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Abstract. Minimization of such functions is considered, where some arguments are related to the 
final function by intermediate functions with discontinuity points, but other arguments have only 0 
and 1 for the allowed values, although the theoretical generalization allows also intermediate 
values. Both of the circumstances create difficulties in the use of the gradient method. We solve the 
first problem by approximation, primarily by a square polynomial obtained using the integral form 
of the least squares method, and later by the partial sums of orthogonal series of the wave function 
treated with the logarithmic averages method. The second problem can be solved with the help of 
the planes, which have been taken in the n-dimensional space in such a way that any allowed point 
on the side of the space relative to this plane is better than all the points on the other side. 
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1. SET-UP  OF  THE  PROBLEM 

 
When optimizing electric regimes, discrete values become significant for 

changing the topology of the network, and to some extent, for switching 
generators on and off. Earlier [1], this optimization problem was solved mainly 
by the discretion of a network section and testing possible options. Recent 
works [2] show that the problem can be solved also by using continuous 
variables. In the present paper a procedure is given for solving the problem by 
means of continuous variables, keeping in view its applicability to solving the 
problems arising in [3]. 

Thus the present problem was initiated by a concrete need for optimizing the 
operating conditions of electrical networks. It is treated purely mathematically, so 
the methods given here can be used for solving also other problems with similar 
mathematical formulation. 
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Let us minimize the function 
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Here Φ  is a continuous function and the cost function for our electric 
regimes. The symbols in the brackets denote the following: ,, 1Ix ∈ι

ι
 are 

continuously varying arguments, which, for instance, in the present case could be 
node voltages and phases; ,, 2I∈ιϕ

ι
 are the intermediate functions with possible 

discontinuity points; 
ι

y  are continuously varying arguments, for instance, power 
injections of supply nodes. The node injections can be varied continuously, but 
the impact of injection on the general cost function is stepped in some points, 
namely when a new unit has to be started. The variables ,, 3Iz ∈ι

ι
 have only 

discrete value. We shall consider a case where the permitted value of any 
ι

z  is 0 
or 1. In theory, 

ι
z  could have any other intermediate value, i.e., Φ  is continuous 

relative to these values also, but we are looking for the solution in the form where 
any 

ι
z  is either 1 or 0, corresponding, respectively, to switching the network 

lines on or out. The conductivity of each line will be multiplied by a factor 
,10, ≤≤

ιι
tt  where 0 stands for switching out and 1 for switching on, and the 

intermediate values correspond to the variation of conductivity, i.e., the increase 
in resistance. Since the situation changes too rapidly in the neighbourhood of 0, 
let us change the variables .10,11

≤≤=
−

ιι

ι zet z  
Thus in our case the values of the function Φ  are theoretically defined for all 

values ].1,0[∈
ι

z  In practice only the values that correspond to integer values of 
variables 

ι
z  will be taken into account.  

Below, we shall assume that such a theoretical continuous idealization exists. 
We shall use the gradient method for optimization. However, to do this, we must 
overcome the discontinuity of the functions 

ι
ϕ  and solve the discretion problem 

for .
ι

z  
 
 

2. ELIMINATION  OF  DISCONTINUITY  POINTS 
 
Let us start from the first option. In the course of optimization we shall 

replace each 
ι
ϕ  with the continuous approximation .

ι
ϕ  Herewith it is reasonable 

not to take a fixed 
ι
ϕ  for the given ι  throughout the solution process, but to start 

with a rougher and simpler approximation while specifying it later. Namely, 
there is no good reason to think that the instantaneous value of 

ι
y  would be close 

to the final value from the beginning. 
Obviously, there are several intermediate discontinuity points of the function 

.
ι
ϕ  A too precise approximation of 

ι
ϕ  would cause a considerable jerk at any 

discontinuity point and slow down the implementation of the gradient method. 
Therefore it is reasonable to make first a rough approximation that would mark 
general changing of ,

ι
ϕ  without paying attention to local variations. A square 

polynomial obtained by the least squares method in the integral form [4] could be 
suitable in this case. 
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When the differences of 
ι

y  are so small that they do not jump over several 
discontinuity points at a time, more precise 

ι
ϕ  must be taken. Since we know 

definitely the discontinuity points of each ,
ι

ϕ  this moment can be recognized 
when comparing the last approximations of 

ι
ϕ  made up to now. As it is known, 

the values of 
ι
ϕ  can be well approximated by the partial sums of the orthogonal 

series of wave functions [5,6]. However, the disadvantage is that although the 
value is well approximated, the highest frequency wave considered last 
determines the local behaviour significantly. As a result, the gradient starts to 
toss about. To suppress the highest frequency waves, the use of partial sums 
proper has not proved to be reasonable, but summing them up with the weighted 
averages method seems to be appropriate. The logarithmic averages method [7], 
where the number of terms considered by summing up can be increased gradually 
to improve the accuracy, suits for this purpose. 

