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Abstract. We show how pseudodifferential equations on the unit sphereof the 3-dimensional
Euclidean space can be studied using the spherical harmonicFourier series on the symmetry
group of the sphere.
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1. INTRODUCTION

Suppose we are faced with a Dirichlet boundary value problem of an elliptic
partial differential equation in a domain diffeomorphic to the unit ball ofR3. From
the fundamental solution we obtain the Schwartz kernel of a singular integral
operator on the 2-sphereS2, and the corresponding integral equation needs to
be solved. The integral operator turns out to be an ellipticpseudodifferential
operator, which can be treated locally with Euclidean Fourier analysis. However,
it turns out that one can directly deal with the spherical harmonics, which has
computational advantages. An analogous case is the theory of so-called periodic
pseudodifferential operators, i.e. pseudodifferential theory exploiting the Fourier
series on torus [1−4].

Pseudodifferential calculus on the2-sphere is a special case of pseudo-
differential theory on a compact homogeneous spaceG/K based on Fourier
analysis on a compact Lie groupG (see [5]); namely, the2-sphere is diffeo-
morphic to a homogeneous spaceG/K, whereK ∼= SO(2) is a subgroup of
G = SO(3). Basics of linear Lie groups can be found in many books, e.g. [6]
is a fine reference. In [7] the special case of rotation-bi-invariant operators on the
sphere was considered.
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2. SPHERE ROTATED

Let us endow the three-dimensional Euclidean spaceR3 with the usual inner
product(x, y) 7→ 〈x, y〉R3 = x1y1 + x2y2 + x3y3; the corresponding norm is
x 7→ ‖x‖R3 = (x2

1 + x2
2 + x2

3)
1/2. The unit sphere ofR3 is the set

S
2 =

{
x = (xj)

3
j=1 : ‖x‖R3 = 1

}
.

A rotation around the origin ofR3 is a linear mapping preserving both the
orientation and the distances. Such rotations form a noncommutative group,the
so-calledspecial orthogonal group of R3, denoted bySO(3). A rotation mapsS2

bijectively ontoS2, so thatSO(3) can be regarded as the symmetry group ofS2.
Let {e1, e2, e3} be the standard orthonormal basis ofR3. A linear mapping

a : R3 → R3 is of the form

x = (xj)
3
j=1 7→




3∑

j=1

aijxj




3

i=1

,

where aij = 〈ej , aei〉R3 . We can identify such a mapping with its matrix
representation(aij)3i,j=1. A rotationg ∈ G = SO(3) can thus be identified with a
real matrix(gij)3i,j=1 having orthonormal column vectors and positive determinant
(i.e. orientation is preserved). To put it otherwise,

G =
{
g = (gij)

3
i,j=1 : gij ∈ R, gtg = I, det(g) = 1

}
,

where the transposegt = (gji)
3
i,j=1 coincides withg−1. The mapping

p : G→ S
2, (gij)

3
i,j=1 7→ (gi3)

3
i=1

is C∞-smooth, and the inverse image of the north polee3 ∈ S2 is the subgroup

K := p−1({e3}) = {g ∈ G : p(g) = e3} = {g ∈ G : ge3 = e3}.

ThusS2 is diffeomorphic to the homogeneous spaceG/K = {gK : g ∈ G},
wheregK = {gk : k ∈ K}. In the sequelC∞(S2) ⊂ C∞(SO(3)) means
that we identify a functionf ∈ C∞(S2) with a functionf ∈ C∞(G) satisfying
f(g) = f(gk) for everyg ∈ G andk ∈ K.

