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Abstract. We show how pseudodifferential equations on the unit spbktiee 3-dimensional
Euclidean space can be studied using the spherical harrfRoniger series on the symmetry
group of the sphere.
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1. INTRODUCTION

Suppose we are faced with a Dirichlet boundary value problem of an elliptic
partial differential equation in a domain diffeomorphic to the unit balRéf From
the fundamental solution we obtain the Schwartz kernel of a singular ihtegra
operator on the 2-sphef®?, and the corresponding integral equation needs to
be solved. The integral operator turns out to be an ellipseudodifferential
operator, which can be treated locally with Euclidean Fourier analysis. However,
it turns out that one can directly deal with the spherical harmonics, whash h
computational advantages. An analogous case is the theory of so-catledip
pseudodifferential operators, i.e. pseudodifferential theory expipitie Fourier
series on torus'[4].

Pseudodifferential calculus on thesphere is a special case of pseudo-
differential theory on a compact homogeneous sp&géd based on Fourier
analysis on a compact Lie group (see P]); namely, the2-sphere is diffeo-
morphic to a homogeneous spaG¢ K, where K = SO(2) is a subgroup of
G = SO(3). Basics of linear Lie groups can be found in many books, élg. [
is a fine reference. In'] the special case of rotation-bi-invariant operators on the
sphere was considered.
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2. SPHERE ROTATED

Let us endow the three-dimensional Euclidean sfRitavith the usual inner
product(x,y) — (z,y)rs = x1y1 + z2y2 + x3ys3; the corresponding norm is
z— ||z||gs = (22 + 2 + 22)'/2. The unit sphere dR? is the set

§* = {z = (5j)j=1 * 2l =1}

A rotation around the origin ofR? is a linear mapping preserving both the
orientation and the distances. Such rotations form a noncommutative ghaup,
so-calledspecial orthogonal group of R3, denoted byS8O(3). A rotation mapss?
bijectively ontoS?, so thatSO(3) can be regarded as the symmetry groufof

Let {e1, e2,e3} be the standard orthonormal basisif. A linear mapping
a : R? — R3 is of the form

3 3
Tr = (%’)?:1 = Zaijl’j 5

j=1 i=1

where a;; = (ej,ae;)gs. We can identify such a mapping with its matrix

representatiorﬁaij);?”j:l. Arotationg € G = SO(3) can thus be identified with a

real matrix(g;;); ,_, having orthonormal column vectors and positive determinant
(i.e. orientation Is preserved). To put it otherwise,

G={9=1(9i)};=1: 9 ER, g'g=1, det(g) =1},
where the transposg = (g;i); ,_, coincides withy~'. The mapping
p:G— SQ, (gij)?,jzl = (92‘3)?:1
is C*-smooth, and the inverse image of the north pgle S? is the subgroup
K:=p '({es}) ={g€G: plg) =es} ={g € G: ges = es}.
Thus$? is diffeomorphic to the homogeneous sp&&gk = {gK : g € G},
wheregK = {gk : k € K}. Inthe sequelC>(S?) c C*(SO(3)) means
that we identify a functiorf € C°°(S?) with a functionf € C°°(G) satisfying
f(g) = f(gk) for everyg € G andk € K.
3. EXPONENTIAL COORDINATES

A linear Lie group is a closed subgroup of the general linear geLpn) of
invertible n-by-n matrices. The Lie algebrg of a linear Lie groupG consists
of those matrices{ for which exp(tX) € G for everyt € R. This means that
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ex = (t — exp(tX)) is a group homomorphisi — G, so-calledone-parameter

subgroup; notice thatX = €y (0). The tangent space at the neutral elenfeatG

can be naturally identified with the Lie algelyyaln the casez = SO(3), the Lie
algebrag = o(3) consists of real skew-symmetric (i.&.! = —X) 3-by-3 matrices.
HenceX € gis of the form

