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Abstract. A treatment of join geometry was elaborated by Prenowitz andJantosciak in a
voluminous monograph of 1979 (Join Geometries. A Theory of Convex Sets and Linear Geo-
metry), which in most part deals with the theory of convex sets but touches also upon linear
geometry and the betweenness relation. The latter relationwas taken as the only basic notion
(besides the notion of point) by the Estonian mathematicians J. Sarv, J. Nuut, and A. Tudeberg
(Humal) in their treatment of the foundations of geometry inthe 1930s. A solid betweenness
geometry as a theory of betweenness models was worked out by the author of the present
paper in 1964 but it appeared in publications not widely available. On the basis of the
1979 monograph, the author analyses the relationship between these two geometries. First,
betweenness geometry is recapitulated, and then the more general interimity and betwixtness
geometries are introduced. It is proved that a betweenness geometry is at the same time an
ordered join geometry, and conversely, an exchanged join geometry is a betwixtness geometry,
but the more special ordered join geometry coincides with betweenness geometry. In higher
than two dimensions the latter is Desarguesian and leads to aconvex region in a linear space
over an ordered skew field.
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1. INTRODUCTION

After having about fifty years ago completed his investigations into
betweenness geometry (see [1,2], based on [3−5]) and carried on with problems of
differential geometry, the author recently stumbled upon an interesting monograph
by W. Prenowitz and J. JantosciakJoin Geometries. A Theory of Convex Sets and
Linear Geometry(see [6]). The present paper is the author’s reaction to that event.

The betweenness relation has fascinated the investigators for a long time.
Already C. F. Gauss in his letter to F. Bolyai (6 March 1832; see [7], p. 222)
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pointed to the absence of betweenness postulates in Euclid’s treatment. Elimination
of this defect was started fifty years later by Pasch [8]. Further development of the
logical foundation of synthetic geometry in the 19th century (through the works
of G. Peano, F. Amodeo, G. Veronese, G. Fano, F. Enriques, and M.Pieri) led
to Hilbert’s fundamentalGrundlagen der Geometrie[9], where the betweenness
relation is subjected to theaxioms of connection and of order(I 1–7, II 1–5 of
Hilbert’s list), called by Schur [10] theprojective axiomsof geometry.

In the first decades of the 20th century axiomatics of the betweenness relation
was investigated in the U.S. by Moore [11] and Veblen [12] in the framework
of these projective axioms. They indicated also some redundancy in Hilbert’s
axiomatics, which was taken into consideration by Hilbert in the following editions
(e.g. in the seventh edition of [9]). In addition, the standpoint was developed that
the lines and planes can be considered as sets of points and that special axioms of
connection are expedient only for lines (not for planes, because all requisites for
them can be deduced). Note that this standpoint was not accepted by Hilbert in
the following editions of hisGrundlagen, but was afterwards adopted in the U.S.
by Huntington [13−16], who in 1926 gave an elaborated system of axioms for the
betweenness relation, but only in dimension 1, i.e. for the case of a line.

This standpoint was developed further in Estonia, first by Nuut [17] for
dimension one (as a geometrical foundation of real numbers) and afterwards by
Sarv [3] for an arbitrary dimensionn. Extending the Moore–Veblen approach,
Sarv proposed a self-dependent axiomatics for the betweenness relation, so that
all axioms of connection, including also those concerning the lines, became the
consequences. This self-dependent axiomatics was simplified and then perfected
by Nuut [4] and Tudeberg (from 1936 Humal) [5]. As a result an extremely simple
axiomatics was worked out for then-dimensional geometry using only two basic
concepts: “point” and “between”.

The author of the present paper developed in [1] a comprehensive theory of
the models of betweenness, based on this axiomatics. At the same time it was
proved in [2] that in dimension>2 this model reduces to a convex domain in
n-dimensional linear space over an ordered skew field. Later Pimenov [18] (in
Appendix: Local betweenness relation) called the perfected axiomatics theHumal–
Lumiste axiomaticsand its model in dimension 2, when the above result cannot be
used, theLumiste plane. As a whole, the theory of these models, including also the
Huntington–Nuut theory for dimension 1, can be called thebetweenness geometry.

Approximately at the same time, Rubinshtein [19−21] developed (together
with Rutkovskij) a theory ofaxial structures, which is tightly connected with
betweenness geometry and uses some of its results (with exact references to [1,2]).

Independently also another approach, independent of the axioms of connection,
was evolved. In [22], Schur tried to work out a part of geometry based on the
basic concepts of “point” and “line segment” (Ger.Strecke). This approach was
elaborated by Prenowitz [23] (see also [24,25]). The segment was considered as the
“join” of its endpoints, and so thejoin operationwas introduced in the set of points.
In the monograph [6] a completejoin geometryof thesejoin spaceswas developed.
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The aim of the present paper is to investigate the relationship between the join
and betweenness geometries. In join geometry we can rest on [6]. The essential part
of it is summarized here in Section 2 (and also afterwards). Since the publications
about the betweenness geometry are not widely available (a great deal of them are
written in Estonian, namely [1,3], or in Russian, e.g. [2,18]), we have to recapitulate
here in Sections 4 and 5 the outlines of this theory, relatively little known at
present. Meanwhile, in Section 3 the earlier betweenness geometry is separated
into some parts having in mind the later join geometry. So theinterimity models
andbetwixtness geometry1 are introduced separately.

The main topic is treated in Sections 6 and 7. It is shown that the betweenness
geometry is at the same time the ordered join geometry. Conversely, the exchanged
join geometry is a betwixtness geometry, but the more special ordered join geo-
metry is a betweenness geometry.

In Section 8 a relationship with the projective geometry is established and the
Desarguesian theorem is proved together with its converse. Finally, in Section 9,
the Main Theorem is proved, asserting that in higher than two dimension the
betweenness geometry (ordered join geometry) is Desarguesian and leads to a
convex region in a linear space over an ordered skew field.

2. JOIN SPACE AND JOIN GEOMETRY

Following [6], let us consider the pair(S, ·) of a setS and an operation· , which
assigns to any ordered pair(a, b) of elements ofS a subset ofS, denoted bya · b
and called thejoin of a and b. For any pair(A, B) of subsets ofS the setA · B
determined by

A · B =
⋃

a∈A,b∈B

a · b,

is called thejoin of A and B.
The pair(S, ·) above is called ajoin system(see [6], Sections 2.2 and 2.3) if

J1 : a · b 6= ∅; J2 : a · b = b · a; J3 : (a · b) · c = a · (b · c); J4 : a · a = a,

where inJ3 (a · b) · c is, of course, the join ofa · b and c. Further, the subset
a/b = {x|b · x ⊃ a} is called theextension of a from b, and letA ≈ B mean that
A andB have a nonempty intersection, i.e. that they have a common element.

The join system is called ajoin space(see [6], Section 5.1) if, moreover,

J5 : a/b 6= ∅; J6 : a/b ≈ c/d ⇒ a · d ≈ b · c; J7 : a/a = a.

1 Here the word “betwixt” has been in mind (which, according todictionaries, is now archaic
except in the expressionbetwixt and between), as well as the word “interim”.
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The theory of join spaces, called thejoin geometry, is developed in the
monograph [6]. Mainly the properties of convex sets, in particular of linear sets,
and of convex (resp. linear) hulls are considered.

Here a setA is called aconvexset if A ⊃ x, y implies A ⊃ x · y (see [6],
Section 2.9). A convex setA for which A ⊃ x, y implies A ⊃ x/y is called a
linear set (see [6], Section 6.2). The least linear set which contains a given setA
is called thelinear hull of this given set and denoted by< A > ([6], Section 6.8).
The linear hull of two distincta andb is called theline < ab >. It is established
in [6] (Section 6.10, (2)) that

< ab >⊃ a · b ∪ a/b ∪ b/a ∪ a ∪ b.

If J1–J7are complemented by

E : (c ⊂< ab >) ∧ (c 6= a) ⇒ (< ac >=< ab >),

then the join geometry is called anexchange join geometry(see [6], Section 11.1).
In such a geometry the linear hull of threea, b, c, not in the same line, is called

aplane< abc > (see [6], Section 11.6).
In a join geometry thebetweennessrelation is introduced by the following

definition (see [6], Section 4.23): supposex ⊂ a · b anda 6= b; then we sayx
is betweena andb, and write(axb).