After these changes we get the continuous objective function, and the gradient 
method can be used. However, the solution obtained may not be feasible since 
the values of 

ι
z  are not 0 or 1. 

 
 

3. FINDING  ALLOWED  SOLUTIONS 
 
If ,3 nI =  then 

ι
z ’s form an n-dimensional cube. Our objective is to select 

the best of the 2n-vertices of this cube. If n  is not too small, checking these 
vertices one by one would be rather labour-consuming. Therefore we shall use 
the continuous idealization method mentioned above, which would allow us to 
eliminate the unmatching vertices by batches. Thereby we presume that the finite 
sequence of 

ι
x  and 

ι
y  for each concrete point in the cube has been chosen so 

that it is the best for each point. This finite sequence can be found using the 
method given in the previous section. Thus, optimizing in any region of the cube 
brings along optimization also in the space of 

ι
x  and .

ι
y  As the values of all 

ι
x  

and 
ι

y  have been determined uniquely by the values of 
ι

z  in the mentioned way, 
from now on we can consider the target function Φ  as depending only on the 
arguments 

ι
z . 

Let us assume that the level surfaces of the target function are convex in our 
cube. With the use of the gradient method, we shall reach the point given at the 
end of the previous section, which is the minimum point of this target function on 
the whole cube. Let us denote it .0P  Let >∈< 3: Ia ι

ι
 be the coordinates of this 

point. If 0P  is a vertex, the problem will be solved. Let us consider the opposite 
situation. Let as assume that .0...212

1
≥≥≥≥≥ naaa  It is not a constraint, since 

we can choose the coordinate system so that the origin of coordinates is the 
vertex of this cube, which is the closest to the point .0P  This provides 2

10 ≤≤
ι

a  
for each .ι  We can also choose the order of coordinates that will guarantee the 
above inequalities. Next let us put a check plane through the cube. This is an 

ldimensiona-)1( −n  plane, with its position defined by n  cube vertices on it. We 
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shall look for the initial position of the check plane in the form ∑
+=

=

n

ki i mx
1

,  
where nk <≤0  and m  is the least integer such that ∑

+=

<
n

ki i ma
1

.  The last 
inequality provides that ∑

+=

<
n

ki i mx
1

 is valid at the point ,0P  i.e., 0P  remains 
on the same side of the check plane with the origin of coordinates. Let us note 
that ,knm −≤  since 2

1
≤ia  for each .i  Further we shall name the side of the 

space of 
ι

z ’s relative to the check plane where 0P  is located the space on this 
side, and the opposite side the space on the other side. For the initial position 
the number of vertices in the space on this side together with those on the check 
plane is .)!(!)!(2

0∑
=

−−−

m

j
k jknjkn  We shall choose k  so that this number of 

vertices would be as small as possible. A too great k  would turn the factor k2  
great, while the minimum k  could give a too great .m  Proceeding from the 
given numbers ,: 3 >∈< Ia ι

ι
 k  must be chosen in the optimal way. 

Let us consider a 4-dimensional space with the coordinates ,,, zyx  and .w  
Let the coordinates of 0P  be ).0,101,41,31(  In this case it is suitable to take 

,0=k  and then m  obtains the value 1 since .101014131 <+++  The equation 
of the check plane will then be .1=+++ wzyx  In our case the number of 
vertices in the space on this side is 5 (with the points on the check plane). If the 
coordinates of 0P  were )41,31,31,21(  for example, then in case of ,0=k  m  
would be 2, since .2413131211 <+++<  The equation 2=+++ wzyx  of 
the check plane means that the number of vertices in the space on this side is 11 
(with the points on the check plane). Now it is suitable to take 1=k  with ,1=m  
since .1413131 <++  The equation of the check plane will be ,1=++ wzy  
and the number of the vertices in the space on this side is 8 (with the points on 
the check plane). 