0 —XI3 o
X = X(x) = I3 0 —x1 |,
—X9 I 0

wherez = (z;)7_; € R* we define the normjX||, to be ||z]/gs, so that
X3 = —||X||Z X. When|| X || = 1, we obtain theRodrigues' rotation formula

exp(tX) =1+ X sint+ X? (1 — cost),
which equals

1+ (22 —1)(1 —cost) —zzsint+ z122(1 —cost) wgsint + z123(1 — cost)
r3sint + x122(1 —cost) 1+ (23 —1)(1 —cost) —wxysint + xew3(1 — cost)
—wosint + x123(1 — cost) ysint+ xox3(l —cost) 1+ (23 —1)(1 — cost)

From this one can prove th&t” — exp(Y)) : {Y e g: |[Y|g <7} — Gisa
smooth injection, and the exponential coordinates R? (z € S?,0 < ¢t < 7) in
terms ofg = (gij); ;=1 = exp(tX(z)) € G are

¢ g32 — g23
3
tr =t(xj)j= = Semg |93~ 9s1 ]
921 — g12

wherecost = (g11 + go2 + g33 — 1)/2. In other words, the balltz € R? : = €
S?, 0 < t < ~} is identified with a neighbourhood df € G = SO(3). Let
a € N3, al == a1! as! az! and|a| := a1 + az + a3. Forg = exp(tX(z)) as
above, let us define a “monomig| in exponential coordinates” by

al a2 (3

1 1
da(g) = o (tx)* = ] o Ty Ty X3

1 |ex]
= o (25;15) (932 — g23)"* (913 — 931)** (921 — g12)™.
For us the exact behaviour of, is relevant only in an arbitrary small
neighbourhood of € G, and with an arbitrary smooth extension we may consider
do € C*(G). Actually, we can first defing, when|y| = 1, and then demand that
! B! gorp = (o + B)! qa g for everya, 8 € N3, In an analogous manner, for

f € C*(G) andg € G, we define

(05 F)(g) = 02)077057 f(exp(X(x)) g)la=0
o1 9oz 9o
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Here we should warn that we have interpreted elemenig @ right-invariant
vector fields oG, not adeft-invariant ones (which is more common in literature).

4. EULER ANGLES

Rotations by angle € R around ther;-, x2-, andzs-axis, respectively, are
expressed by the matrices(¢), wa (o), ws(¢) given by

1 0 0 cos¢p 0 sing cos¢p —sing 0
0 cos¢ —sing |, 0 1 0 ], |sing <cos¢p O].
0 sing cos¢ —sing 0 cos¢ 0 0 1

We represent rotations yuler angles ¢,0,¢ € R. Any g € G = SO(3) has a
form

g= W(Qb, 07 d}) = w3(¢) w2(6) w3(¢)7
where—71 < ¢, < Tand0 < 0 < 7. If 0 < 01,05 < 7, thenw(¢y,01,71) =
w(oa, b2,19) ifand only if§; = O andgy = @2 (Mod27) andyy = 9 (Mod27);
thus we conclude that the Euler angles provide local coordinates for thiéohda
G nearby a poin(¢, 8, 1) wheneve® # 0 (mod).
The groupG acts transitively on the spa&8. Sincew(, 0, 1) € G equals

cos ¢ cosf cosyp —singsiny — cos@cosfsiny —singpcosyy cos¢psinf
sin ¢ cosf cos 1y + cos psinyy —sin¢gcos@siny + cospcosy singsinb |,
—sin 6 cos vy sin 6 sin ¥ cos
it moves the north poles € S? to the point
cos ¢ sinf
w(p,0,1)es = | sing sinf |.
cos 6

If 0 <0 <mand—n/2 < ¢,9 < 7/2, then the Euler angles and the exponential
coordinates are related hy(¢, 8,v) = exp(tX(x)), wherex € S?,0 < t < ,
cost = (cos(¢ + ¥)(1 + cosf) + cosd — 1)/2 and

. sin f(sin ¢ — sin ¢)
x = sinf(cosvy +cos¢g) | .

2sint (14 cosf)sin(¢ + )

5. INVARIANT INTEGRATION

On a compact grour there exists a unique translation-invariant regular Borel
probability measure, called thgaar measure y; customarily L?(G) refers to
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L?*(G, ng). Using the Euler angle coordinates 6h = SO(3), we define an
orthogonal projectiorPs: € L(L?(G)) by

(Poe§)(6.0.0) = o= [ F(l0.0.9)) a0

for almost allg = w(¢, §,). With the natural interpretatioRs. f € L?(S?), and

if f € C>(G), thenPs:f € C*°(S?). Thereby[,, f dug = [s. Ps2f, where the
measure on the sphere is the normalized angular part of the Lebesgueaengfas
R3. This yields theHaar integral

1 s ™ ™ .
e[ tane =g [ [ ] #06.0.0) sini0) as a0 av.