Finally the followingorder postulateis added in [6], Section 12.1:

O. For every three distincta, b, c of a line eithera ⊂ b · c, or b ⊂ a · c, or c ⊂ a · b,
i.e. at least one is between the two others.

If O is added toJ1–J7, then the join geometry is called theordered join
geometry. In this geometry (see [6], Section 12.3)

< ab >= a · b ∪ a/b ∪ b/a ∪ a ∪ b.

It is established in [6], Section 12.2 that an ordered join geometry is an exchanged
join geometry, but the converse is not valid: there exist examples of exchanged join
geometries which are not ordered join geometries (see also [23], pp. 62–68).

3. BETWEENNESS GEOMETRY AND RELATED MODELS

The independent concept of betweenness model was introduced more than 40
years ago in [1,2], following [3−5]. Having in mind the join geometry, it is more
convenient to separate the definition into some parts as follows.

Let S be a set, and let there be given a subset B inS × S × S (i.e. aternary
relation for S). Further(abc) will mean that(a, b, c) ∈ B and thenb is said to be
betweena andc. Moreover, let us denote

〈abc〉 = (abc)∨(bca)∨(cab); [abc] = 〈abc〉∨(a = b)∨(b = c)∨(c = a). (1)
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The triplet(a, b, c) is said to becorrect if 〈abc〉, andcollinear if [abc]. The subset
{x|(axb)} is called anintervalab with endsa andb.

Let us start with a preparatory concept. The pair(S,B) is called aninterimity
modelandB an interimity relationif

B1 : (a 6= b) ⇒ ∃c, (abc); B2 : (abc) = (cba);

B3 : (abc) ⇒ ¬(acb); B4 : 〈abc〉 ∧ [abd] ⇒ [cda]; B5 : (a 6= b) ⇒ ∃c,¬[abc].

The basic concept will be introduced by the following definition: if in an
interimity model(S,B), in addition,

B6 : ¬[abc] ∧ (abd) ∧ (bec) ⇒ ∃f, ((afc) ∧ (def)),

then this(S,B) is called abetweenness modelandB is said to be abetweenness
relation (see [1,2]).

A subsidiary concept gives now the following definition: if in an interimity
model(S,B) B6 is replaced by

B6̄ : ¬[abc] ∧ (abd) ∧ (aec) ⇒ ∃f, ((bfc) ∧ (dfe)),

then this(S,B) is called abetwixtness modelandB is said to be abetwixtness
relation (see the footnote1 above).

The connecting instrument for the betweenness and betwixtness models is the
so-calledPasch postulate

P : ¬[abc] ∧ (bec) ∧ (d ∈ Pabc) ∧ (d 6∈ Lbc) ∧ (a 6∈ Lde)

⇒ ∃f, (f ∈ Lde) ∧ [(afb) ∨ (afc)],

whereLab = {x|[xab]} is alinedetermined bya, b, a 6= b, andPabc = Qa∪Qb∪Qc

with noncollineara, b, c andQa = Lab ∪ Lac

⋃
x∈bc Lax is aplanedetermined by

thesea, b, c (and obviously not depending on their reordering).
It will be proved in the present paper that every betweenness model is ajoin

space with an exchange ordered join geometry. On the other hand, everyjoin
space with exchanged join geometry is a betwixtness model. As a corollary, every
betweenness model is also a betwixtness model. This last result can be established
even directly: for every betweenness model alsoB6̄ holds and, moreover, also the
Pasch postulateP is valid.

4. THE INTERIMITY MODEL

It is natural to start with the interimity model.

Lemma 1. If in an interimity model(abc), thena, b, c are three distinct points.
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Proof. Indeed,B3 excludesb = c, and together withB2 excludes alsob = a.
Finally, a = c is impossible as well, because ifc = a, thenb 6= a and due toB5
∃d,¬[abd], but on the other hand,(abc) ⇒ 〈acb〉 and(a = c) ⇒ [acd], and these
together imply due toB4 that[dba] = [abd], but this contradicts¬[abd] and finishes
the proof.

If a triplet a, b, c is correct, i.e.〈abc〉, then due to Lemma 1 herea, b, c are three
different points and due toB2, B3 only one of them is between the two others.
Recall that if[abc], thena, b, c are said to be collinear. It is obvious that correctness
and collinearity of any threea, b, c does not depend on their order, i.e.

〈abc〉 = 〈bca〉 = 〈cab〉, [abc] = [bca] = [cab]. (2)

Lemma 2. In an interimity model leta, b, c be collinear, i.e. [abc] and so(1) holds.
Here only the following four possibilities occur:

1) (a = b) ∨ (b = c) ∨ (c = a), 2) (abc), 3) (bca), 4) (cab).

Each of them excludes the three others.

Proof. The first possibility follows from Lemma 1. Due toB2, B3, (abc) =
(cba) ⇒ ¬(cab), (abc) ⇒ ¬(acb) = ¬(bca). Due to the same Lemma 1,
(abc) ⇒ ¬[(a = b) ∨ (b = c) ∨ (c = a)].

Lemma 3. In an interimity model there hold

¬[abc] ∧ 〈abd〉 ⇒ ¬[acd], (3)

¬[abc] ∧ [abd] ∧ [adc] ⇒ (a = d), (4)

(abc) ∧ (bcd) ⇒ 〈abd〉, (5)

¬[abc] ∧ (adb) ∧ (aec) ⇒ d 6= e. (6)

Proof. Let us suppose for (3), by reductio ad absurdum, that[acd]. Then due to (1)
andB4, 〈abc〉 ∧ [acd] = 〈acb〉 ∧ ¬[acd] ⇒ [bda] = [abd], but this is impossible.

For (4),¬[abc] ⇒ (a 6= b), ¬[abc] ∧ [adc] ⇒ (b 6= d); now by reductio ad
absurdum,

[abd] ∧ (a 6= b) ∧ (b 6= d) ∧ (a 6= d) ⇒ 〈abd〉 = 〈adb〉

and then due toB4 〈adb〉 ∧ [adc] ⇒ [bca] = [abc], but this is impossible.
For (5), due to Lemma 1,(abc) ∧ (bcd) ⇒ (a 6= b) ∧ (b 6= d). Also d 6= a,

because otherwise, due toB2, (bcd) = (bca) = (acb) and now, due toB3, ¬(abc),
which is impossible. Further, due to (1),(abc) ∧ (bcd) = 〈bca〉 ∧ [bcd], and now
due toB4 [adb], which is, due to (1), equivalent to[abd], but this together with
(a 6= b) ∧ (b 6= d) ∧ (d 6= d) implies〈abd〉, as needed.
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For (6), (adb) ⇒ [abd], and now, by reductio ad absurdum, if one supposes
d = e, then(aec) = (adc) ⇒ [adc], and (4) would yielda = d. On the other hand,
due to (1),(adb) ⇒ a 6= d, which gives a contradiction. This finishes the proof.

For a line the following assertions can be proved, which show that in an
interimity model the pointsa, b are not some specific points of a lineLab, but can
be exchanged by every two of its different pointsc, d. Indeed, there holds

Lemma 4. If c ∈ Lab andc 6= a, thenLac = Lab.

Proof. This is obvious ifc = b. Otherwise[abc] ∧ (a 6= b) ∧ (b 6= c) ∧ (c 6= a) ⇒
〈abc〉 and, due toB4, 〈abc〉 ∧ [abx] ⇒ [cxa], thusx ∈ Lab ⇒ x ∈ Lac. But also
〈acb〉 ∧ [acy] ⇒ [bya], thusy ∈ Lac ⇒ y ∈ Lab.

Using this lemma two times, one obtains

Theorem 5. If in an interimity model two different pointsc, d belong to a lineLab,
thenLcd = Lab.

