |duesti
antud vahelsuse geomeetria llhitutvustus vajalikus ulatuses, kusjuuresadteln
on vélja arendatud selle alaosad. P6hiosas on tbestatud, et vahelsowega
on Uhtlasi jarjestatud henduvuse geomeetria, ja vastupidi: vahetuslikiiihese
geomeetria langeb kokku vahelsuse geomeetria lihe alaosaga, kuidadpetsia
jarjestatud Uhenduvuse geomeetria kogu vahelsuse geomeetriaga. ditlasi
naidatud, et viimases, kdrgema kui kahe mé6tme juhul, kehtib Desargueséta
ning seetdttu on vastav mudel isomorfne kumera hulgaga samamdoftmelises
lineaarses ruumis Ule teatava, taielikult jarjestatud kaldkorpuse.
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