6. FOURIER SERIES ON SO(3) AND S2

Let G = SO(3). For eachl € N there exists an irreducible unitary representa-
tiont! : G — GL(21 + 1). Actually, any unitary representation 6fis equivalent
to a direct sum of such unitary matrix representations. The matrix elements of
t'(g) = (t',,.(9)). __, can be factorized with respect to the Euler angles:

m,n=—1

o (W($,0,)) = e 0T P (cos(6)),

(1) e (I +m)!
Pn(2) = ] \/(z—n)!(z+n)!(z—m>!

/o dl—m

(1 + (=m—n)/2 1— (n—m)
(1) - e L

[(1 o Z)l—n(l +Z)l+n :

more expressions faP. = can be found inq. Now {v2I+1¢ : | € N,
m,n € Z, —l < m,n < [} is an orthonormal basis fof?(G), and thus
f € C*(G) has a Fourier series representation

00 l l
F=Y 2+ Y S Flmn ths
1=0 m=—Iln=-—1

where the Fourier coefficients are computed by

~

FOmn = (T 120 = /G £(9) tn(9) dic(g).
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Notice thattl,.(9) = (#(9))wm = t,,,(¢g7!). Evidently, the values of
f € C®(S?) c C*(G) do not depend on the Euler angle so that in this case
F(D)mn = 0 whenevem # 0.

Let M be a smooth compact manifold without a boundary, i.e. a smooth closed
manifold. In the sequelD (/) denotes the spaa&™> (M) endowed with the usual
Fréchet space structure of test functions. The convolufior fo € D(G) of
f1, f2 € D(G) is defined by

(o * f2)(g / fi(gh™Y) fa(h) duc(h).

Sincet! is a group homomorphism, we get

l
A f) = A B, te fix pQmn= Y Amk 20w

k=—1

The Fourier transform of distributiong, fo € D'(G) is defined by duality.

Let A be a continuous linear operatb(G) — D(G). Then for each € N
there is a unique matrix-valued functign— o 4(g,1) = (ca(g, l)mn)'lm,n:—l such
that

(AN)g) = D@ +1) T (oalg,l) F) 1(9)")

=0

. l
= > @+1) Z Z(ng, Yk F(D)i ) thn(9)

=0 m=—Iln=—1 \k=-I

forevery f € D(G) andg € G; actually,

ral ) = (6) (AN i oalorDo = 3 th(0) (AT ).
j=-l

We call the mappindg, ) — o4(g,l) (Whereg € G, | € N) the matrix symbol
of A. Letsy : G — D/(G) satisfysa(g)(l1) = oa(g,l), and leto4(g) denote
the convolution operatof — s4(g) = f. Then(Af)(g) = (ca(g)f)(g). Let
K 4 be the Schwartz kernel afl, i.e. the distribution onz x G defined by
Kao(®® f) := ®(Af) for f € D(G) and® € D'(G), or informally written
as

g) = /G Ka(g,h) £(h) duc(h).

ThenK 4(g,h) = sa(g)(gh™1) in the sense of distributions. One can say that the
symbolo 4 presents a linear operatdras aG-parametrized family of convolution
operators.
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An operatorA € £(D(G)) belongs taZ(D(S?)) if and only if it mapsC°(S?)
into C>°(S?), or equivalently if and only ify — o4(g,1) belongs taC*>(S?) for
everyl € N.