If the number of vertices on the check plane and in the space on this side is 
moderate, the value of the target function can be calculated for all of them. 
Otherwise we shall do it for a moderate number of vertices, preferring vertices 
closest to the point .0P  We shall name the preliminary preferred vertex the vertex 
among them where the value of the target function is the best. 

Let us find the minimum point of the target function in the part of the check 
plane, which remains inside the cube and denote it as ,P  which again may not be 
a vertex. Let us find the value of the target function at the point .P  Since the 
level surface of the target function osculates the check plane (or the part of the 
plane that remains inside the cube), we can consider the following statement 
valid: for all vertices, which remain on the other side of the space, the value of 
the target function is worse than at the point .P  

Conclusions. If the value of the target function at the preferred vertex is at least 
as good as at the point ,P  also in case P  itself is a vertex, the best vertex of the 
cube cannot be placed on the other side of the space, and cannot be at some 
vertex different from the point P  on the check plane. 

 

In case none of the mentioned conclusions is satisfied, the check plane should 
be shifted in such a way that some of the assumptions would be satisfied and so 
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that a minimum number of new vertices would be added to the space on this side. 
Since the level surface of the target function osculates the check plane at the 
point ,P  the level surfaces of the target function are obviously extended in the 

PP0  direction. Thus it seems promising to shift this edge of the check plane, 
which is located in the direction of the elongation of ,0PP  since namely in this 
direction worsening of the target function is the slowest with respect to its value 
at the point .0P  The check plane is shifted in such a way that a new vertex is 
found in the space on the other side that the check plane must pass, and the 

ldimensiona-)2( −n  opposite edge will be preserved. The check plane must 
move to the new vertex by turning around the edge. Let us explain the procedure 
of finding a new vertex first. To do this, we shall elongate the interval PP0  over 
the point P  till it intersects some ldimensiona-)1( −n  face of the cube at the 
point .Q  If P  lies on the face, then .QP =  Let us fix the face with Q  on it and 
which lies at least partly in the space on the other side. In case Q  lies at the 

ldimensiona-)2( −n  edge of two faces, we shall select among these two faces the 
one, which meets the above mentioned condition. If both faces meet this 
condition, also their ldimensiona-)2( −n  common edge will meet it, and in this 
case we shall fix the edge instead of the face. In case there are more edges than 
one, which pass Q  and meet this condition, we can fix already the 

ldimensiona-)3( −n  boundary that passes Q  and is at least partly located in the 
space on the other side, etc. So, going on with the process as long as possible, we 
come to a ldimensiona-k  boundary, ,1−≤ nk  where Q  lies and which lies at 
least partially in the space on the other side. 

For the example above, where the equation of the check plane in the  
4-dimensional space-xyzw  is 2=++ wzy  in case the coordinates of Q  are 

),43,21,1,32(  we shall fix the face 1=y  on which the vertex of the new check 
plane, which was with respect to the previous one in the space on the other side, 
must lie. If ),0,1,1,32(==QP  then Q  will lie simultaneously on the faces 

,1=y  ,1=z  and .0=w  The first two faces lie partially in the space on the other 
side with respect to the check plane, while the third one lies in the space on this 
side, reaching the check plane only by its edge and nonexisting in the space on 
the other side. Thus, the third face can be neglected and we shall fix the common 
edge of the faces 1=y  and 1=z  where the searched vertex of the new check 
plane must lie. 

Having fixed the ldimensiona-k  boundary, we shall continue moving on it, 
but staying in the part of the cube that does not belong to the space on this side. It 
means that by starting to move on the ldimensiona-k  boundary as well as at any 
moment when continuation in the chosen directon will take us out of the allowed 
part of the cube, we shall find a new direction so that the angle with respect to the 
present direction will remain minimal. 

In case of our last example we must continue moving in the space,-xw  having 
fixed .1== zy  The square ,0 x≤  1≤w  will remain in the 4-dimensional cube. 
Only one edge of this square, namely ,0=w  will lie on the check plane. The 
remaining part will be in the space on the other side. We have to continue from 
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the point ,32=x  0=w  so that the angle between the previous direction and the 
new one were minimal. As x  was increased and w  decreased, we should 
continue in the same way, but it would take us out of the allowed region. 
Therefore, the allowed direction that follows the previous one maximally is such 
that 0=w  and x  increases. 