3. EXPONENTIAL COORDINATES

A linear Lie group is a closed subgroup of the general linear groupGL(n) of
invertible n-by-n matrices. The Lie algebrag of a linear Lie groupG consists
of those matricesX for which exp(tX) ∈ G for everyt ∈ R. This means that
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eX = (t 7→ exp(tX)) is a group homomorphismR → G, so-calledone-parameter
subgroup; notice thatX = e′X(0). The tangent space at the neutral elementI ∈ G
can be naturally identified with the Lie algebrag. In the caseG = SO(3), the Lie
algebrag = o(3) consists of real skew-symmetric (i.e.Xt = −X) 3-by-3 matrices.
HenceX ∈ g is of the form

X = X(x) =




0 −x3 x2

x3 0 −x1

−x2 x1 0


 ,

where x = (xj)
3
j=1 ∈ R3; we define the norm‖X‖g to be ‖x‖R3 , so that

X3 = −‖X‖2
g X. When‖X‖g = 1, we obtain theRodrigues’ rotation formula

exp(tX) = I +X sin t+X2 (1 − cos t),

which equals
(

1 + (x2

1
− 1)(1 − cos t) −x3 sin t+ x1x2(1 − cos t) x2 sin t+ x1x3(1 − cos t)

x3 sin t+ x1x2(1 − cos t) 1 + (x2

2
− 1)(1 − cos t) −x1 sin t+ x2x3(1 − cos t)

−x2 sin t+ x1x3(1 − cos t) x1 sin t+ x2x3(1 − cos t) 1 + (x2

3
− 1)(1 − cos t)

)
.

From this one can prove that(Y 7→ exp(Y )) : {Y ∈ g : ‖Y ‖g < π} → G is a
smooth injection, and the exponential coordinatestx ∈ R3 (x ∈ S2, 0 < t < π) in
terms ofg = (gij)

3
i,j=1 = exp(tX(x)) ∈ G are

tx = t(xj)
3
j=1 =

t

2 sin t



g32 − g23
g13 − g31
g21 − g12


 ,

wherecos t = (g11 + g22 + g33 − 1)/2. In other words, the ball{tx ∈ R3 : x ∈
S2, 0 ≤ t < π} is identified with a neighbourhood ofI ∈ G = SO(3). Let
α ∈ N3, α! := α1! α2! α3! and |α| := α1 + α2 + α3. For g = exp(tX(x)) as
above, let us define a “monomialqα in exponential coordinates” by

qα(g) :=
1

α!
(tx)α =

1

α!
t|α| xα1

1 xα2

2 xα3

3

=
1

α!

(
t

2 sin t

)|α|

(g32 − g23)
α1(g13 − g31)

α2(g21 − g12)
α3 .

For us the exact behaviour ofqα is relevant only in an arbitrary small
neighbourhood ofI ∈ G, and with an arbitrary smooth extension we may consider
qα ∈ C∞(G). Actually, we can first defineqγ when|γ| = 1, and then demand that
α! β! qα+β = (α + β)! qα qβ for everyα, β ∈ N3. In an analogous manner, for
f ∈ C∞(G) andg ∈ G, we define

(∂αg f)(g) := ∂α1

x1
∂α2

x2
∂α3

x3
f(exp(X(x)) g)|x=0

=
∂α1

∂xα1

1

∂α2

∂xα2

2

∂α3

∂xα3

3

f(exp(X(x)) g)|x=0.
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Here we should warn that we have interpreted elements ofg as right-invariant
vector fields onG, not asleft-invariant ones (which is more common in literature).

4. EULER ANGLES

Rotations by angleφ ∈ R around thex1-, x2-, andx3-axis, respectively, are
expressed by the matricesω1(φ), ω2(φ), ω3(φ) given by




1 0 0
0 cosφ − sinφ
0 sinφ cosφ


,




cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ


,




cosφ − sinφ 0
sinφ cosφ 0

0 0 1


.

We represent rotations byEuler angles φ, θ, ψ ∈ R. Any g ∈ G = SO(3) has a
form

g = ω(φ, θ, ψ) := ω3(φ) ω2(θ) ω3(ψ),

where−π < φ, ψ ≤ π and0 ≤ θ ≤ π. If 0 < θ1, θ2 < π, thenω(φ1, θ1, ψ1) =
ω(φ2, θ2, ψ2) if and only if θ1 = θ2 andφ1 ≡ φ2 (mod2π) andψ1 ≡ ψ2 (mod2π);
thus we conclude that the Euler angles provide local coordinates for the manifold
G nearby a pointω(φ, θ, ψ) wheneverθ 6≡ 0 (modπ).