Otherwise, a line is uniquely determined by any two of its different points.
Recall that in the definition of a lineLab due to (1)[xab] = (xab) ∨ (abx) ∨
(bxa)∨ (x = a)∨ (x = b) (note that herea = b is excluded). Hencea andb divide
the remaining part ofLab into three subsets: 1)ab = {x|(axb)} (note that, due to
B2, ab = ba), 2) a/b = {x|(xab)}, and 3)b/a = {x|(abx) = (xba)}. Hereab is
called theinterval with endsa andb; further,a/b will be called itsextension over
an end a. It follows thatLab = ab∪ (a/b)∪ (b/a)∪ a∪ b, i.e. a lineLab is a union
of an interval, its ends, and its extensions over both ends.

Note that up to now onlyB1–B4 are used and, in an extreme case,S can consist
only of the points of one single lineLab. Further let alsoB5 be taken along. Here
¬[abc] means thata, b, c are three noncollinear points, i.e. three different points,
not belonging to one line. Ifa, b, c are noncollinear, then they are said to be the
vertices, the intervalsbc, ca, ab the sides(opposite toa, b, c, respectively) of the
triangle4abc, which is considered as the union of all of them. Herea/b andb/a
are theextensions of the side ab, andab ∪ a ∪ b is theclosed side.

Note that the subsetQa = Lab∪Lac

⋃
x∈bc Lax in the definition of a planePabc

can be now interpreted as the union of points on the lines, which are determined
by a vertexa of the triangle4abc and the points of its opposite closed side. The
planePabc itself can be interpreted as the union of the points on the lines, which
are determined by any of the vertices and the points of its opposite closed sideof a
triangle4abc.

The theory of interimity models is rather poor if one is not willing to add toB1–
B5 some new postulate. Some possibilities were indicated above, which will lead
to the betweenness or betwixtness geometries. The added postulates allow now
some interpretations. For instance, the Pasch postulate says that if a line contains
a pointd of the plane of a triangle4abc, which does not belong to a side or its
extension (e.g.d 6∈ Lbc), and intersects a side (e.g.bc in e), and does not contain
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any of vertices, then this line (e.g.Lde) intersects also one of the other two sides
(correspondingly inf ).

Below analogous interpretations will be given also forB6 andB6̄.

Remark. The interimity models are in interesting relationship with thegeometry
of geodesics, developed in [26] as a theory ofG-spaces.

A G-space is a metric space, i.e. a setG with ρ : G × G → R
+ satisfying

a) ρ(x, y) = 0 ⇔ x = y, b) ρ(x, y) + ρ(y, z) ≥ ρ(x, z), c) ρ(x, y) = ρ(y, x),
which is (i) finitely compact, i.e. the bounded infinite subsets inG have limit points,
and (ii) convex in the sense of Menger:(x 6= y) ⇒ ∃z, ρ(x, z)+ρ(z, y) = ρ(x, y).

Moreover, for everya ∈ G there must exist a real numberr > 0 so that
in the set{x|ρ(a, x) < r} there exists a pointz distinct from the pointsx
and y with ρ(x, y) + ρ(y, z) = ρ(x, z), and if here forz1, z2 there would be
ρ(y, z1) = ρ(y, z2), thenz1 = z2.

The betweenness relation can be introduced in aG-space by

(xzy) ⇐⇒ [ρ(x, z) + ρ(z, y) = ρ(x, y)] ∧ (x, y, z are three different points).

HereB2 follows directly from c). AlsoB3 is satisfied. Indeed, if together with
(xzy) one supposes(xyz), then at the same timeρ(x, z) + ρ(z, y) = ρ(x, y) and
ρ(x, y) + ρ(y, z) = ρ(x, z), but this due to c) would lead toρ(y, z) = 0, thus
to y = z (see a)), which is impossible, becausex, y, z must be different. If the
G-space is not one-dimensional, i.e. neither a straight line nor a circle (see [23],
§9), then alsoB5 is satisfied.

With B4 the situation is more complicated. Here only a part of it holds in
general. In [26], §6 it is proved as (6.6) that(wxy)∧ (wyz) ⇔ (xyz)∧ (wxz) (this
follows easily from b)), butB4 as a whole cannot be satisfied in general.

Finally, for B1 the statements (7.4) and (8.5) of [26] are substantial. According
to these for every pointp there exists a positive real numberρp such that in the
sphereS(p, ρp) B1 holds. Consequently,B1 holds everywhere ifρp = ∞, i.e. if
geodesics are straight lines.

5. THE BETWEENNESS MODEL

An interimity model will turn into a betweenness model if one addsB6 to
B1–B5. The concept of a triangle, introduced in Section 3, allows us to interpret
this B6 in the following way.

The premise¬[abc] means that there exists a triangle4abc. The other premises
(abd) ∧ (bec) mean that there ared ∈ b/a and e ∈ bc, where the sidebc and
extensionb/a have a common endpointb.

Note that here the premises ofB6̄ differ from those ofB6 only by the fact that
e ∈ bc is replaced bye ∈ ac and sobc is changed by the sideab, which does not
have a common endpoint with the extensionb/a.
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It is remarkable that alsoB6̄ is valid in a betweenness model. To prove this,
first some lemmas are to be established.

Lemma 6. In a betweenness model

¬[abc] ∧ (afb) ∧ (bdc) ∧ (cea) ⇒ ¬[def ], (7)

i.e. there does not exist a line intersecting all three sides of a triangle4abc.

Proof. From (6) it follows thatd, e, f are all distinct. Due to Lemma 1 also
a, f, b are all distinct, likec, e, a. As a consequence,a, f, e are all distinct.
Further,¬〈afe〉 because otherwise there would be, due toB4, 〈afe〉 ∧ (cea) ⇒
〈aef〉∧[aec] ⇒ [fca], (afb)∧[fca] ⇒ 〈afb〉∧[afc] ⇒ [bca], which is impossible
now. Using permutations, and also (1), one obtains¬[afe] ∧ ¬[bdf ] ∧ ¬[ced].

Finally, reductio ad absurdum will be used. So, let us suppose[def ]. Then due
to (1),

〈def〉 = (def) ∨ (efd) ∨ (fde).

Here it is sufficient to consider the last case when(fde), because the other two
differ only by a permutation. Due toB6,

¬[afe] ∧ (afb) ∧ (fde) ⇒ ∃p, (ape) ∧ (bdp);

due toB4,
(ape) ∧ (aec) ⇒ 〈aep〉 ∧ [aec] ⇒ [pca] = [cap],

and similarly

(bdp) ∧ (bdc) ⇒ 〈bdp〉 ∧ [bdc] ⇒ [pcb] = [cpb].

Now due to (4),
¬[cab] ∧ [cap] ∧ [cpb] ⇒ (c = p),

thus(ape) ∧ (c = p) ⇒ (ace) ⇒ ¬(aec), but this contradicts(cea). Hence the
supposition is impossible and (7) holds, indeed. This finishes the proof.

Lemma 7. If for ab and cd, c ∈ ab andb ∈ cd, thenb ∈ ad andc ∈ ad; otherwise,

(acb) ∧ (cbd) ⇒ (abd) ∧ (acd). (8)

Proof. First the part(acb) ∧ (cbd) ⇒ (acd) will be proved as follows.
Due to Lemma 1,B5, and B1, (acb) ⇒ (a 6= c) ⇒ ∃e,¬[ace] and

¬[ace] ⇒ (c 6= e) ⇒ ∃f, (cef). Due to (1) and (3),(acb) ∧ ¬[ace] ⇒
〈cab〉 ∧ ¬[cae] ⇒ ¬[cbe] and(cef) ∧ ¬[ceb] ⇒ ¬[cfb]. Further, due toB2 and
B6, ¬[bcf ] ∧ (bca) ∧ (cef) ⇒ ∃g, (bgf) ∧ (aeg) and¬[cbf ] ∧ (cbd) ∧ (bgf) ⇒
∃h, (chf) ∧ (dgh).
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Again, due to (1) and (3),〈aeg〉 ∧ ¬[aeg] ⇒ ¬[abc] = ¬[acg]. On the other
hand, (5) gives(acb) ∧ (cbd) ⇒ 〈acd〉 and now due to (3),〈acd〉 ∧ ¬[acg] ⇒
¬[adg] = ¬[dga]. So, due toB6, ¬[dga] ∧ (dgh) ∧ (gea) ⇒ ∃i, (dia) ∧ (hei).