This way we shall reach the point ,R  which lies on the ldimensiona-)1( −k  
edge of the ldimensiona-k  boundary, which in turn is at least partially located in 
the space on the other side. For our example we shall come to the point .1=x  
The face with the equation 1=x  is partially in the space on the other side, and so 
intersection of the faces ,1=x  ,1=y  and 1=z  where the searched vertex will lie 
is fixed. 

Further, let us apply the same procedure that we used for Q  to the point ,R  
only instead of the ldimensiona-)1( −n  face, we shall have now the 

ldimensiona-)1( −k  boundary. Continuing like that, we shall reach a one-
dimensional boundary where we shall choose this end point, which lies in the 
space on the other side. In our example this point will be ,1=x  ,1=y  ,1=z  

.1=w  
We remind of the necessity to change sometimes the direction not only in case 

we are on some face of the cube, but having reached the check plane. For 
example, if 1/4), 2/5, 1/2, (1/2,0 =P  the check plane 2=+++ wzyx  and 

3/4), 1/3, 5/12, (1/2,=P  then 1). 3/10, 3/8, (1/2,=Q  Further, we shall continue 
moving along the projection of the previous straight line onto the face .1=w  But 
having contacted the check plane before reaching a new face, we have to change 
the direction, continuing to move on the face 1=w  in such a way that we do not 
pass the check plane and turn off the least from the previous direction. 

Having chosen a vertex in the space on the other side, we have to choose a 
vertex to be rejected on the present check plane. We shall choose it in such a way 
that it would be dimensionally possibly close to the new vertex, i.e., a boundary 
of the cube with a possibly small dimension would exist, which passes through 
both, the new and rejected vertices. Since the coordinates of the vertices are 0 or 
1, it is required to change the minimum number of coordinates of the new vertex, 
so that the obtained point would satisfy the equation of the present check plane. 

Next, let us find the 1−n  vertices on the present check plane, which together 
with the rejected vertex will fix the present check plane. It means that in the form 
of vertices we shall find n  linearly independent solutions for the equation of the 
check plane, including the rejected vertex. The remaining 1−n  vertices form the 

ldimensiona-)2( −n  axis, and we shall turn the check plane around this axis. 
These 1−n  vertices together with the new vertex fix the new position of the 
check plane. 

Let us now present the whole plane shifting procedure using our example 
where 0) 1/10, 1/4, (1/3,0 =P  and the check plane .1=+++ wzyx  If we choose 

1/4), 1/3, 1/6, (1/4,=P  then 3/4). 4/5, 0, (1/12,=Q  Let us fix the face .0=y  
Moving on this face and using the simple projection of the present direction, we 
shall reach the point 27/28). 1, 0, (1/84,=R  Now we shall fix additionally the 
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face 1=z  and moving along the common edge of the faces 0=y  and ,1=z  
once again projecting the present direction onto it, we shall reach the vertex 
(0, 0, 1, 1). It will be our new vertex. The present check plane 1=+++ wzyx  is 
determined by the vertices (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1). We 
have to reject one of them. We shall choose the vertex that is dimensionally the 
closest to the new vertex, i.e., has the largest number of coinciding coordinates. 
Such are the two latter vertices, differing from the new vertex by one coordinate. 
The other two have three such coordinates. For example, let us reject the vertex 
(0, 0, 0, 1). The equation of the new check plane that passes through three 
previous vertices and the new vertex is .1=++ zyx  

After finding the new position of the check plane we shall find the values of 
the target function at the vertices, which were added in the space on this side, at 
least at these vertices, which are in the immediate neighbourhood of the new 
vertex. The immediate neighbourhood of the named vertex is of interest relative 
to also these vertices, which were already in the part of the space on this side, but 
were not considered. When doing so, we can find a new preferred vertex where 
the value of the target function is better than at the previous one. On the other 
side, since the check plane moves away from the point 0P  when turning, the best 
point of the new check plane will obviously be worse than .P  Thus it will be 
more evident that the best point of the new check plane is already worse than the 
present preferred vertex, i.e., the assumption given in the conclusion could be 
fulfilled now. 