The groupG acts transitively on the spaceS2. Sinceω(φ, θ, ψ) ∈ G equals




cosφ cos θ cosψ − sinφ sinψ − cosφ cos θ sinψ − sinφ cosψ cosφ sin θ
sinφ cos θ cosψ + cosφ sinψ − sinφ cos θ sinψ + cosφ cosψ sinφ sin θ

− sin θ cosψ sin θ sinψ cos θ


,

it moves the north polee3 ∈ S2 to the point

ω(φ, θ, ψ)e3 =




cosφ sin θ
sinφ sin θ

cos θ


.

If 0 < θ < π and−π/2 < φ,ψ < π/2, then the Euler angles and the exponential
coordinates are related byω(φ, θ, ψ) = exp(tX(x)), wherex ∈ S2, 0 < t < π,
cos t = (cos(φ+ ψ)(1 + cos θ) + cos θ − 1)/2 and

tx =
t

2 sin t




sin θ(sinψ − sinφ)
sin θ(cosψ + cosφ)

(1 + cos θ) sin(φ+ ψ)


 .

5. INVARIANT INTEGRATION

On a compact groupG there exists a unique translation-invariant regular Borel
probability measure, called theHaar measure µG; customarilyL2(G) refers to
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L2(G,µG). Using the Euler angle coordinates onG = SO(3), we define an
orthogonal projectionPS2 ∈ L(L2(G)) by

(PS2f)(ω(φ, θ, ψ)) =
1

2π

∫ π

−π
f(ω(φ, θ, ψ̃)) dψ̃

for almost allg = ω(φ, θ, ψ). With the natural interpretationPS2f ∈ L2(S2), and
if f ∈ C∞(G), thenPS2f ∈ C∞(S2). Thereby

∫
G f dµG =

∫
S2 PS2f , where the

measure on the sphere is the normalized angular part of the Lebesgue measure of
R3. This yields theHaar integral

f 7→
∫

G
f dµG =

1

8π2

∫ π

−π

∫ π

0

∫ π

−π
f(ω(φ, θ, ψ)) sin(θ) dφ dθ dψ.

6. FOURIER SERIES ON SO(3) AND S2

LetG = SO(3). For eachl ∈ N there exists an irreducible unitary representa-
tion tl : G → GL(2l + 1). Actually, any unitary representation ofG is equivalent
to a direct sum of such unitary matrix representations. The matrix elements of
tl(g) = (tlmn(g))

l
m,n=−l can be factorized with respect to the Euler angles:

tlmn(ω(φ, θ, ψ)) = e−i(mφ+nψ) P lmn(cos(θ)),

where

P lmn(z) =
(−1)l−n in−m

2l

√
(l +m)!

(l − n)! (l + n)! (l −m)!

×(1 + z)(−m−n)/2(1 − z)(n−m)/2 dl−m

dzl−m

[
(1 − z)l−n(1 + z)l+n

]
;

more expressions forP lmn can be found in [6]. Now {
√

2l + 1 tlmn : l ∈ N,
m, n ∈ Z, −l ≤ m,n ≤ l} is an orthonormal basis forL2(G), and thus
f ∈ C∞(G) has a Fourier series representation

f =
∞∑

l=0

(2l + 1)
l∑

m=−l

l∑

n=−l

f̂(l)mn tlmn,

where the Fourier coefficients are computed by

f̂(l)mn := 〈f, tlmn〉L2(G) =

∫

G
f(g) tlmn(g) dµG(g).
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Notice that tlmn(g) = (tl(g)∗)nm = tlnm(g−1). Evidently, the values of
f ∈ C∞(S2) ⊂ C∞(G) do not depend on the Euler angleψ, so that in this case
f̂(l)mn = 0 whenevern 6= 0.