It remains to show thati = c. First, due toB4, (cef) ∧ (chf) ⇒ 〈cfe〉 ∧
[cfh] ⇒ [ceh]; similarly, (hei) ∧ [ceh] ⇒ 〈ehi〉 ∧ [ehc] ⇒ [eic] and (dia) ∧
〈acd〉 ⇒ 〈adi〉 ∧ [adc] ⇒ [aic]. Now, (4) gives¬[cae] ∧ [cai] ∧ [sie] ⇒ (c = i),
thus(dia) ∧ (c = i) ⇒ (dca) ⇒ (acd), indeed.

The remaining part follows easily:(acb)∧ (cbd) ⇒ (dbc)∧ (bca) ⇒ (dba) ⇒
(abd). This finishes the proof.

Lemma 8. If for ab and ad, c ∈ ab andb ∈ ad, thenb ∈ cd andc ∈ ad; otherwise

(acb) ∧ (abd) ⇒ (cbd) ∧ (acd). (9)

Proof. First let us prove the part

(acb) ∧ (abd) ⇒ (acd). (9′)

By the arguments used above one can finde andf , so that¬[abe]∧ (eaf), and
theng andh, so that(bge)∧ (fcg) and(ahe)∧ (dgh). Due to (7),¬[abe]∧ (acb)∧
(ahe)∧ (bge) ⇒ ¬[cgh], and due to (3),〈gcf〉∧¬[gch] ⇒ ¬[gfh]. Now,B6 gives
¬[hgf ] ∧ (hgd) ∧ (gcf) ⇒ ∃i, (haf) ∧ (dci). But herei = a can be established
in the same way as in the previous proof. Thus(dci) ∧ (i = a) ⇒ (dca) = (acd),
indeed.

It remains to prove the other part(acb)∧(abd) ⇒ (cbd). Hereb 6= c andb 6= d,
but alsoc 6= d, because otherwise(abd) = (abc) and, due toB3, ¬(acb), which is
impossible.

Further,(acb)∧(abd) ⇒ 〈bac〉∧ [bad], and this, due toB4, gives[cdb] for three
differentc, d, b, thus〈cdb〉 = (cdb) ∨ (dbc) ∨ (bcd). It remains to show that here
only the middle alternative can occur; the other two lead to contadictions.

For (cdb) = (bdc) this follows easily: from the part already proved(bdc) ∧
(bca) ⇒ (bda) = (adb) ⇒ ¬(abd).

For (bcd) = (dcb) this is not so easy. Because ofB5, B1, (acb) ⇒ (a 6=
b) ⇒ ∃e,¬(abe) ⇒ (e 6= a) ⇒ ∃f, (eaf). Now, due to (3),〈abd〉 ∧ ¬[abe] ⇒
¬[ade] and 〈bad〉¬[bae] ⇒ ¬[bde]. From B6 now ¬[eab] ∧ (eaf) ∧ (acb) ⇒
∃g, ((egb) ∧ (fcg)). From the part already proved,(acb) ∧ (abd) ⇒ (acd), and
from B6, ¬[eac] ∧ (eaf) ∧ (acd) ⇒ ∃h, ((ehd) ∧ (fch)). Now, due toB4,
(fch) ∧ (fcg) ⇒ 〈fch〉 ∧ [cfg] ⇒ [chg], but, on the other hand, due to (7),
¬[bde] ∧ (bcd) ∧ (bge) ∧ (dhe) ⇒ ¬[cgh]. A contradiction occurs here and this
finishes the proof of (9).

Lemma 9. If c, d ∈ ab, then eitherc ∈ ad, or d ∈ ac, or c = d; otherwise

(acb) ∧ (adb) ⇒ (acd) ∨ (adc) ∨ (c = d). (10)
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Proof. Due toB4, (acb) ∧ (adb) ⇒ 〈abc〉 ∧ [abd] ⇒ [cda] = (cda) ∨ (dac) ∨
(acd) ∨ (c = d) ∨ (d = a) ∨ (a = c). Due to Lemma 1, hered = a anda = c
are impossible. But also(dac) is impossible, because from (8) it would follow that
(dac) ∧ (acb) ⇒ (dcb) ∧ (dab) and, due toB2, B3, (dab) = (bad) ⇒ ¬(bda) =
¬(adb), which gives a contradiction.

Lemma 10.Likewise

(abc) ∧ (abd) ⇒ (acd) ∨ (adc) ∨ (c = d). (11)

Proof. Due toB4, (abc) ∧ (abd) ⇒ 〈abc〉 ∧ [abd] ⇒ [cda] = (cda) ∨ (dac) ∨
(acd) ∨ (c = d) ∨ (d = a) ∨ (a = c). Due to Lemma 1, hered = a anda = c
are impossible. But also(dac) is impossible, because from (9) it would follow that
(cba) ∧ (cad) ⇒ (bad), and, due toB2, B3, (bad) = (dab) ⇒ ¬(dba) = ¬(abd),
which gives a contradiction.

Note that in (10) the premise is, due toB2, symmetric with respect toa, b. Thus

(acb) ∧ (adb) ⇒ (bcd) ∨ (bdc) ∨ (c = d). (10′)

Here(acd) ∧ (bcd) is impossible because it leads, due toB2, to (dca) ∧ (dcb) and
this, due to (11), to(dab) ∨ (dba) ∨ (a = b), which contradicts(adb) (seeB1, B2
and Lemma 1). Thus

(acb) ∧ (adb) ⇒ [(acd) ∧ (bdc)] ∨ [(adc) ∧ (bcd)] ∨ (c = d), (10′′)

where each component in the conclusion excludes the other two, which is easy to
control.

Now we are able to prove

Theorem 11. Every betweenness geometry is also a betwixtness geometry, i.e. if
B1–B6hold, then alsoB6̄ holds.

Proof. It must be proved that¬[abc] ∧ (abd) ∧ (aec) ⇒ ∃f, ((bfc) ∧ (dfe)).
Due to Lemma 1 andB1, (aec) ⇒ (a 6= e) ⇒ ∃g, (eag). Due to B6,
¬[ead] ∧ (eag) ∧ (abd) ⇒ ∃h, ((ehd) ∧ (gbh)). Now from B2 and (8) it
follows that (aec) ∧ (eag) = (cea) ∧ (eag) ⇒ (ceg) and again, due toB6,
¬[ced] ∧ (ceg) ∧ (ehd) ⇒ ∃i, ((cid) ∧ (ghi)). From (9) andB2 it follows that
(gbh) ∧ (ghi) ⇒ (bhi) = (ihb) and again, due toB6, ¬[cib] ∧ (cid) ∧ (ihb) ⇒
∃f, ((cfb)∧ (dhf)). Now, due toB2 and (11),(dhf)∧ (ehd) = (dhf)∧ (dhe) ⇒
(dfe) ∨ (def) ∨ (f = e), and fromB6 it follows, due to¬[abc] ∧ (abd) ∧ (bfc),
that here only(dfe) is possible. This finishes the proof.

The following theorem can be proved now as well.

Theorem 12.The interval ab is not empty but is an infinite subset.
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Proof. Herea 6= b and, due toB5, ∃c,¬[abc], thusb 6= c. Due toB1, ∃d, (bcd),
thus〈bcd〉. Now, due to (3),〈bcd〉 ∧ ¬[bca] ⇒ ¬[bda], thus(a 6= d). The sameB1
gives∃e, (ade). Hereb, d, a must be noncollinear, becauseb, d, c are correct and
otherwise, because ofB4, b, c, a would be collinear, which is now impossible. Due
to B6, ¬[adb] ∧ (ade) ∧ (dcb) ⇒ ∃f, ((ecf) ∧ (afb)) ⇒ f ∈ ab.

The same argument gives∃g, (agf) and, due to Lemma 1,g 6= f . But from (8),
(agf) ∧ (afb) ⇒ (agb), thus alsog ∈ ab. So this can be continued until infinity.
This finishes the proof.