When doing so, we shall reach such a check plane, for which the value of the 
target function in the whole space on the other side is worse than at the best point 
of the check plane. Then the best vertex of the cube is in the space on this side, 
perhaps on the check plane. The latter case can be considered only if the best 
point on the check plane turns out to be a vertex. When in the space on this side 
the number of vertices is moderate, so that they can be checked one by one,  
the problem can be solved. If not, we shall consider each ldimensiona-)1( −n  
face or part of the face in the space on this side separately. On each such face or 
part of the face we shall find separately its best point and compare the values of 
the target function at this point and at the already found preferred vertex. The 
faces, where the target function at its best point is worse than at the preferred 
vertex, will be totally rejected. It should also be considered that if any 

ldimensiona-)1( −n  face falls out, its neighbouring face will degenerate into an 
ldimensiona-)2( −n  opposite edge, which must now be checked instead of the 

neighbouring face. So, a certain number of cube boundaries will remain to check, 
each of them having a smaller dimension than .n  For each such ldimensiona-k  
boundary we shall use the check plane method again, taking this time the 

ldimensiona-)1( −k  secant line in the role of the check plane, but in the role of 
the preferred vertex using the up to now best checked vertex, even when it does 
not lie on this ldimensiona-k  boundary. 
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4. POLYOPTIMIZATION 
 
Let us have several such functions kΦ  expressing various interests of 

different stakeholders, which should be minimized. Therewith we shall assume 
that the values of different kΦ  are given in the same units, so that their changes 
can be compared with each other. As changes can be made based on the 
consensus only, the value of any single objective function cannot deteriorate. 
Instead of the optimum, we are now looking for the Pareto optimum, where the 
value of the objective function of all parties against the initial value has 
improved. In addition, we shall consider the min-max principle of the improve-
ment rates: even the least improved objective function must improve as much as 
possible. 

For the objective functions the following is valid [3]. If we build a linear 
function ∑ Φ

k kkα  so that for each ,k  ,10 ≤≤ kα  while ∑ =

k k ,1α  and choose 

kα  under these conditions so that ∑
′

Φ
k kkα  is minimal, the optimization 

direction of ∑ Φ
k kkα  will be exactly of the kind where the max–min principle is 

valid for recovering velocities: any deviation from this direction will decrease the 
recovering speed of some objective function among the still most slowly 
recovering functions. 

In the discrete case we shall replace 
ι
ϕ  with 

ι
ϕ  in each objective function 

separately. For the cube of 
ι

z ’s, we shall choose kα ’s for the initial point, which 
is also the first preferred vertex based on the above principle. Further, the check 
plane is placed and shifted proceeding from the objective function ∑ Φ

k kkα  as 
long as the preferred vertex remains the same. We shall consider as a new and 
more preferred vertex the one where each objective function is better (or at least 
as good as they were). It is evident that the new vertex is better for ∑ Φ

k kkα  
also in case of the existing combination and any other combination consisting of 
non-negative .kα  If we can select freely, we shall proceed from the max-min 
principle again when selecting the preferred vertex. After we have chosen the 
new preferred vertex, we shall find the kα  in the way that ∑

′

Φ
k kkα  is minimal 

in the new vertex, and from that moment on we shall consider ∑ Φ
k kkα   

an objective function for these .kα  
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Optimiseerimisprobleemid  katkevuspunktide  ja  
diskreetsete  argumentide  korral 

 
Ants Tauts 

 
Vaadeldakse selliste funktsioonide minimeerimist, milles osa argumente on 

lõppfunktsiooniga seotud katkevuspunkte omavate ühekohaliste vahefunktsioo-
nidega, osa omab aga lubatavate väärtustena vaid väärtusi 0 ja 1, kuigi teoree-
tiline üldistus võimaldab ka vahepealseid väärtusi. Kumbki asjaolu tekitab prob-
leemi gradientmeetodi kasutamisel. Esimene probleem on lahenduv pideva 
aproksimatsiooniga esialgu ruutpolünoomiga, mis on saadud vähimruutude mee-
todi integraalkuju abil, ja hiljem lainefunktsioonide ortogonaalridade osasumma-
dega, mida on töödeldud logaritmiliste keskmiste menetluse abil. Teine probleem 
on lahenduv tasandite abil, mis on võetud n-mõõtmelises ruumis selliselt, et 
mingi lubatud punkt ruumi ühel poolel selle tasandi suhtes on parem kui kõik 
punktid teisel poolel. 

 