LetM be a smooth compact manifold without a boundary, i.e. a smooth closed
manifold. In the sequel,D(M) denotes the spaceC∞(M) endowed with the usual
Fréchet space structure of test functions. The convolutionf1 ∗ f2 ∈ D(G) of
f1, f2 ∈ D(G) is defined by

(f1 ∗ f2)(g) :=

∫

G
f1(gh

−1) f2(h) dµG(h).

Sincetl is a group homomorphism, we get

f̂1 ∗ f2(l) = f̂1(l) f̂2(l), i.e. f̂1 ∗ f2(l)mn =

l∑

k=−l

f̂1(l)mk f̂2(l)kn.

The Fourier transform of distributionsf1, f2 ∈ D′(G) is defined by duality.
Let A be a continuous linear operatorD(G) → D(G). Then for eachl ∈ N

there is a unique matrix-valued functiong 7→ σA(g, l) = (σA(g, l)mn)
l
m,n=−l such

that

(Af)(g) =
∞∑

l=0

(2l + 1) Tr
(
σA(g, l) f̂(l) tl(g)∗

)

=
∞∑

l=0

(2l + 1)
l∑

m=−l

l∑

n=−l

(
l∑

k=−l

σA(g, l)mk f̂(l)kn

)
tlmn(g)

for everyf ∈ D(G) andg ∈ G; actually,

σA(g, l) = tl(g) (A(tl
∗
))(g), i.e. σA(g, l)mk =

l∑

j=−l

tlmj(g) (Atlkj)(g).

We call the mapping(g, l) 7→ σA(g, l) (whereg ∈ G, l ∈ N) the matrix symbol

of A. Let sA : G → D′(G) satisfy ŝA(g)(l) = σA(g, l), and letσA(g) denote
the convolution operatorf 7→ sA(g) ∗ f . Then(Af)(g) = (σA(g)f)(g). Let
KA be the Schwartz kernel ofA, i.e. the distribution onG × G defined by
KA(Φ ⊗ f) := Φ(Af) for f ∈ D(G) andΦ ∈ D′(G), or informally written
as

(Af)(g) =

∫

G
KA(g, h) f(h) dµG(h).

ThenKA(g, h) = sA(g)(gh−1) in the sense of distributions. One can say that the
symbolσA presents a linear operatorA as aG-parametrized family of convolution
operators.
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An operatorA ∈ L(D(G)) belongs toL(D(S2)) if and only if it mapsC∞(S2)
into C∞(S2), or equivalently if and only ifg 7→ σA(g, l) belongs toC∞(S2) for
everyl ∈ N.

The Sobolev spaceHs(G) of orders ∈ R consists of distributionsf on G
having a finite norm

‖f‖Hs :=

(
∞∑

l=0

(2l + 1)2s+1
l∑

m=−l

l∑

n=−l

∣∣∣f̂(l)mn

∣∣∣
2
)1/2

.

For anyr ∈ R, Ξ̂rf(l) := (2l + 1)r f̂(l) defines a linear Sobolev space iso-
morphismΞr : Hs(G) → Hs−r(G). It is noteworthy thatΞr commutes with
any convolution operator. Hence, to characterize Sobolev boundedness of convolu-
tion operators, it is enough to characterizeL2-boundedness (after all,L2(G) =
H0(G)): the norm‖σA(g0)‖L(L2(G)) of a convolution operatorσA(g0) is

sup
l∈N

‖σA(g0, l)‖L(C2l+1) := sup
l∈N

sup
x:‖x‖

C2l+1≤1
‖σA(g0, l)x‖C2l+1 ,

wherex 7→ ‖x‖C2l+1 = (|x1|2 + . . .+ |x2l+1|2)1/2.

7. PSEUDODIFFERENTIAL CALCULUS

Let S(Rn) be the Schwartz test function space (i.e. rapidly decreasing smooth
functions with the natural Fréchet space structure) onRn; the Fourier transform
f̂ ∈ S(Rn) of f ∈ S(Rn) is given by

f̂(ξ) =

∫

Rn

f(x) e−i2πx·ξ dx.