Theorem 13. For a triangle 4abc, the subset{x|∃y, (byc) ∧ (axy)} does not
depend on the reordering of verticesa, b, c.

Proof. Hereb, c can be interchanged, due toB2. Thus only the interchanging of
a, b is to be considered.

Due to (3),¬[abc] ∧ (byc) ⇒ 〈cby〉 ∧ ¬[cba] ⇒ ¬[cya]. Now, due toB6,
¬[cya]∧ (cyb)∧ (yxa) ⇒ ∃z, ((cza)∧ (bxz)). Herea, b are interchanged, indeed.
This finishes the proof.

It is natural to call the subset considered in Theorem 13 theinterior of the
triangle4abc. Here any permutation ofa, b, c is admissible.

The interpretation of the Pasch postulateP can be detailed as follows. Its
premises mean that there is a lineLed, which is determined by a pointe of a side
bc of the triangle4abc and a pointd of the planePabc of this triangle, and does not
contain any of its vertices. The assertion is that this line must intersect at least one
of the other two sides in a pointf . (Both of them cannot intersect, because this is
excluded by Lemma 6.) Briefly: if a line in a plane of a triangle intersects one side
and does not contain any of vertices, then it intersects one of the other twosides
(but not both of them).

Theorem 14.In the betweenness geometry the Pasch postulate is valid.

Proof. SincePabc = Qa ∪ Qb ∪ Qc, the pointd belongs to one ofQa, Qb, Qc. If
d ∈ Qc, then eitherd ∈ Lca, or d ∈ Lcb, or d ∈ Lcx, wherex ∈ ab. In the first
two cases one can useB6, orB6̄, for 4abc to obtain the needed pointf , or simply
f = d. In the third case one can use the sameB6, or B6̄, for 4axc, or4xbc.

Note that inP the verticesa andb can be interchanged. So it suffices to consider
the possibilityd ∈ Qa. The cased ∈ Lca was analysed above, butd ∈ Lba is
impossible now (thenLed would containa and b). Thus only the case remains
whered ∈ Lax with x ∈ bc. If d ∈ a/x or d ∈ x/a, thenB6 or B6̄ can be
used for4axb. If d ∈ ax, thenB6 can be used for4axb to obtainh, so that
(ahb) ∧ (cdh) and now againB6 can be used for4ahc or 4hbc to obtainf in ac
or bc, respectively. This finishes the proof.

Also the following holds.

Theorem 15. In an interimity geometry, the Pasch postulateP yieldsB6, i.e. one
can obtain a betweenness geometry addingP, instead ofB6, to B1–B5.
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Proof. Let us consider the premises ofB6. Here(abd) means, due to definitions of
Qa andPabc, thatd ∈ Pabc. Moreover,d 6∈ Lbc, because otherwise, ifd ∈ Lbc, one
would have, due to Lemma 4, thatLbc = Lbd, but on the other hand, hered ∈ Lab,
thusLab = Lbd, hence there would beLab = Lbc, which contradicts the premise
¬[abc]. Similarlya 6∈ Lde due the same argument. It follows that the premises ofP
are satisfied. The same argument as above gives that here(afb) is impossible and
only (def) can occur. This finishes the proof.

Theorems 15 and 11 together give that in an interimity geometryP yields also
B6̄. This can be proved, of course, also directly using the same argument asabove.

Let us stop here temporarily the treatment of betweenness geometry and turn
to our main topic, to the relationship between betweenness and join geometries.

6. FROM BETWEENNESS GEOMETRY TO EXCHANGE ORDERED
JOIN GEOMETRY

If one wants to proceed from betweenness geometry to join geometry, one has
to introduce in(S,B) first a join operation.

For any two different pointsa, b ∈ S let the joina · b be defined as the interval
ab, i.e. if a 6= b, thena · b = ab; moreover, leta · a = a.

Theorem 16. A betweenness model(S,B) with this join operation turns to be a
join space with exchange ordered join geometry.

Proof. One has to show that hereJ1–J7are satisfied.J1 (for b = a) andJ4 follow
directly from the definition ofa · a, andJ2 from B2. J1 for a 6= b follows directly
from Theorem 12.

If in J3 a, b, c are noncollinear, then(a · b) · c = {x|∃y, (ayb) ∧ (yxc)} and,
due to Theorem 13, this does not depend on the reordering ofa, b, c, so thatJ3 for
this case holds.

If a = b = c, then both sides ofJ3 are simplya. If a = b 6= c, then
(a · a) · c = a · c = ac = {y|(ayc)} anda · (a · c) = {x|∃y, (axy) ∧ (ayc)},
but here, due to(9′), (axy) ∧ (ayc) ⇒ (axc), so thata · (a · c) = {x|(axc)} = ac
as well. ThusJ3 is satisfied. In the remaining casesa 6= b = c anda = c 6= b the
control is similar.

This shows that(S,B) is at least a join system.
Further, inJ5–J7 a/b = {x|b · x ⊃ a} is now a/b = {x|(bax)} for a 6= b

anda/a = {x|a · x ⊃ a} = a. HereJ5 follows immediately fromB1, andJ7
is satisfied trivially. It remains to prove that alsoJ6 holds. For this, the following
cases are to be considered.

If a = b andc = d, thena/b = a/a = a, c/d = c/c = c, thusa/b ≈ c/d in J6
means thata = c, so thata = b = c = d anda · d = b · c = a, thusa · d ≈ b · c,
indeed.

If a = b, but c 6= d, thena/b = a/a = a anda/b ≈ c/d means thata ∈ c/d,
which is equivalent to(acd), thusa ∈ Lcd and, due to Lemma 1,a, c, d are all
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different. Hence, due to Lemma 4,Lad = Lac and eitherad ⊂ ac or ac ⊂ ad, so
thata · d ≈ b · c = a · c, indeed.

In general,a 6= b andb 6= d. Now a/b ≈ c/d means that∃x, (xab) ∧ (xcd).
Here two subcases are to be treated separately.

If x, b, c are noncollinear, then, due to Theorem 11 andB6̄, ¬[xcb] ∧ (xcd) ∧
(xab) ⇒ ∃y, (cyb) ∧ (dya), thusy ∈ a · d andy ∈ b · c, soa · d ≈ b · c, indeed.

If x, b, c are collinear, thenb ∈ Lxc, moreoverd ∈ Lxc, so thatx, b, c, d ∈ Lxc.
Due to Lemma 4,Lxb = Lxc and since(xab), alsoa belongs to the same line. Here,
due tox ∈ a/b andx ∈ c/d, there exist several possibilities for the allocation of
a, b, c, d on this line. For each of them it can be shown thata · d ≈ b · c.

All this shows that(S,B) is a join space. Moreover, its geometry is an
exchange join geometry. Indeed, Lemma 4 shows that hereE is satisfied, because
Lab in betweenness geometry andlab in join geometry are the same subsets, as is
seen from their decompositions in Sections 3 and 2, respectively.

Also O is here satisfied. Indeed, three distincta, b, c of a line are collinear, thus
[abc] = (abc)∨ (bca)∨ (cab) holds, but this is exactlyb ⊂ a · c, or c ⊂ b ·a = a · b,
or a ⊂ c · b = b · c. This finishes the proof.

7. FROM EXCHANGE JOIN GEOMETRY TO BETWIXTNESS AND
BETWEENNESS GEOMETRIES

Let now the converse be investigated. So let one have a join space(S, ·) with
the exchange join geometry, i.e.J1–J7andE hold.

In join geometry the pointsa1, ..., am are called linearly dependentif
ai ⊂< a1, ..., ai−1, ai+1, ..., an > for somei, 1 ≤ i ≤ m. The set{a1, ..., an}
of linearly independent points for which< a1, ..., an >= S is called thebasisof
exchange join geometry andn − 1 is called itsdimension(see [6], Section 11.6).

The betweenness relation(...) in join geometry is introduced as follows (see
Section 1 above):

(abc) = (a 6= c) ∧ b ⊂ a · c.

Theorem 17. The betweenness relation turns a join space(S, ·), with exchange
join geometry and dimension> 1, into a betwixtness model.