The Sobolev spacél®(G) of orders € R consists of distributiong’ on G
having a finite norm

o0 ! ! 1/2
£ llas = (Z(21+ 23 S ‘f(l)mn 2) |
=0 m=—Iln=—1

~

For anyr € R, E/’Tf(l) = (20 + 1)" f(I) defines a linear Sobolev space iso-
morphism=" : H%(G) — H* "(G). It is noteworthy thaE"™ commutes with
any convolution operator. Hence, to characterize Sobolev bounsiedheonvolu-
tion operators, it is enough to characteriz&-boundedness (after all>(G) =
HY(@)): the norm|o a(go) |l z(z2(cy) Of @ convolution operatar 4(go) is

sup (0490, )|l gczi+1y :=sup  sup  [loa(go, Dzllcai+,
leN leN .Z’ZH$||C2l+1 Sl

wherez — ||z caisr = (|21]? + ...+ |zor1|?) V2.

7. PSEUDODIFFERENTIAL CALCULUS

Let S(R™) be the Schwartz test function space (i.e. rapidly decreasing smooth
functions with the natural Fréchet space structureR8n the Fourier transform
feSMR") of f e S(R") is given by

~

O =] fl@)e ™ da.

Rn
A linear operatod : S(R") — S(R") of the form

-~

(AN)(@) = [ oat@&) Fl) < ag

is called apseudodifferential operator of order m € R, denoted byd € U™ (R"),
if its symbol 04 € C°(R™ x R") satisfies the inequalities

agagaA(x,g)) < Cmag (1+ €)™

uniformly inz € R", for everya, 3 € N"; Canap is a constant depending oh
m, o, B.

Corresponding pseudodifferential operator clags&$) ) on a smooth closed
manifold M can be defined via chart neighbourhood localizations, since the
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class U (R") is diffeomorphism invariant. In°] there is a Fourier series
characterization of pseudodifferential operators on compact Ligpgrand certain
homogeneous spaces; this includes also symbol inequalities for outapeued
symbols. In{] and [] the symbolic calculus formulae are presented in general
form, but here it is best to express them explicitly $8randSO(3).

LetG = SO(3). Recall the functiong, € C*°(G), “monomials in exponential
coordinates”. Recall that f € S(R"), thenz — z®s(x) has the Fourier transform
§ — (—i2m)~lol 9g5(¢); this motivates the definition of a “quasi-difference
operator’Q“ acting on symbols of linear operatafise £(D(G)):

Q%0 4(g,1) = qasa(g)(l).

The idea is thap? from Euclidean analysis is now replaced®$ which is neither
a differential nor a difference operator, yet working with the Fouriangform in
some analogous way. For instance Aif B € ¥™(G), then by using a Taylor
polynomial expansion at € G we obtain amasymptotic expansion (see p]) for
O AB-

oaB(g.1) ~ > (Q%0alg,1)) 95on(g.l);

a>0

that is, one just replaces the convolution operatog$r) and op(x) of [°] by
matriceso 4 (g, 1) ando(g,1), and so on. Inq one finds analogous asymptotic
expansions for “amplitude operators”, adjoints and parametrices, seéhae not
going to state them again.

From [] it follows that if A € ¥(G) mapsD(S?) into D(S?), thenA|p sz €
U™ (S?). Conversely, ifB ¢ ¥™(S?), then there existsl € ¥™(G) such that
Alps2) = B. Moreover, operation@“ andag respect thek -right-invariance in
the sense that #4(gk, 1) = oa(g,l) for k € K, thenQ%4(gk,l) = Q%0 a(g,!)
andagﬂaA (gk,l) = 6950A(g, [). This means that the asymptotic expansion formulae
for G = SO(3) hold also forS?! The main point is that ifA € ¥™(G) is elliptic
and mapD(S?) into D(S?), then we can compute an asymptotic expansion for the
parametrix ofA|ps2) € U™ (S?) using the symbolic calculus described above.

8. FUTURE PROSPECTS

Much remains to be studied in pseudodifferential calculus on the spheFer
instance, forB € ¥™(S?) there always existd € U™ (G) such thatA|p(s2) = B,
but it is not known whether ellipticity is preserved in such an extension.

Finally, numerical Fourier analysis &% needs to be refined: not only would
it be important to have stable FFT-like algorithms, but also estimate convergenc
rates for sequences of Sobolev space interpolation projections. Agiplisavould
be widespread, concerning not just pseudodifferential calculus.
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kolmemodtmelise eukleidilise ruumi tGhiksfaaril, kasutades Fourier’ ridu i§&ar
test harmoonikutest sfaari simmeetriarthmal.
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