A linear operatorA : S(Rn) → S(Rn) of the form

(Af)(x) =

∫

Rn

σA(x, ξ) f̂(ξ) ei2πx·ξ dξ

is called apseudodifferential operator of order m ∈ R, denoted byA ∈ Ψm(Rn),
if its symbol σA ∈ C∞(Rn × Rn) satisfies the inequalities

∣∣∣∂αξ ∂βxσA(x, ξ)
∣∣∣ ≤ CAmαβ (1 + |ξ|)m−|α|

uniformly in x ∈ Rn, for everyα, β ∈ Nn; CAmαβ is a constant depending onA,
m, α, β.

Corresponding pseudodifferential operator classesΨm(M) on a smooth closed
manifold M can be defined via chart neighbourhood localizations, since the
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class Ψm(Rn) is diffeomorphism invariant. In [5] there is a Fourier series
characterization of pseudodifferential operators on compact Lie groups and certain
homogeneous spaces; this includes also symbol inequalities for our operator-valued
symbols. In [5] and [8] the symbolic calculus formulae are presented in general
form, but here it is best to express them explicitly forS2 andSO(3).

LetG = SO(3). Recall the functionsqα ∈ C∞(G), “monomials in exponential
coordinates”. Recall that ifs ∈ S(Rn), thenx 7→ xαs(x) has the Fourier transform
ξ 7→ (−i2π)−|α| ∂αξ ŝ(ξ); this motivates the definition of a “quasi-difference
operator”Qα acting on symbols of linear operatorsA ∈ L(D(G)):

QασA(g, l) := ̂qαsA(g)(l).

The idea is that∂αξ from Euclidean analysis is now replaced byQα which is neither
a differential nor a difference operator, yet working with the Fourier transform in
some analogous way. For instance, ifA,B ∈ Ψm(G), then by using a Taylor
polynomial expansion atI ∈ G we obtain anasymptotic expansion (see [5]) for
σAB:

σAB(g, l) ∼
∑

α≥0

(QασA(g, l)) ∂αg σB(g, l);

that is, one just replaces the convolution operatorsσA(x) and σB(x) of [5] by
matricesσA(g, l) andσB(g, l), and so on. In [5] one finds analogous asymptotic
expansions for “amplitude operators”, adjoints and parametrices, so thatwe are not
going to state them again.

From [5] it follows that ifA ∈ Ψm(G) mapsD(S2) intoD(S2), thenA|D(S2) ∈
Ψm(S2). Conversely, ifB ∈ Ψm(S2), then there existsA ∈ Ψm(G) such that
A|D(S2) = B. Moreover, operationsQα and∂βg respect theK-right-invariance in
the sense that ifσA(gk, l) = σA(g, l) for k ∈ K, thenQασA(gk, l) = QασA(g, l)

and∂βg σA(gk, l) = ∂βg σA(g, l). This means that the asymptotic expansion formulae
for G = SO(3) hold also forS2! The main point is that ifA ∈ Ψm(G) is elliptic
and mapsD(S2) intoD(S2), then we can compute an asymptotic expansion for the
parametrix ofA|D(S2) ∈ Ψm(S2) using the symbolic calculus described above.

8. FUTURE PROSPECTS

Much remains to be studied in pseudodifferential calculus on the sphereS2. For
instance, forB ∈ Ψm(S2) there always existsA ∈ Ψm(G) such thatA|D(S2) = B,
but it is not known whether ellipticity is preserved in such an extension.

Finally, numerical Fourier analysis onS2 needs to be refined: not only would
it be important to have stable FFT-like algorithms, but also estimate convergence
rates for sequences of Sobolev space interpolation projections. Applications would
be widespread, concerning not just pseudodifferential calculus.
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Pseudodiferentsiaalanalüüs 2-sfääril

Ville Turunen

On demonstreeritud, kuidas on võimalik uurida pseudodiferentsiaalvõrrandeid
kolmemõõtmelise eukleidilise ruumi ühiksfääril, kasutades Fourier’ ridu sfäärilis-
test harmoonikutest sfääri sümmeetriarühmal.
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