Proof. HereB1 and B2 follow immediately fromJ1 and J2. To establish that
B3: (abc) ⇒ ¬(acb) holds, let us use reductio ad absurdum. So let together
with (abc) also (acb) hold; in terms of join geometry, at the same timea 6= c,
b ⊂ a · c, andc ⊂ a · b. From this, by eliminatingb and usingJ3, J4, one would
getc ⊂ a · (a · c) = (a · a) · c = a · c, soc ⊂ a · c, but this contradicts Theorem 4.9
in [6], which asserts that ifa 6= c, thena · c 6⊃ a, c. (The proof of this assertion by
reductio ad absurdum is simple: supposea · a ⊃ c; then due toJ2 c · a ⊃ c, thus
a ⊂ c/c = c by J7, that isa = c, but this contradicts the supposition.)

For B4 we have first to interpret〈abc〉 = (abc) ∨ (bca) ∨ (cab). This means
that a, b, c are all different and(b ⊂ a · c) ∨ (c ⊂ b · a) ∨ (a ⊂ c · b). Thus
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[abd] = (b ⊂ a ·d)∨(d ⊂ b ·a)∨(a ⊂ d ·b)∨(a = b)∨(b = d)∨(d = a). Since in
B4 a 6= b, buta/b in both join and betweenness geometries is the same set (indeed,
a/b = {x|b · x ⊃ a} = {x|(xab)}; cf. Theorem 10), also< ab > andLab is the
same set, as follows from their common decompositionab∪ (a/b)∪ (b/a)∪ a∪ b.
Hence inB4 〈abc〉 ∧ [abd] is equivalent to(c, d ⊂< ab >) ∧ (c 6= a). Now
due to E < ac >=< ab > and sinced ∈ Lab yields d ∈ Lac, due to
Lab=< ab >=< ac >=Lac, so[dac] = [cda], as is needed inB4.

B5 is a consequence from the assumption that dimension of the join space
is > 1.

Finally, B6̄ follows from J6. Indeed,¬[abc] ∧ (abd) ∧ (aec) means in join
geometry thata ⊂ b/d anda ⊂ e/c, so thatb/d ≈ e/c. Due toJ6 nowb · c ≈ d · e,
thusf exists so thatf ⊂ b · c andf ⊂ d · e. Remembering here the definition of
betweenin join geometry, one sees that(bfc) ∧ (dfe), as is needed forB6̄. This
finishes the proof.

Recall that among exchanged join geometries there are ordered join geometries.

Theorem 18.Every ordered join geometry is also a betweenness geometry.

Proof. An ordered join geometry, as well as an exchanged join geometry, is also
a betwixtness geometry, as was just established in the previous theorem. In [6],
Section 12.23, Exercise 2, it is asserted that in ordered join geometry, moreover,
the Pasch postulateP is valid. (Here it can be noted that Pasch postulate is
the same for the join space and the interimity model because the line is the
same, as is established above, and likewise the plane is the same. Indeed, the
decompositionPabc = Qa ∪ Qb ∪ Qc in interimity model holds also for ordered
join geometry, as follows from Theorem 12.20 of [6], namely from its particular
case for< a1, a2, a3 >.) Further, it is easy to prove thatP yieldsB6. Indeed, the
premises¬[abc]∧ (abd)∧ (bec) of B6 say thatd ande satisfy the conditions stated
in premises ofP. So also the assertion ofP is valid. But(afb) is here impossible,
because thend ⊂< ab > andf ⊂< ab > would hold in this join geometry, thus
due to Theorem 11.1 in [6] one would have< de >=< ab >, which contradicts a
premise ofP. This finishes the proof.

Note that there exist examples of exchange join geometries which are not
ordered join geometries. One such simple example is given in [6], Section 12.1,
for dimension 1, but there are indicated also other examples in dimensionn; one
of these can be found in [23], pp. 62–68. Among the last examples there exist also
the betwixtness geometries which are not betweenness geometries. This shows that
although Pasch postulate yields bothB6 andB6̄ as was established above,B6̄ does
not yieldB6.

At the present time betwixtness geometry is not as profoundly developed as
betweenness geometry.
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8. LINES AND PLANES IN A BETWEENNESS 3-SPACE

Theorem 14 shows that in a betweenness geometry one can use all concepts
and results of an exchange ordered geometry, as derived in [6]. (Note that many of
them are given alredy in [1,2].) In particular, a subset islinear if it is closed under
extension ([6], Section 6.3). InL =< a1, ..., an+1 > the pointsa1, ..., an+1 are
linearly independent if no fewer thann + 1 of them generateL (in the sense thatL
is their linear hull). Then they form abasisof L andn is called thedimensionof
L; the denotationn = d(L) will be used ([6], Section 11.6). So every lineL = Lab

has dimension 1, every planeL = Pabc has dimension 2. AnL of dimension 3 is
called a 3-space.

Theorem 5 above has the following generalization (given in [6] as
Theorem 11.8):

Theorem 19. Let a1, ..., an+1 be linearly independent. Then there is a unique
linear subset of dimensionn which contains a1, ..., an+1, namely
< a1, ..., an+1 >.

For n = 2 andn = 3 this was established earlier in [1] (as Theorems 18 and
29, respectively).

Let us consider further a 3-spaceL and prove the following assertion (see [1],
Theorem 30).

Theorem 20. If two planes of a3-space L have a common point p, then they have
one more common point q, q 6= p, thus a common lineLpq. If these planes do not
coincide, then all of their common points belong to this lineLpq.

Proof. Let the first plane be determined as< pab > and the other as< pcd >.
On the first pointse and f can be taken so that(bpf) ∧ (afe). Then the 3-
space considered isL =< abce > and is determined by the tetrahedron with
verticesa, b, c, e, edgesab, bc, ca, ae, be, ce, and facesabc, abe, bce, cae; here, e.g.,
abc = (a · b) · c (using join geometry notations) is the interior of4abc and due
to Theorem 13 (orJ3) does not depend on the reordering ofa, b, c. The opposite
edges and faces are defined as usual, i.e. not having a common vertex.

For d there are, with respect to the tetrahedron above, the following four
possibilities: d is collinear with 1) two vertices, or 2) one vertex and one point
of some of its opposite edge, or 3) one vertex and one point of its opposite face,
or 4) one point of an edge and other point of the opposite edge. (This follows
from [6], Theorem 12.20, which forn = 4 is the nearest generalization of the
statements above thatLab = ab∪ (a/b)∪ (b/a)∪ a∪ b andPabc = Qa ∪Qb ∪Qc;
see also [1], Theorem 2.)

For the first possibility, one of the verticesa, b, e is q. For the second possibility,
q is one of the points of the edgesab, ae or be.

In the third possibility, the vertices must be considered separately. Forc
the point of its opposite faceabe, collinear with c, d, is indeed the desiredq.
For b, let the point oface, which is collinear tob, d, be denoted byg. Now
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¬[bpd]∧ (bpf)∧ (bgd), thus, due toB6̄, ∃h, (phd)∧ (fhg). Forg, as a point of the
interiorace of 4ace, there existsi so that(aie)∧(cgi). Now¬[igf ]∧(igc)∧(ghf),
and due toB6∃q, (iqf)∧(chq). Thisq is the other point needed. For the remaining
two vertices the situation is analogous.

In the fourth possibility, letd be collinear to pointsu andv of egdesac andbe,
respectively. HereLpv ⊂ Pabe and eithera ⊂ Lpv, thenq = a, or, in view of Pasch
postulate,Lpv intersects one of the other two edgesab andae. Let it intersectae in
w, so that(vpw). Now¬[vuw]∧(vud)∧(vpw) and, due toB6̄, ∃f, (ufw)∧(dfp);
further,¬[auw]∧ (auc)∧ (ufw) and thus, due toB6, ∃q, (aqw)∧ (cfq). Thisq is
now the point needed.

The other pairs of opposite edges can be reduced to this previous case by
reorderinga, b, e.

Together with pointsp andq, both planes above contain also the lineLpq. If we
suppose that these planes have a common point outside thisLpq, then these planes
would coincide due to Theorem 19, which is impossible. This finishes the proof.

The set of all lines through a fixed pointo is called abundleof lines; o is its
centre. The planes througho are called thebundle planes.

Due to Theorem 20 every two different bundle lines determine a bundle plane
containing theses lines, and two different bundle planes in a 3-space intersect in a
bundle line. Hence the bundle of lines in a 3-space turns to be aprojective plane,
interpreting its lines and planes as the “points” and (straight-)“lines”. ThenLoa

andPoab will be denoted byA andAB, respectively. The analogue of a “triangle”
is then atrihedron angle4ABC, its “vertices”A, B, C are then theedge lines.
The bundle planes through two different edge lines of a tetrahedron angle are then
called theface planesAB, BC, andCA.

Theorem 21 (the Desarguesian theorem).If between the edge lines of two
tetrahedron angles4ABC and4A′B′C ′ of a bundle of lines(with centreo) in a
3-space there is a one-to-one correspondenceA → A′, B → B′, C → C ′, such
that the bundle planesAA′, BB′, andCC ′ intersect in a bundle lineLod = D, then
the intersected linesAB∩A′B′, BC∩B′C ′, andCA∩C ′A′ of the corresponding
face planes belong to a bundle plane.

Proof. Let a, a′, d be chosen onLoa = A, Loa′ = A′, Lod = D so that(ada′).
Further, letb, b′ be chosen onLob = B, Lob′ = B′ so that(dbb′), andc, c′ on
Loc = C, Loc′ = C ′ so that(dcc′), but c 6∈ Pabd. HerePabc 6= Pa′b′c′ . Moreover,
¬[a′b′d] ∧ (a′da) ∧ (dbb′). Due toB6, ∃p, (a′pb′) ∧ (abp).

Also ¬[dbc] ∧ (dbb′) ∧ (dc′c). Due toB6̄, ∃q, (bqc) ∧ (b′qc′). Similarly,
¬[adc] ∧ (ada′) ∧ (dcc′). Due toB6̄, ∃r, (arc) ∧ (a′c′r).

Now AB∩A′B′ = Lop, BC∩B′C ′ = Loq, CA∩C ′A′ = Lor. Herep, q, r are
common points of two different planesPabc andPa′b′c′ , therefore they belong to a
line, thusLop, Loq, Lor belong to a bundle plane, indeed. This finishes the proof.

Also the converse holds.
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Theorem 22(the converse Desarguesian theorem).If between the edge lines of two
tetrahedron angles4ABC and4A′B′C ′ of a bundle of lines(with centreo) in a
3-space there is a one-to-one correspondenceA → A′, B → B′, C → C ′, such
that the intersect linesAB∩A′B′, BC∩B′C ′, andCA∩C ′A′ of the corresponding
face planes belong to a bundle plane, then the bundle planesAA′, BB′, andCC ′

intersect in a bundle lineLod = D.

Proof. Let AA′ ∩ BB′ = D = Lod. It must be established thatCC ′ ⊃ D. To this
end, letCD ∩ C ′A′ be denoted byC1. It suffices to prove thatC1 = C ′.

Now for the trihedron angles4ABC and4A′B′C1 the premises of Theorem
21 are satisfied. Thus the intersected linesAB ∩ A′B′, BC ∩ B′C1, and
CA ∩ C1A

′ = C ′A′ of the corresponding face planes belong to a bundle plane.
But now on the same bundle plane lies alsoBC ∩B′C ′. This means thatB′C ′ and
B′C1 intersectBC on the same bundle line and hence coincide. It follows that also
C1 = C ′. This finishes the proof.

Theorem 23. If in a 3-space among the pointsa, a′, b, b′, c, c′, d, d′ any three
are noncollinear and1) b′ ∈ Paa′b, 2) c, d 6∈ Paa′b, 3) c′ ∈ Paa′c ∩ Pbb′c,
4) d′ ∈ Paa′d ∩ Pbb′d, 5) Paa′b ∩ Pcc′d 6= ∅, thenc, d, c′, d′ belong to a plane.

Proof. If Laa′ and Lbb′ intersect in a pointo, thenPaa′c ∩ Pbb′c 3 o. Due to
Theorem 20 the intersection linePaa′c ∩Pbb′c goes througho. The same holds also
for Paa′d ∩ Pbb′d and so the assertion is valid.

If Laa′ ∩Lbb′ = ∅, one can choosep so that(abp) andb′ ∈ Lbb′ so that(a′b′p).
Due to premise 5) and Theorem 20,Paa′b ∩Pcc′d is a line, on which pointse ande′

can be chosen so that∃q, (bqe′) ∧ (b′qe). Due toB6, ∃r, (a′re) ∧ (pqr).
Let us consider, in the bundle of lines with centrec, the trihedrons determined

by a, b, e′ and bya′, b′, e, respectively. The bundle planesPcaa′ , Pcbb′ , andPcee′

intersect in a bundle lineLcc′ . Due to Theorem 21 the intersection lines of the
corresponding face planes belong to a bundle plane. It follows thatLae′ 3 r and
so, in the bundle of lines with centred, the corresponding face planes of trihedrons,
determined bya, b, e′ and bya′, b′, e, intersect in lines belonging to the bundle plane
Pdpq. Now, due to Theorem 22, the bundle planes of the corresponding edgelines,
among them alsoPdee′ , intersect in the bundle lineLdd′ . But thisPdee′ contains
bothLcc′ andLdd′ . This finishes the proof.

9. LINEARLY ORDERED SKEW FIELDS AND COORDINATES

A well-known construction allows us to introduce coordinates in the projective
space as points-symbols, and to define the addition and multiplication operations
for these symbols, using the Desarguesian postulate, so that as a result askew
field is obtained (see [27], also [28] and [29], Ch. 20). By this and Theorems 21–
23 one can introduce the coordinates from a linearly ordered skew field into the
betweenness geometry (and due to Theorems 16 and 18 also into the ordered join
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geometry) so that the considered model (join space) is isomorphic to a convex
region of a linear space over an linearly ordered skew field.

What follows shows shortly how to realize this programme.
The bundle of lines with centreo in a 3-space was considered above as a

projective plane, whereLoa, Lob, ... are interpreted as the “points”A, B, ..., and
Poab is interpreted as a (straight) “line”AB. In [27], Ch. VI, §5, two constructions
are given.

Let on a “line”AB three “points”O, E, U be given so thatU is different from
A, B. The “points”P, Q can be chosen so thatP, Q, U are “collinear” (i.e. belong
to a “line”).
I. In general, letR, S be chosen so thatR, P, A are “collinear”, Q, R, O are

“collinear”, S, Q, B are “collinear”, andR, S, U are “collinear”. ThenTI on
AB, which is “collinear” withP andS, is interpreted asTI = A + B.

In [27], Ch. VI, §§5, 7, it is proved that the allocation ofT depends only on
O, U, A, B and does not depend on the choice ofP, Q, “collinear” with U . It is
also established thatA+B = B +A and that the “points” of “line”AB, excluding
U , with respect to this “+” constitute a commutative group. (Note that if we turn
the projective plane into an affine plane with “improper pointsU, P, Q”, the above
construction turns to the parallel transport of the segment[OB], so thatO coincides
with A, i.e. to the classical addition of segments.)
II. In general, let R, S be chosen so thatR, P, A are “collinear” and

S, Q, B are “collinear” as above, but nowQ, R, E are “collinear” andR, S, O
are “collinear”. ThenTII on AB, which is “collinear” with P and S is
interpreted asTII = A · B.

In [27], Ch. VI, §§5, 7, it is proved that the allocation ofTII depends only on
O, E, U, A, B and does not depend on the choice ofP, Q, “collinear” with U , also
that with respect to “+” and “·” the “points” of “line” AB, excludingU , constitute
a skew field. HereO andE are in the role of neutral elements, i.e. of null and unit,
respectively. It is established as well that if one alters the allocation ofO, E, U on
AB, the new skew field is isomorphic to the previous one.

Now the coordinates from the skew field can be introduced into a betweenness
space of dimension> 2 as follows.

Let first a 3-space be considered. There exist four linearly independent points
a0, a1, a2, a3. One can choose a pointe which does not belong to any of four
planes, determined by some three of them.

Considering the bundle of lines with centreai, i ∈ {1, 2, 3}, and denoting
Laia0

= Oi, Laiaj
= Uk, where the indicesi, j, k have three different values, one

can takePa0aiaj
∩Peaiak

in the role ofEjk and introduce on the “line” of “collinear”
Oi, Ejk, Uk, excludingUk, the structure of a skew fieldKjk. HereKjk andKik are
isomorphic, as is shown in [27], Ch. VI, §§6, 8, where the isomorphism is denoted
by T jk

ik ; alsoKkj andKjk are isomorphic with isomorphismT jk
kj = Hjk. Thus

there exists a skew field which is isomorphic to all of them and which is called
in [27] theskew fieldK of this geometry.
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Let x be a point not belonging toPa1a2a3
. ThenLaixk

= Pa0aiaj
∩ Pxaiak

is
a “point” Xi,k of the “line” OiEk, which does not coincide withUk and thus is an
element ofK. Here actuallyXi,k does not depend onk, i.e. Xi,j = Xi,k = Xi, as
is shown in [1] using Theorem 23.

TheseX1, X2, X3, as elements ofK, represent in a 3-space thecoordinatesof
the pointx, not belonging toPa1a2a3

, with respect to theframe{a0a1a2a3; e}.
In the betweenness model (equivalently, in a join space with ordered join

geometry) also of dimensionn > 3 by means of analogous construction one
can introduce the coordinates from a skew fieldK with respect to a frame
{a0a1...an; e}, where the pointsa0, a1, ..., an are linearly independent, ande is
linearly independent with everyn of them.

Note that the projective part of this for bundles of lines with centresa1, ..., an

can be found in [27], Ch. VI, §8, where also the following is proved.

Theorem 24. Every projective space of dimensionn (either withn > 2 or the
Desarguesian theorem holds) can be represented in the form ofPn(K), which is a
set of points being in bijection with the equivalence classes inKn+1 \ {0}, where
Kn+1 = {(x0, x1, ..., xn)}, xi ∈ K, i ∈ {0, 1, ..., n}, {0} = (0, 0, ..., 0) and
equivalence is determined by(x′

i) ∼ (xi) ⇐⇒ ∃λ, x′

i = λxi.

To be more concrete, let us return to a 3-space, considering it with respect
to a frame{a0a1a2a3; e}. The coordinates aboveX1, X2, X3 for a point x
are connected with projective coordinatesx0, x1, x2, x3 for bundles of lines with
centresa1, a2, a3 by Xi = xi : x0, i ∈ {1, 2, 3}. Now to the pointsx of the plane
Pa1a2a3

(these were left out above, but in projective coordinates they are determined
by x0 = 0) one can ascribe the symbolsxi/0, wherexi are the last three projective
coordinates of a point ofLa0x. In [27], Ch. VI, §8, Theorem III, it is proved
that three pointsa, b, x with projective coordinates, respectively,(a0, a1, a2, a3),
(b0, b1, b2, b3), (x0, x1, x2, x3), are collinear if and only if the rank of a3×4-matrix
of these coordinates is less than 3. For differenta andb this means that(xα) is a
linear combination of linearly independent(aα) and(bα), i.e. there existλ, µ ∈ K
such thatxα = λaα + µbα, α ∈ {0, 1, 2, 3}. For Xi = xi/x0, i ∈ {1, 2, 3}, this
givesXi = λ̄Ai + µ̄Bi, whereλ̄ = λa0/(λa0 + µb0), µ̄ = µb0/(λa0 + µb0),
Ai = ai/a0, andBi = bi/b0. Hereλ̄ + µ̄ = 1 so thatXi = λ̄Ai + (1 − λ̄)Bi.
For A = (1, 0, 0) = a1 andB = (0, 0, 0) = a0 this givesX = (λ̄, 0, 0). In
betweenness geometry (and also in ordered join geometry) the lineLa1a0

(the
line < a1a0 >, respectively) is a linearly ordered set of points. Hence the skew
field K of this geometry is a linearly ordered skew field, andx with coordinates
Xi = λ̄Ai +(1− λ̄)Bi is between the pointsa andb with coordinates, respectively,
Ai andBi if and only if 0 < λ̄ < 1 in thisK.

Note that there can be triples(X1, X2, X3) which do not determine any point in
the betweenness geometry. Namely, the lines, determined by(X2, X3), (X3, X1),
and(X1, X2) in bundles of lines with centres, respectively,a1, a2, anda3, need not
intersect in a pointx, but only belong to a plane for every pair (and so determine a
new object, a so-calledideal or non-properpoint). Hence, one can obtain instead
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of the wholeK3 only a region of it, which for the betweenness geometry must be
convex, of course. (For join geometry it is noted, e.g. in [6], Section 2.9.)

In general, for a betweenness geometry (ordered join geometry) of dimension
n > 3 the result is the same, only in the deduction abovei ∈ {1, ..., n}. All this
can be summarized as follows.

Main Theorem. A betweenness model(join space with ordered join geometry) of
dimensionn ≥ 3 is isomorphic to a convex region of a linear spaceKn over a
linearly ordered skew fieldK, where the betweenness is determined as above.

Remarks
1. The Main Theorem is formulated for a betweenness model in [1] with a sketch

of proof. For an ordered join geometry it is probably new, as far as we know;
at least we cannot find it in the monograph [6].

2. The betweenness geometries (ordered join geometries) of dimensionn ≥ 3,
for whose bundles of lines the Pappus theorem is valid, correspond to thecase
when in the Main TheoremK is commutative, i.e. reduces to an ordered field
(see [27], Ch. V, §8).

3. The betweenness planes (in [18] called Lumiste planes), have not been
investigated sufficiently up to now. At least the Main Theorem above does
not hold forn = 2, in general, because there exist non-Desarguesian planes.
One such example, given in [30], is described in [9] (1930), §23, and [27],
Ch. VI, §2. Another example is given in [26], §12: a paraboloidz = xy in
EuclideanE3, where(abc) for its points means thatb is betweena andc on
the geodesic line through the latter two (see also [31]).

4. Due to [27], Ch. VI, §9, Theorem 1, non-Desarguesian Lumiste planes are
also non-Pappian.
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Ühenduvuse ja vahelsuse geomeetria vahekord
Ülo Lumiste

Prenowitzi ja Jantosciaki mahukas monograafia aastast 1979 ühenduvuse geo-
meetriast käsitleb põhiosas kumerate hulkade geomeetriat, kuid puudutab ka
lineaargeomeetriat ja vahelsuse relatsiooni. Viimane oli (koos punkti mõistega)
võetud eesti matemaatikute J. Sarve, J. Nuudi ja A. Tudebergi (Humala) poolt
1930. aastail arendatud geomeetria aluste ainsaks põhimõisteks. Sellel alusel
töötas käesoleva artikli autor 1964. aastal välja soliidse vahelsuse geomeetria
kui vahelsuse mudelite teooria, kuid sellal leidis see avaldamist ainult vähese
rahvusvahelise levikuga väljaannetes. Nüüd, mil talle sattus kätte 1979. aasta
monograafia, käsitleb ta artiklis nende kahe geomeetria vahekorda. Uuestion
antud vahelsuse geomeetria lühitutvustus vajalikus ulatuses, kusjuures eelnevalt
on välja arendatud selle alaosad. Põhiosas on tõestatud, et vahelsuse geomeetria
on ühtlasi järjestatud ühenduvuse geomeetria, ja vastupidi: vahetuslik ühenduvuse
geomeetria langeb kokku vahelsuse geomeetria ühe alaosaga, kuid spetsiaalsem
järjestatud ühenduvuse geomeetria kogu vahelsuse geomeetriaga. Ühtlasion
näidatud, et viimases, kõrgema kui kahe mõõtme juhul, kehtib Desargues’i teoreem
ning seetõttu on vastav mudel isomorfne kumera hulgaga samamõõtmelises
lineaarses ruumis üle teatava, täielikult järjestatud kaldkorpuse.
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